
AS/400Programming with VisualAge for RPG

Andi Bitterer
Reinhard Leising

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi(dots per inch). The finalproduction redbook with the REDcover will
be printed at1200 dpi andwill provide superiorgraphicsresolution. Please see “How to Get ITSO
Redbooks” at theback of this book for ordering instructions.

SG24-2222-00

SG24-2222-00

International Technical Support Organization

AS/400 Programming with VisualAge for RPG

May 1998

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix D, “Special Notices.”

First Edition (May 1998)

This edition applies to Version 3 Release 1 of VisualAge for RPG for Windows 95/NT, for use with
OS/400 V3R1 or later.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . xi

Tables . xvii

Preface . xix
ITSO on the Internet . xix
VisualAge for RPG on the Internet . xxi
About the Authors . xxi
Acknowledgments . xxii
Comments Welcome . xxii

Part 1. Programming with VisualAge for RPG . 1

Chapter 1. Introduction to VisualAge for RPG 3
What Is VisualAge for RPG . 3

What Is Client/Server . 3
Building Client/Server GUI Applications 3

The Application Development Environment 4
Project Organizer Help . 5

The GUI Designer . 5
The Project Window . 5
The Parts Palette . 8
The Parts Catalog . 9

The Editor . 10
The Compiler . 11
The Debugger . 12

Chapter 2. Debugging . 13
Preparing for Debugging . 13

Authorities Required for Using the Debugger 14
Setting Debugger Ports . 14
Starting the Debug Server . 15
Ending the Debug Server . 15
Specifying an AS/400 Host Name . 15
Setting Environment Variables for Debugging 16

Compiling a Program with Debug Data . 17
Compiling ILE C + + Programs . 18
Compiling ILE C, ILE RPG, ILE COBOL, or ILE CL Programs 18
Compiling OPM RPG, OPM COBOL, or OPM CL Programs 19
Debugging Optimized Code . 19

 Copyright IBM Corp. 1998 iii

Starting a Debugging Session . 19
Ending the Debugging Session . 22
Locating Source Code . 22

Frequently Used Features of the Debugger 24
Using the Tool Buttons . 24
Running a Program . 25
Setting Breakpoints . 26
Stepping Through a Program . 28
Displaying and Changing Variables . 28
Writing Code That the Debugger Supports 28
Debugger Performance Considerations 29
Debug Limits of the Cooperative Debugger 30

Chapter 3. Data Access . 33
AS/400 Files and Record I/O . 33

An Easy Approach . 33
Open Data Paths and Overrides . 41
Open Query File . 46
File Locking . 49
Record Locking . 50
Commitment Control . 55
Record Blocking . 59
Exception Handling . 60

Local Files . 64
File Definition . 64
File Name . 65

SQL Support . 70
Embedding SQL . 71
Host Variables . 71
Connecting to the Database . 74
Sample SQL Application . 75
Build Process and Options . 85

Data Area . 90
Defining a Data Area . 91
Reading and Writing Data Areas . 92
Data Area Data Structure . 93

Chapter 4. Programs, Procedures, and Functions 95
AS/400 Programs and Commands . 95

The CALL Opcode . 95
Parameters . 97
Exceptions . 98
Asynchronous Call . 100
AS/400 Commands . 104

iv VisualAge for RPG

Local Programs . 108
CALLP Operation . 108
START Operation . 109
Examples . 110

Procedures . 113
Prototyping and Invocation . 113
Implementation . 113
Parameters . 115
Return Values . 119
External Procedures . 122

Functions from Foreign DLLs . 131
Prototyping . 131
Null-Terminated Strings . 133

Chapter 5. Messages . 137
Messages in Your Source . 137

Message Style . 137
Define Messages Dialog . 139

Message Definition . 140
Displaying Messages . 141
Replacement Variables . 142

Message Subfile . 145
Multiple Messages . 145
Adding Messages . 146

Messages as Labels . 150

Chapter 6. Defining Help . 153
Context-Sensitive Help . 153

LPEX Editor . 154
Highlighting . 156
Resource Identifier . 158

The Help Push Button . 159
Redirecting Events . 159
Symbols . 160
Hypertext Links . 161
Embedded Images . 163
Displaying Table of Contents . 164

Second-Level Help for Messages . 166

Chapter 7. National Language Support 171
Labels in GUI Parts . 171

Label Substitution . 172
Label Names . 173

RPG Constants and Literals . 174

Contents v

Using Messages . 175
Constants . 176

Message Versions . 177
Column Headings . 180
Help Text . 186

Building the Help File . 188
Multilanguage Application . 188

Chapter 8. Managing Projects . 193
Project Structure . 193

Creating a Project . 193
Source Files . 194
Runtime Files . 195
Project File . 195

Utilities and Actions . 197
Utility Description . 198
Using Utilities . 203

Nonvisual Components . 209
Share Your Work . 214

Sharing Parts . 214
Sharing Components . 216

Chapter 9. Importing Display Files . 217
Screens and Windows . 217
Redesigning Screens . 217
Sample Import . 219

Part 2. Exercises . 227

Exercise 1. Creating a Simple VisualAge for RPG Application 229
Exploring the GUI Designer and Creating Action Subroutines 229
Objective . 229
Introduction . 230

Starting the VisualAge for RPG GUI Designer 230
Components of the VisualAge for RPG GUI Designer 231
Menu Bar . 231
Tool Bar . 232
Project View . 233
Parts Palette . 233
Creating a Graphical User Interface . 233
A Note About Notebooks . 234
Saving Your Project . 242
Action Subroutines . 243
Creating an Action Subroutine . 243

vi VisualAge for RPG

Creating an Action Subroutine for the OK Push Button 246
RPGIV: Base for VisualAge for RPG Language Definition 247

LPEX Editor . 248
LPEX Editor tool bar . 248
Sequence Numbers . 248
Token Highlighting . 248
Displaying Types of Lines . 249
Syntax Checking . 250
Using Format Lines . 252

Building the Application . 254
Running the Application . 256

Exercise 2. Exploring the GUI Designer and Accessing AS/400
Databases . 257

Objective . 257
Starting GUI Designer for an Existing Project 257
Customizing Components in VisualAge for RPG GUI Designer 258
Customizing the Project View . 258
Customizing the Tool Bar . 259
Customizing the Parts Palette . 261
Creating a User-Defined Part . 263
Adding a New Window to Your Project 270
Creating an Instance of a User-Defined Part 271
Using an AS/400 File as a Field Reference File 271
Creating Field Headings . 272
Adding the Entry Fields . 273
Defining the Server . 273
More Alignment, Sizing, and Spacing 280
Changing the Size of Some Fields . 285

Adding More Logic to Your Project . 290
Changing the OK Button Action Subroutine 291
Adding an Action Subroutine to the Customer Information Window . 293
Building the Application . 294
Viewing the Compile Listing . 295
Testing Your Application . 297

Exercise 3. Error Handling, Action Links, and Messages 299
Objective . 299
Enhancing Runtime Behavior . 299

Handling a Runtime Error . 299
Running the Improved Application . 301
Working with Action Links . 302
Using Message Boxes . 303
Optional Exercise: More Message Box Handling 306

Contents vii

Using Message Substitution . 307
Defining Message Text in the Program 308
Using Action Links to Navigate Your Logic 308
Debugging a VisualAge for RPG Application 309

Exercise 4. Creating a Component with Subfile and Application Help . 313
Objective . 313
Creating a Subfile . 313

Defining Reference Fields . 315
Adding the File Specification . 317
Selecting a Record from the Subfile . 318
Defining AS/400 Information . 319
Defining the AS/400 File . 319
Building the Subfile Component . 319
Adding Logic to the Customer Inquiry Component 319
Running the Enhanced Application . 320
Creating Help for Your Application . 320
Exercise Summary . 321

Exercise 5. Using the Component Reference Part 323
Objective . 324
Creating the Hidden Field . 324

Creating and Using the Component Reference Part 325
Visibility and Focus . 326
Exercise Summary . 327

Exercise 6. Pop-Up Menus and Notebooks 329
Objective . 329
Creating a Pop-up Menu . 329

Working with Pop-up Menus . 330
Adding Logic to Support Pop-up Menus 330
Creating the Notebook . 330
Adding Logic to Update the Notebook Pages 331
Exercise Summary . 332

Exercise 7. Using the Container Part . 333
Objective . 333
Container Overview . 333

Application Description . 333
Creating the Graphical User Interface 334
Defining the Local File . 335
Defining the Input Specifications . 336
Defining Program Variables . 336
Adding Records to the Container . 337

viii VisualAge for RPG

Changing the Container View . 338
Testing the Container Application . 339

Appendix A. File Descriptions . 341
Customer File DDS . 341
Customer File on AS/400 System . 342
Contacts.TXT File . 343

Appendix B. VisualAge for RPG Source 345
Source for GUIDES2 . 345
Source for COMPLIST . 349
Source for Container Example . 352

Appendix C. Sample Code . 355
AS/400 Upload Program . 356
Source for AS/400 Upload Program . 357

Appendix D. Special Notices . 363

Appendix E. Related Publications . 367
International Technical Support Organization Publications 367
Redbooks on CD-ROMs . 367
Other Publications . 367

How to Get ITSO Redbooks . 369
How IBM Employees Can Get ITSO Redbooks 369
How Customers Can Get ITSO Redbooks 370
IBM Redbook Order Form . 371

Glossary . 373

List of Abbreviations . 383

Index . 385

ITSO Redbook Evaluation . 387

Contents ix

x VisualAge for RPG

Figures

1. GUI Designer Project Window and Parts Palette 5
2. Tree View . 6
3. Icon View . 7
4. Parts Palette . 9
5. Parts Catalog . 10
6. AS/400 Logon Window . 20
7. Startup Information Window . 21
8. File Description Specification Window 34
9. Define AS/400 Information Window, Files Page 35

10. Overriding the Default Member . 35
11. Code for the RST File . 36
12. Compiler Listing of a Sample Program 37
13. Reading an AS/400 Database File . 39
14. Build Options Window, Compile Page 40
15. Sample Job Log Showing Error Messages 41
16. Two Open Data Paths . 43
17. Using the QCMDDDM Interface . 45
18. The OPNQRYF Sample of Records to Be Read 47
19. Sharing an Open Data Path Using OPNQRYF 47
20. Action Subroutine for Next Button . 52
21. Modified Action Subroutine for the Change Push Button 54
22. Lock Level for Commitment Control 56
23. Using Commitment Control . 58
24. Switching COMMIT On and Off . 59
25. Default Exception Handler . 61
26. Example of an Exception Handler Subroutine 62
27. Avoiding Recursion in an Exception Handler 63
28. Defining a Local File in the Add File Alias Name Window 66
29. Using a Create Event to Read Server Definitions 68
30. QCMDEXC Sample with Server List 69
31. Action Subroutine for the Select Event of the Combination Box . . 70
32. Sample SQL Statement . 72
33. Using Host Structure in SELECT Statement 74
34. Employee List Example Using SQL 76
35. Database Logon Component . 77
36. Checking the SQL Return Code . 78
37. Action Subroutine for the Press Event of the Read Push Button . . 79
38. Example of a Branch Tag Definition 81
39. Example of Branch Tag . 81
40. Modified Action Subroutine for the Press Event 83
41. Employee List Sorted by Last Name 85

 Copyright IBM Corp. 1998 xi

42. Build Options Window, DB2 Page . 86
43. Build Options Window, DB2 Connect Page 87
44. Binding to Database . 88
45. Define AS/400 Information Window, Data Areas Page 92
46. Define AS/400 Information Window, Program Page 96
47. Monitoring Exceptions . 99
48. Displaying Message with Exception ID and Data 100
49. Using Data Queues . 102
50. Using the Tick Event for Monitoring a Data Queue 103
51. Submit AS/400 Commands Window 104
52. Executing a Remote Command . 105
53. Monitoring Exceptions in a CL Program 106
54. Executing a Remote Command Through CL Program 107
55. Error Details . 107
56. Define Server Logon Window . 111
57. Executing REXX Code . 112
58. Procedure Specification: CenterWindow 114
59. Procedure Specification: PositionWindow 116
60. Procedure Prototype with Constant Reference Parameter 118
61. Using a CONST Reference to Allow the OMIT Option 119
62. PositionWindow Procedure with Return Value 120
63. General Structure of Utility DLL . 123
64. PositionWindow Procedure with Local Procedure Prototype . . . 125
65. Using a COPY File for Procedure Prototypes 127
66. Build Options Window, Compile Page 128
67. General Structure of an EXE File Example 130
68. Procedure Pointer . 132
69. Using Null-Terminated String . 135
70. Example of a Warning Message . 137
71. Example of a Message Seeking Confirmation 138
72. Sample Code to Insert a Confirmation Message 139
73. Define Messages Dialog Window 140
74. Edit Message Window . 141
75. Specifying Replacement Variables in the Edit Messages Window 143
76. Coding for Replacement Variables 144
77. Message Window with Substitution Text 144
78. Substitution Text without Blanks . 145
79. Example of an Employee List Window with Message Subfile . . . 146
80. Message Example Window—Subfile with Two Error Messages . . 147
81. Adding Messages to the Message Subfile 148
82. Handling the SELECT Event of the Message Subfile 149
83. Edit Clipboard Window—Example with Static Text Part 151
84. Clipboard Example with Information Line 152
85. Context-Sensitive Help for a Push Button 153

xii VisualAge for RPG

86. The Context Menu of a Push Button Part 154
87. Default .VPF File . 155
88. Error List Window Showing a Sample Message 156
89. Windows Help Window—Help for the Multiline Edit 157
90. Source for Multiline Edit Help Window 157
91. Properties Notebook with Bracketed Resource ID 158
92. Push Button Part Properties Notebook, Action Page 159
93. General Help Window for the Clipboard Editor 160
94. Help for the Window Part . 162
95. Source Code for the Main Window Help 163
96. Sample Table of Contents of a Help File 164
97. Altered Sample Table of Contents 165
98. Adding Message Help in the Edit Message Window 166
99. Message Window with Additional Help Push Button 166
100. Help for the Exit Push Button . 167
101. Use IPF Tags in the Message Help Multiline Edit Field 168
102. Message Help Window MSGOOO5 with IPF Tags 168
103. Table of Contents with Second-Level Topics 169
104. Table of Contents with Second-Level Help at the Bottom 170
105. GUI for Container Example . 171
106. Window Part Properties Notebook, General Page 172
107. Container Example with Label Substitution 173
108. VSpacing and HSpacing Static Text Parts 173
109. Define Messages Dialog . 174
110. Build Options Dialog, Compile Page 177
111. Message File for the Container Example 178
112. Defining German Versions of the Messages 179
113. GUI in German Language for the Container Example 180
114. Detail View of Container Part . 181
115. Properties of Column Number . 182
116. Adding a Static Text Part . 183
117. Change in the ^Header Substitution Label—Edit Message Window 184
118. Modified Dialog View, German Version 185
119. Help Text for the Container Part—German version 187
120. Window to Select a Language . 189
121. Save as Application Dialog . 193
122. Open Component Dialog . 196
123. Complex Project Hierarchy . 197
124. Start Menu Chain . 203
125. ADTS CS/400 Application Bar . 204
126. Context Menu of an IVG File . 205
127. Edit an Action of the VisualAge for RPG Project File Type 206
128. Changing the Type of a Project . 207
129. Removing the Default Window Part 209

Figures xiii

130. Error List Utililty . 212
131. New Menu Item in the Actions Menu 213
132. User-Defined Part Packaging Utility 215
133. User-Defined Part Install Utility . 215
134. Traditional AS/400 Menu . 218
135. Example of a GUI Menu . 219
136. Display Format to be Imported . 220
137. Import Display File Menu Option . 220
138. Import Display File Window . 221
139. Parts Catalog Window with Imported Format 222
140. Imported Format Parts . 223
141. Imported Format as Window . 223
142. Imported Format Adjusted to Fit . 224
143. Finished Window from the Imported Format 225
144. VisualAge for RPG Status Indicator 230
145. VisualAge for RPG GUI Designer . 231
146. Displaying Menu Help . 232
147. Changing the Window Part Name and Title 234
148. Entry Field Part Properties Window 237
149. Selection Rectangle . 237
150. Alignment Tools . 238
151. Changing Push Button Label . 240
152. Completed Customer Inquiry Window 242
153. Opening a Window in the Project View 243
154. Selecting an Event . 244
155. LPEX Editor for Exit Push Button Action Subroutine 244
156. Example of an Insert with Prompt Window 245
157. Example of Code to Change the Color of the OK Push Button . . 247
158. Positioning the Cursor to Column 7 249
159. Only Comment Lines are Shown . 250
160. Edit Window for Syntax Checking Example 251
161. Creating a Syntax Error . 252
162. Format Line Selection . 253
163. Closing the Design Window . 254
164. Build Options Dialog for the Customer Inquiry Example 255
165. Tree View of the Customer Inquiry Project 259
166. Customizing the Tool Bar . 260
167. Moving a Tool Bar Push Button . 261
168. Customizing the Parts Palette by Removing a Part 262
169. Setting the Image Part File Name 264
170. Sizing the Image Part . 265
171. Change Fonts Window . 266
172. Before Aligning the New Parts . 267
173. Adding a User-Defined Part to the Parts Catalog 268

xiv VisualAge for RPG

174. Create User Defined Part WiIndow 269
175. Parts Palette with a User-Defined Part 269
176. Window Part Properties Notebook 271
177. Resizing the Static Text Part . 272
178. Design Window with Logo and Field Headings 273
179. Define Server Logon . 274
180. Midrange Workspace — NS/Router 274
181. AS/400 Connections . 275
182. Define Reference Fields Window, Server List 275
183. Logon Window . 276
184. Define Reference Fields—Field List 277
185. Dragging a Reference Field . 278
186. Reference Field Page . 279
187. Window with Entry Fields . 280
188. Spacing Static Text Parts . 282
189. Alignment . 283
190. Left Align Entry Fields . 284
191. Customer Information Window After Alignment 285
192. Sizing the CUSTNA Entry Field . 286
193. Resize Entry Fields CONTAC and CADDR 287
194. Resize Customer Information Window 288
195. Final Window Design . 289
196. Define AS/400 Information Window 294
197. Displaying the Project Files . 296
198. Icon View of the Project . 296
199. Example of Error Handling Code . 300
200. Code to Position Cursor . 301
201. Creating an Action Link . 303
202. Creating a Message . 304
203. Navigate with Action Link Window 309
204. Debug Source View . 310
205. Completed Window with Subfile . 316
206. Code to Fill the Subfile from the Database 317
207. Defining Definition Specifications 336
208. Logic to Add Records to the Container 337
209. DDS for Customer File . 341
210. Data in CUSTOML3 File . 342
211. Data in Contacts.TXT File . 343
212. GUIDES2 Source . 345
213. COMPLIST Source . 349
214. Container Example Source . 352
215. Source for AS/400 Upload Program 357

Figures xv

xvi VisualAge for RPG

Tables

1. Tool Buttons . 24
2. PTFs for Shared ODP Support . 44
3. Data Type Mapping between SQL and VisualAge for RPG 72
4. Date and Time Formats . 89
5. Error Codes for Data Area Access . 93
6. VisualAge for RPG Utilities . 198
7. Invoking VisualAge for RPG Utilities 208
8. Compiler Options . 210

 Copyright IBM Corp. 1998 xvii

xviii VisualAge for RPG

Preface

This redbook demonstrates how to use VisualAge for RPG in a Windows 95
or Windows NT client/server environment. The reader learns how to visually
develop a graphical user interface for workstation programs that access the
AS/400. This book gives a broad understanding of various issues related to
client/server programming with VisualAge for RPG, such as data access on
the AS/400, calling programs and procedures, using messages and help,
managing projects, or national language support.

The book contains two parts. Part 1 covers VisualAge for RPG topics in
detail and the reader is presented with solutions to everyday problems,
such as exception handling or sharing of components. Many RPG source
examples are developed along the way to aid the reader.

Part 2 consists of education material that can be used in class. This part
takes a step-by-step approach to explain the basic features of VisualAge for
RPG, for example, actions, components, menus, notebooks, or containers.
By following the samples, the reader develops a small application. The book
demonstrates how to use and create VisualAge parts, use events to trigger
RPG logic, define subfiles and more.

AS/400 Programming with VisualAge for RPG was written for AS/400
programmers that are using ILE RPG and now want to move into a
client/server environment. Some knowledge of AS/400 operations, DB2/400
and RPG is assumed.

ITSO on the Internet
Internet users may find additional material about new redbooks on the ITSO
World Wide Web home page. Point your Web browser to the following URL:

http://www.redbooks.ibm.com

IBM internal users may also download redbooks or scan through redbook
abstracts. Point your Web browser to the internal IBM Redbooks home
page:

http://w3.itso.ibm.com

If you do not have World Wide Web access, you can obtain the list of all
current redbooks through the Internet by anonymous FTP to:

ftp.almaden.ibm.com

 Copyright IBM Corp. 1998 xix

cd /redbooks
get itsopub.txt

The FTP server, ftp.almaden.ibm.com, also stores the samples described in
the book. To retrieve the sample files, issue the following commands from
the /redbooks directory:

cd SG242222
binary
get VARPG.ZIP
get UPSAVF.ZIP
get CONTEXMP.ZIP
ascii
get VARPG.TXT

All users of ITSO publications are encouraged to provide feedback to
improve quality over time. Send questions about and feedback on redbooks
to:

redbook@vnet.ibm.com or
REDBOOK at WTSCPOK or
USIB5FWN at IBMMAIL

If you find an error in the software that is described in this book, please
send a bug report with a description of the problem to

bugs@vnet.ibm.com

To receive regular updates on new redbooks and general IBM
announcements, you can subscribe to the IBM Announcement Listserver. It
automatically supplies an Internet e-mail user with timely new
announcement information (titles and optionally the letter or abstract) from
selected categories. To get started, send an e-mail to

announce@webster.ibmlink.ibm.com

The keyword SUBSCRIBE must be the only word in the body of the e-mail;
leave the subject line blank. You will receive a category form and listserver
details. To immediately start your subscription to, for example, AS/400
announcements, put the words SELECT HW120 in the body of the note. On
the afternoon of an announcement day, you will receive e-mail with the
announcement, along with a list of newly available redbook titles. To obtain
a full abstract of a particular redbook, use GET SG242222 in the note.

xx VisualAge for RPG

VisualAge for RPG on the Internet
VisualAge for RPG users are encouraged to visit the VisualAge for RPG Web
site regularly for latest information, solutions, fixes, PTFs, tips and
techniques or to ask questions about VisualAge for RPG and its features.
From your favorite Web browser, enter

http://www.software.ibm.com/ad/varpg

You will find sections on the following and other VisualAge for RPG and
CODE/400 topics:

News
Support
Downloads
Solutions
Education

About the Authors
Andi Bitterer works as a consultant for the International Technical Support
Organization at the Almaden Research Center in San Jose, California. He
graduated with a degree in computer science from the Technical University
in Darmstadt, Germany. Andi joined IBM in 1987 and worked as an
application development specialist in large customer projects for IBM
Integration Systems Services and at the German AS/400 Field Support
Center. Since joining the ITSO in 1994, he has taught workshops worldwide
on object-oriented application development, Digital Library, e-business, and
the Internet. Andi is the author of three VisualAge for Smalltalk books
published by Prentice Hall. You can reach him by e-mail at bit@acm.org.

Reinhard Leising is working as a software specialist for the AS/400 Software
Support in Muenster, Germany. He graduated with a degree in computer
science from the Technical College in Dortmund, Germany. Since joining
IBM and the AS/400 Software Support in 1990, he focussed on code defects
and customer problems in the programming languages area as well as
application development tools like CODE/400 and VisualAge for RPG. On his
first ITSO residency in 1993, he worked on the first redbook about ILE and
the ILE C/400 compiler. This was followed by two residencies in 1994 and
1995, that were held to produce presentation and education material about
Visual RPG Client/2 Release 1 and 2. You can reach Reinhard by e-mail at
rleising@vnet.ibm.com.

Preface xxi

Acknowledgments
Many thanks go to the following people for their invaluable contributions to
this project: Claus Weiss, Larry Schweyer, Jenny Wong, May Tang, and Joe
Sobura, IBM Toronto Laboratory, for their help during the beta phase of the
product and for providing us with the latest drivers and more, Michele
Chilanti, IBM Rochester ITSO, for his help with AS/400 database issues, Bob
Slaney, IBM Education & Training, Atlanta, and Erminia Nicoletti, IBM Italy,
for developing the original education material.

Thanks also go to the staff of the ITSO San Jose Center, in particular Elsa
Barron, Mary Comianos, Alan Tippett, and Dave Wray, for the great
administrative support, to our managers, Laymond Pon and Hans-Werner
Henschel, for their support to run this project, to Shirley Hentzell, for an
excellent editing job, and to Stephanie Manning and Liz Rice, for the
editorial assistance.

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

Fax the evaluation form found in “ITSO Redbook Evaluation” to the fax
number shown on the form.

Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

Send us a note at the following address:

redbook@us.ibm.com

xxii VisualAge for RPG

Part 1. Programming with VisualAge for RPG

 Copyright IBM Corp. 1998 1

2 VisualAge for RPG

Chapter 1. Introduction to VisualAge for RPG

This chapter describes VisualAge for RPG, introduces the key components,
and defines key terms.

What Is VisualAge for RPG
VisualAge for RPG is a feature of the IBM Application Development ToolSet
Client/Server for the AS/400 product. You can use it to create applications
that have graphical user interfaces (GUIs) that are processed by an
enhanced version of the RPG language. Applications created on your
Windows NT/95 workstation run on Windows NT, Windows 95, or Windows
3.1. Applications created on your OS/2 workstation run on OS/2 or Windows
3.1. The applications you create can access data stored on an AS/400
server.

What Is Client/Server
In its simplest form, the phrase client/server refers to a relationship
between two or more computers. The relationship involves requesting and
sending data. The client can request data from the server.

The programmable workstation (PWS) with its graphical user interface is the
client. Using the PWS, the user extracts, presents, and manipulates
information.

The natural strengths of AS/400 make it ideal for the role of the server. It
can store huge amounts of data, it has object-oriented design, and it can
incorporate new technologies without adversely affecting existing
applications.

Building Client/Server GUI Applications
You start by designing your application and then build it from the top down.
You first focus on the look and feel of the interface, and then you tie all the
parts together with workstation RPG logic.

VisualAge for RPG automatically generates the code to display the GUI you
create. The only code you have to write is the code that drives the GUI. That
is, you have to write subroutines to respond to GUI events. For example, you
have to write a subroutine to handle the selection of a menu item by the
user. Your program can handle any functions that could be done in a
regular RPG subroutine.

 Copyright IBM Corp. 1998 3

All the application development—such as creating the GUI, editing,
compiling, and debugging program logic, and packaging for distribution to
end users—can be performed within the GUI Designer. Writing and testing
your code is simplified by the language-parsing editor and the debugger that
are integrated with the IBM Application Development ToolSet Client Server
for the AS/400 development environment.

Once you have created the GUI and written the RPG code, you build the
application using the VisualAge for RPG compiler.

Even your existing OS/400 applications can be converted to run on a
workstation. An import function lets you reuse existing display files and
convert them to GUI parts. With some customizing, you can create a new
look for an application that used to display only on a 5250.

Now you can build real GUI applications without having to invest time and
money retraining in a whole new language. You can use the strengths of
both AS/400 and the workstation in a client/server environment and build on
your existing RPG skills.

The Application Development Environment
The VisualAge for RPG application development environment is based on a
GUI project organizer. The Project Organizer simplifies the process of
organizing and building software projects and provides an application
development environment that allows you to organize your files and
customize the way you work with them.

In this interface, your application is organized into projects. A project
represents the complete set of objects (source code files, GUI objects, and
so on) that you need to build a single target program, such as a dynamic
link library (DLL) or executable file (EXE).

Associated with each project is a set of actions. In this environment, an
action is described as the use of a tool or a function of a tool to manipulate
a project. Edit, compile, and debug are examples of actions.

You can organize complex applications into project hierarchies to give you a
visual perspective of how your code is organized. You can perform a build
from any point in a project hierarchy, giving you added control over the way
you build your applications.

Tools such as an editor and a debugger are integrated into this environment
so that you have quick and easy access to them as you program.

4 VisualAge for RPG

Project Organizer Help
You can get help on how to use any menu choice, window, or control. You
can access this context-sensitive help by pressing F1 when a field, menu
item, or control is in focus. You can also press the Help push button, where
available.

The GUI Designer
Use the GUI Designer to create your VisualAge for RPG applications. It
consists of the project window, the parts palette, and the parts catalog
(Figure 1).

Figure 1. GUI Designer Project Window and Parts Palette

The Project Window
The project window is your easel, the place where you actually create your
GUI. The project window consists of the following:

Project view
A working area in the center of the window that lists the contents
of a. project.

Menu bar
Lists the actions you can invoke using menu items.

Chapter 1. Introduction to VisualAge for RPG 5

Tool bar
Contains graphic push buttons you can press to invoke frequently
performed actions.

Status bar
Contains descriptive text when you place the cursor over certain
areas of the GUI Designer.

The Project View
The project view displays a representation of the current working project in
VisualAge for RPG. The representation is displayed as either a tree view or
an icon view.

The tree view (Figure 2) is a hierarchical structure showing an icon, name,
and (where applicable) the label for each window and part in the project.

Figure 2. Tree View

The icon view (Figure 3) shows a window part icon for each of the windows
in the project. Parts contained within windows are not displayed with this
view.

6 VisualAge for RPG

Figure 3. Icon View

The Menu Bar
The VisualAge for RPG product makes extensive use of menus to assist you
in designing an application. There are two types of menus:

Pull-down menus (from the menu bar)

Pop-up menus (from objects within the project view)

On the project window, the menu bar appears below the title bar. Actions
on the pull-down menus from the menu bar let you perform a variety of
tasks when you design an application, such as creating and running your
application, customizing the GUI Designer, and using help.

Pop-up menus provide you with a list of choices specific to the object that
the mouse pointer is over, such as a part, a group of parts, or a window.
These menus are accessed directly from an object by pressing mouse
button 2 when the mouse pointer is over the object in a design window or
the project view. The same choices can also be accessed from the selected
pull-down menu when an object or group of objects is selected.

The choices on menus are called menu items. Some menu items contain a
right arrow (→) at the right side. This marking indicates there is additional
information you need to be aware of in a secondary list of choices. This
secondary list is called a submenu. Some menu items contain an ellipsis (...)

Chapter 1. Introduction to VisualAge for RPG 7

at the right side. This marking indicates that additional information will
appear in a window when this item is selected.

The Tool Bar
The tool bar is a menu of graphic push buttons. These push buttons
represent certain pull-down menu items, and are intended to provide quick
access to common actions you perform, such as saving a project. Use the
tool bar as an alternative to using some menu items. When you place the
cursor over one of these push buttons, hover-help appears next to the
button, giving a short description of the action. A description of the action is
also displayed in the status bar.

The initial location of the tool bar is at the top of the project window, but you
can change its position, as well as its contents.

The Status Bar
The status bar (also referred to as the information area) provides you with
information for tool bar action icons and menu items. Position the mouse
over any of these items and the status bar displays a short description of it.

Some other windows within the GUI Designer also have a status bar that
displays a short description of an object the mouse is positioned over.

By default, the status bar is located at the bottom of the project window. You
can change its position or you can hide the status bar if it is not required.

The Parts Palette
The Parts Palette (Figure 4) contains a customizable set of parts that you
use to create the screen layout for your VisualAge for RPG application. Use
the palette as a painter uses a paint palette. It's the place where you keep
the parts that are most appropriate for the design you are currently working
on. As you finish a design, you can wipe the palette clean and start over
with other parts from the parts catalog. Use the palette if you wish to access
your own personalized set of parts when designing a GUI.

8 VisualAge for RPG

Figure 4. Parts Palette

By default, the Parts Palette is not part of the project window but appears in
a window of its own. You can configure the Parts Palette to be part of the
project window, if you like.

The Parts Catalog
The Parts Catalog (Figure 5) contains all of the parts that you use to create
the screen layout for your VisualAge for RPG application. You can select
parts from the catalog and copy them to the Parts Palette if you intend to
use them frequently. Use the catalog as an artist uses a box of oil paints.
It's the place where you keep all of the various parts you accumulate over
time. Use the catalog if you wish to access all of the parts when designing a
GUI.

Note!

All the parts supplied by IBM are contained here. You cannot delete
these IBM-supplied parts from the catalog.

Chapter 1. Introduction to VisualAge for RPG 9

Figure 5. Parts Catalog

You can create and define your own customized parts, called user-defined
parts. You can delete customized parts from the catalog if you no longer
want them.

The Editor
The editor that is integrated with the IBM Application Development ToolSet
Client Server for AS/400 is called Live Parsing Editor (LPEX). You can use
this editor to edit source files (for example, program source files and help
source files) and to customize the VisualAge for RPG source templates. You
can also use this editor when you define output specifications, define user
subroutines, and enter array data.

This programmable editor gives you powerful editing capabilities such as:

Prompting
Makes writing column-oriented source code easier. It is provided
for source code and comments, single line, or continuous inserts
(insert prompting).

Token highlighting
Enhances the readability of the code. You can configure
highlighting to show different language constructs with different

10 VisualAge for RPG

colors or fonts to identify the program structures. You can turn
token highlighting on or off.

Syntax checking
Verifies that the syntax of each line is correct while you are
editing the source. By doing so, it can avoid compile errors. You
can set this option on or off. You can view only certain
specification types, such as C specs, or a line with a specific
string.

Error logging
Keeps track of errors in an error log. The editor takes you to the
place in the source where the error occurred.

Language-sensitive help
Provides help for RPG-related topics.

With this editor you can also:

Use commands in the prefix or sequence number area.

Edit more than one file at a time.

Open multiple views of one file.

Cut and paste between files or between different views of a single file.

Undo changes you made to a file.

Save files on a workstation or a host until you are ready to compile
them.

The Compiler
The compiler for VisualAge for RPG is based on the RPG IV language. The
VisualAge for RPG compiler contains the enhancements you need to create
RPG client/server programs with graphical user interfaces. Operations and
built-in functions have been added to reap the benefits of the GUI
environment on the workstation. You create your application (consisting of
source code and the GUI) and compile it on a Windows NT/95 or OS/2
workstation.

The VisualAge for RPG compiler enables you to access objects on the
AS/400 server (for example, DB2/400 database files) from your workstation.
You can use RPG file operations to access data on an AS/400 server.
VisualAge for RPG insulates the developers from many of the details of the
data access.

Chapter 1. Introduction to VisualAge for RPG 11

The Debugger
The debugger helps you detect and diagnose errors in your application.
You can use different views to display the image of the program you are
debugging. You can run your application, set breakpoints, and monitor
variables, registers, the call stack, and storage.

Graphical debugging features include:

Source-level debug
Allows you to follow the execution of a program while you view
the source. You can quickly and effectively identify errors in the
code.

Step mode debug
Allows you to bypass previously debugged code and focus on a
problem area to save time.

Fix-and-resume
Allows you to continue running your program after you fix a
run-time error.

12 VisualAge for RPG

Chapter 2. Debugging

The AS/400 Cooperative Debugger1 is a client/server program that helps you
detect and diagnose errors in programs written in the following languages:
ILE RPG, ILE COBOL, ILE CL ILE C, ILE C + + , OPM RPG, OPM COBOL, and
OPM CL. You can use the debugger to run your program, set breakpoints,
step through program instructions, display the call stack, and watch, display
or change variables.

This chapter lists the considerations you need to be aware of, and
preparatory items you should complete, before you run the debugger on
your program.

Select from these topics:

Preparing for debugging

Compiling a program with debug data

Starting a debugging session

Ending the debugging session

Locating source code

Frequently used features of the debugger

Preparing for Debugging
Before you can run the debugger on an AS/400 application, you must:

Compile a program with debug data.

Set up a debugger port (optional).

Start the debug server if it is not already started.

Specify an AS/400 host name.

Set environment variables for the debugger (optional)

To perform most of these tasks, your user profile must have the appropriate
authorities.

1 This chapter is derived from the online document Using the AS/400 Cooperative Debugger, which comes with the
ADTS Client/Server for AS/400 product. For the most part the information found there also applies to VisualAge
for RPG.

 Copyright IBM Corp. 1998 13

Authorities Required for Using the Debugger
The user profile that you use to sign on to an AS/400 system from the
debugger must have the following authorities:

*USE authority for the Start Debug command (STRDBG)

*USE authority for the End Debug command (ENDDBG)

*USE authority for the Start Service Job command (STRSRVJOB)

*USE authority for the End Service Job command (ENDSRVJOB)

Either *CHANGE authority for the program being debugged, or *USE
authority for the program being debugged and *SERVICE special
authority.

If the job that you are debugging is running under a user profile different
from the user profile you use to sign on to AS/400 from the debugger, your
user profile must have the following authorities:

*USE authority for the user profile that the job you are debugging is
running under.

*JOBCTL special authority, if you do not explicitly use fully qualified
program names (library/program). In other words, if you use *CURLIB or
*LIBL or you do not specify a library name, you need to have *JOBCTL
special authority.

The group profile QPGMR will give a user the correct authority for the
STRDBG, ENDDBG, STRSRVJOB, and ENDSRVJOB commands, and for the
*JOBCTL special authority.

Setting Debugger Ports
The debugger client and server communicate with each other using TCP
sockets, which communicate through ports. When shipped, the debug server
on the host is set up to listen for connection requests on TCP port 3001. If
port 3001 is being used by another application, you can change it by using
the Work with Service Table Entry command on the AS/400.

The service table is used to manage the mapping of network services to
ports and to record the protocols the services use.

To change the port used by the debug server, modify the service called
QDBGSVR by using the WRKSRVTBLE SERVICE(QDBGSVR) command. Add
a QDBGSVR service entry for the new port and remove the QDBGSVR
service entry for port 3001. Then set the ICCASDBGPORT environment
variable on all debugger clients to match the port specified. For information

14 VisualAge for RPG

on environment variables, see “Setting Environment Variables for
Debugging.”

Note: Before changing the port, end the debug server by using the End
Debug Server command (ENDDBGSVR). Then change the port and start the
debug server again using the Start Debug Server command (STRDBGSVR).

You must have special system configuration authority (*IOSYSCFG) to add
service entries to and remove them from the service table.

Starting the Debug Server
Before you can use the debugger, the debug server must be started on the
AS/400 with the Start Debug Server command (STRDBGSVR).

The Start Debug Server command starts the debug server router function.
Only one debug server router can be active at a time. Once started, the
debug server router remains active until it is ended using the End Debug
Server command (ENDDBGSVR).

Ending the Debug Server
Normally, you do not need to end the debug server at the end of your debug
session, because the debug server is active for the entire AS/400 system. If
necessary, the debug server router function can be ended using the End
Debug Server command (ENDDBGSVR). This prevents any new debug
sessions from starting, but active sessions continue until completion or until
they are cancelled.

Subsequent connection requests fail until the debug server router function is
started again using the STRDBGSVR command.

Specifying an AS/400 Host Name
Because the debugger is a client/server program, a method of
communication is required to allow the client and server to communicate.
The debugger uses the sockets programming services for communication. A
Windows debugger client must know the name of the host where the
debugger server and your application will run.

You can specify the name of the debug host through the ICCASDEBUGHOST
environment variable, or through the /e hostname command-line parameter,
or through the AS/400 logon window of the debugger. If you do not specify
the /e hostname command-line parameter, the host name specified in the
ICCASDEBUGHOST environment variable is used. If you do not specify the
/e parameter and the ICCASDEBUGHOST environment variable is not set,
you must specify the host name in the AS/400 logon window. See “Setting
Environment Variables for Debugging” for information on the

Chapter 2. Debugging 15

ICCASDEBUGHOST environment variable. See “Starting a Debugging
Session” for information on the /e hostname command-line parameter and
the AS/400 logon window.

Setting Environment Variables for Debugging
You can use several environment variables with the debugger. The following
environment variables may be set for use with the debugger:

ICCASDEBUGHOST
ICCASTAB
ICCASUPRD
ICCASDEBUGPATH
ICCASDBGPORT

ICCASDEBUGHOST
Specifies the name of the AS/400 host you want to connect to.
ICCASDEBUGHOST is an optional environment variable.

To set the name of the host through ICCASDEBUHOST, type the following at
the Windows command prompt:

SET ICCASDEBUGHOST=debughostname

where debughostame is one of the following:

An IP address, such as 9.1.150.100

To determine the IP address of your AS/400, type GO CFGTCPon an
AS/400 command line, and choose menu option 1.

A host name defined in your local host table or on a name server to
which you link, such as name.toronto.ibm.com.

To determine the host name of your AS/400, type GO CFGTCPon an
AS/400 command line, and choose menu option 12. (Be careful not to
change the local domain name and host name when you use option 12.)

Note: ICCASDEBUGHOST is an optional environment variable.
ICCASDEBUGHOST is not used if you specify the host name through the /e
hostname command-line parameter. If you do not specify the /e parameter,
you must specify the host name in the AS/400 logon window.

ICCASTAB
Specifies the number of spaces per tab. ICCASTAB is an optional
environment variable.

To set tab stops at particular intervals, type the following at the Windows
command prompt:

SET ICCASTAB=number

16 VisualAge for RPG

where the number is from 1 through 64. For example, SET ICCASTAB=5
will cause text after a tab to begin in columns 6,11,16, 21, 26, and so on. If
ICCASTAB is not set, the default is 8.

ICCASUPRD
Specifies whether to allow the update of production files. ICCASUPRD is an
optional environment variable. To allow the update of production files, type
the following at the Windows command prompt:

SET ICCASUPRD=Y

where Y allows production files to be updated, and N does not allow
production files to be updated. By default, ICCASUPRD is set to N. If
ICCASUPRD is not set, the debugger will use the AS/400 default set for the
UPDPROD parameter of the STRDBG command.

ICCASDEBUGPATH
Specifies the search paths for source files residing on your workstation.
ICCASDEBUGPATH is an optional environment variable.

To set the search path for the source code file used by the debugger, type
the following at the Windows command prompt:

SET ICCASDEBUGPATH=pathl;path2;

where path* is the path, including the drive and directory names, to the
location where the source code files are stored. Multiple paths must be
separated with semicolons.

ICCASDBGPORT
Specifies the port used to connect to the AS/400. ICCASDBGPORT is an
optional environment variable. To connect to the AS/400 using a port other
than the default port (3001), type the following at the Windows command
prompt:

SET ICCASDBGPORT=port number

where the port number is a value between 1 and 64,767 that matches the
port number specified for the QDBGSVR entry on the AS/400.

For information on debugger ports and the QDBGSVR entry, see “Setting
Debugger Ports.”

Compiling a Program with Debug Data
If you want to debug your application, you must first compile your modules
or programs to include debug data. The debugger lets you debug
applications that are written in one or more of the following AS/400

Chapter 2. Debugging 17

languages: ILE C + + , ILE C, ILE COBOL, ILE RPG, ILE CL, OPM COBOL,
OPM RPG, and OPM CL.

Compiling ILE C + + Programs
To create debug data in your program, do the following:

1. Compile your code with one of the following options to request one or
more debug views:

/ T i + Compiles your program to produce a module that includes a
source view, a listing view, and a statement view.

/Til Compiles your program to produce a module that includes a
listing view and a statement view.

/Tis Compiles your program to produce a module that includes a
source view and a statement view.

/Tin Compiles your program to produce a module that includes
only a statement view.

2. Bind the program.

Compiling ILE C, ILE RPG, ILE COBOL, or ILE CL Programs
If you want to debug programs written in ILE C, ILE RPG, ILE COBOL, ILE
CL, you need to:

1. Compile your code with one of the following debug view options:

*ALL Compiles your program or module to include a source
view, a listing view, and a statement view.

*LISTING Compiles your program or module to include a listing
view and a statement view.

*SOURCE Compiles your program or module to include a source
view and a statement view.

*STATEMENT Compiles your program or module to include only a
statement view.

2. Bind the program if it is made up of modules compiled with the
CRTxxxMOD command.

Note: In the ILE program model, a module is the object that results from
compiling source code with the CRTxxxMOD command. A module cannot be
run. To be run, the module (or modules) must be bound into a program
using the CRTPGM command or into a service program using the
CRTSRVPGM command.

18 VisualAge for RPG

Compiling OPM RPG, OPM COBOL, or OPM CL Programs
If you want to debug programs written in OPM RPG, OPM COBOL, or OPM
CL, you need to compile your code with one of the following debug options:

*SRCDBG Compiles your program to include a source view and a statement
view.

*LSTDBG Compiles your program to include a listing view and a statement
view.

Note!

The *LSTDBG option is not supported for CL.

Debugging Optimized Code
Generally, the higher the optimization level, the more efficiently the
procedures in the module run. However, higher optimization levels
adversely affect breakpoints that are set with the debugger.

While debugging your code, set the optimization level to the minimum level
(*NONE). This allows you to accurately display and change variables. After
you have completed your debugging session, set the optimization level to
the maximum level. This provides the highest levels of performance for the
procedures in the module.

Watch this!

Even at optimization level *NONE, some optimization may be done in
certain cases that could affect the debugger's ability to accurately
display the program's stopped location.

Starting a Debugging Session
To start the debugger from the Windows command prompt, perform the
following steps:

1. Ensure that the debug server is running on the AS/400.

2. Start the debugger on your Windows workstation by entering the
debugger invocation command IDEBUGAS. To use parameters with this
command, type

idebugas /x program-name

where /x represents any number of debugger parameters. Choose from
the following parameters:

Chapter 2. Debugging 19

/a Run the program until it completes or hits a breakpoint.

/e hostname Specify the name of the host system that you want to
connect to for your debugging session. If you do not specify
the /e command-line parameter, the host name specified in
the ICCASDEBUGHOST environment variable is used. If you
do not specify the /e parameter and the ICCASDEBUGHOST
environment variable is not set, you must specify the host
name in the AS/400 logon window.

/i Step into the program. This parameter has the same function
as the Step into program check box on the Startup
Information window.

/j job Specify the job to debug, in the following format:
job-name/user-name/job-number. No spaces should
intervene between the /j parameter and job

If you specify the /j parameter and the program name, you
will bypass the Startup Information window.

/ p + Use program profile information, if program profile
information is available. This is the default.

/p- Do not use any program profile information.

The AS/400 logon window opens if one of the following is true:

You have not specified the /e parameter and the ICCASDEBUGHOST
environment variable is not set.

You are connecting to this particular AS/400 host for the first time
after rebooting your workstation.

Figure 6. AS/400 Logon Window

20 VisualAge for RPG

3. Enter your user ID, password, and the name of your AS/400 host in the
AS/400 logon window (Figure 6) and click on OK. Next, the Debug
Session Control window and the Startup Information window (Figure 7)
open.

Figure 7. Startup Information Window

4. In the Startup Information window, enter the following:

In the Program entry field, either type the name of the program you
want to debug, or click on the down arrow on the Program entry field
and select a program.

In the Job name entry field, type the name of the AS/400 job you will
use when the program to be debugged is run. The job is specified in
the following format: job-name/user-name/job-number .

Often, this is the job associated with a 5250 terminal session, but it
can be any AS/400 job, a batch job, a prestarted job, or an invoked
job. It you select Jobs list, the Jobs List window is shown. From this
window, select the job you want and select OK.

The Startup Information window is updated and the job name you
selected now displays in the Job name entry field.

Note: A subset of the jobs list may be requested by specifying part
of the fully qualified job name:

− ABC*// will list all jobs with job names starting with ABC.

− /QUSER/ will list all jobs associated with the user name QUSEFi.

Enable the Use program profile check box to restore the debugger
windows and breakpoints when debugging a program more than

Chapter 2. Debugging 21

once. The program profile is stored separately for each program
debugged.

Enable the Step into program check box to stop your program at the
next runable statement encountered. Use this option to debug
C + + constructors for objects that are located in static storage or to
debug a program that is already running. You should also enable
this check box for ILE and OPM languages other than C and C + + .

Select OK to accept the information you have entered. The Startup
Information window closes, and the debugger is started. A debugger
message appears that asks you to start the program to be debugged
on the AS/400.

5. Start the program on the AS/400.

6. Press the OK button in the debugger message window to continue. The
source of your program is displayed.

Ending the Debugging Session
End the debugging session in one of the following ways:

Press F3 in any of the debugger windows

Select Close debugger from the File menu-bar choice in a debugger
window.

You may want to end the debugger session in one of the following
situations:

In the Startup Information window, you specify the name of a job that is
an active AS/400 job, but it is not the job that you wanted to use.

You specify the name of a program on the Startup Information window,
but the program fails when you call it (for example, a signature violation
occurs when you call the program).

The job ends on the AS/400 before the startup program is called.

Locating Source Code
How the debugger finds source code depends on whether this source code
is located on the Windows workstation, or on the AS/400.

C + + Source Code
When you compile a C + + program and specify the source debug view by
using the / T i + option, the compiler stores the name of the source file and
its directory path in the module object. When you try to display the source
file, the debugger tries to find the file using the directory path and file name

22 VisualAge for RPG

that was captured when the program was compiled. The debugger searches
for the file in this order:

1. In the directory path that was stored when the module was compiled.

2. In the directory where the last file, if any, was found.

3. In the directories defined in the ICCASDEBUGPATH environment
variable.

If the file is not found in any of these directories, you will be prompted for
the name of the file. If the source file is not available, press the Cancel push
button on the file prompt and a different view will be used.

Source Code Written in Other ILE or OPM Languages
When you compile other ILE (C, RPG, COBOL, and CL) modules, or OPM
(CL, COBOL, RPG) programs, the name of the AS/400 source member is
stored in the module or program object. When you try to display the source
for a module or program, the debugger attempts to read the information
from the AS/400 source member used to create the module or program.

If the source member is not found, the debugger searches your workstation
for a source file using the following steps:

1. The debugger builds a name using the module name or program name
and a file extension based on the language. The file extensions used are
as follows:

RPG For RPG language source

C For C language source

CBL For COBOL language source

CL For CL language source.

2. The debugger searches for the file in this order:

a. In the directory where the last file, if any, was found

b. In the directories listed in the ICCASDEBUGPATH environment
variable.

If the file is not found, you are prompted to enter the name of the file.

If you do not have the source available, press the Cancel push button on
the file prompt and a different view will be used.

Chapter 2. Debugging 23

Frequently Used Features of the Debugger
This section introduces

The tool buttons

Ways to run your program

How to set breakpoints

How to step through your program

How to display and change variables

The use of multiple statements in program code

Debugger performance considerations

Debug limits

Using the Tool Buttons
Tool buttons provide easy access to frequently used features. Check the tool
bar on each window to determine which buttons are active for the window.
Table 1 shows the most commonly used tool buttons.

Table 1 (Page 1 of 2). Tool Buttons

Button Description

Step over runs the current, highlighted line in the called procedure,
but does not stop in it. If the current line is a call, the program is
halted when the call is completed.

Step debug runs the current, highlighted line in the program. The
debugger steps over any procedure for which debugging information
is not available (for example, library and system routines), and steps
into any procedure for which debugging information is available.

Run runs the program. Control returns to the debugger when:

The program stops at an enabled breakpoint or watch.

The program encounters an exception

The program ends. When the debugger is running, the run button
is grayed out.

View changes the current program view window to one of the other
program view windows, depending on the views available for the
module or program. For example, you can change from the *LISTING
view to the *STATEMENT view.

Call stack displays the Call Stack window, which allows you to view
all of the call stack entries. The procedures are displayed in the
order that they were called.

24 VisualAge for RPG

Table 1 (Page 2 of 2). Tool Buttons

Button Description

Monitor, from a program view window, displays the Monitor
Expression window. This button also appears on the left side of the
tool bar on the Program Monitor window and the Local Variables
window.

Breakpoints displays the Breakpoints List window, which allows you
to view all the breakpoints that have been set.

Debug Session Control transfers control to the Debug Session
Control window.

Change Representation displays the next representation of the
selected variable.

Delete deletes the highlighted expression, variable, or breakpoint.

Delete All deletes all expressions, variables, or breakpoints.

Toggle Direction toggles the order of the entries on the call stack.

Running a Program
You can run your program by using Step commands, the Run command, or
the Run to location command:

Step commands control how the program runs. The execution of a line
of code is reflected in all open views.

The step commands are located in the tool bar and under the Run
menu-bar choice of the program view windows.

The Run command runs the program until a breakpoint or watch is
encountered, the program is halted, or the program ends.

The Run command is located in the tool bars and under the Run
menu-bar choice of the program view windows and the Debug Session
Control window.

The Run to location command runs the program to the current position
in the current program view window. This command performs the
following steps:

Chapter 2. Debugging 25

− Add a breakpoint at the target line

− Run the program

− Remove the breakpoint.

To select a position, press mouse button 1 once on the prefix area of a
runable statement. The prefix area is the area on the left of the program
view window where the line numbers are displayed.

The Run to location command is located under the Run menu-bar choice
of the program view windows. It is also available in the pop-up menu for
the line number, if mouse button 2 is configured for pop-up.

Setting Breakpoints
A breakpoint is a place in a program where the system stops the processing
of the program and gives control to the debugger:

Line Breakpoints

A line breakpoint stops your program at a specific location. Set line
breakpoints in one of the following ways:

− Select the Breakpoints menu from the Debug Session Control
window or from any of the program views windows.

− Double-click in the prefix area of a runable statement in any of the
program view windows. The prefix area is the area on the left of the
program view window where line numbers are displayed. The prefix
area turns red, indicating that the breakpoint has been set.

Watch Breakpoints

A watch allows you to request a breakpoint when a specified variable or
expression is changed from its current value. The variable or expression
is used to determine the address of the storage location to watch and
must resolve to a location that can be assigned to. The scope of the
variable or expression in a watch is defined by the execution stop point
when the watch is set.

After the watch is successfully set, a change to the contents of the
watched storage location by a program in your session will cause your
application to be stopped. If the program has debug data and a debug
view is available, the statement after the change is highlighted. A
message will indicate which watch condition was satisfied.

If the program that caused the change has not been added to the
debugger, it is automatically added if:

− The program contains debug data.

− You have authorization for the program.

26 VisualAge for RPG

If the program cannot be debugged, or you do not have sufficient
authority to debug the program, you receive a message specifying the
program and location where the watch condition was encountered.
Program execution resumes when you click on the message's OK
button.

Set watches in one of the following ways:

− Highlight a variable in the source window. Click on Breakpoints and
select the Set watch action for the selected variable. The Watch
window opens. It contains the name of the highlighted variable.

− Select the Set watch action on the Breakpoints pull-down menu
which is available from several debugger windows.

If the watch dialog is invoked from a window other than the source
window (in which case default values are provided by the debugger),
you must fill in the variable or expression to be watched. Otherwise,
the watch will fail. If you do not specify values for the other entry
fields in this dialog, default values are used. These defaults are:

Bytes to Watch The number of bytes defined by the variable length
is the number watched, up to 128 bytes. The default
value is 0 which means that the declared type
length of the variable is watched.

Thread Every

Frequency

From 1

To Infinity

Every 1

Note!

If multiple watch conditions are satisfied by a single program
statement, only the first one detected will be shown.

Once a watch condition is established, it remains in effect until it is
deleted or modified from the Breakpoints List window, or until the
debugger is ended.

It is important to understand that when a watch condition is established,
the watched storage location address does not change until the watch is
deleted or modified. This can lead to unpredictable results if a
temporary storage location is watched and that storage location is
reused while the application is running. An example of this is the
automatic storage of an ILE C procedure, which can be reused if the

Chapter 2. Debugging 27

procedure ends. You should delete watches for automatic storage before
the program or procedure ends or you may see unexpected watch
breakpoints.

The maximum number of watches that can be active across the entire
system is 256. This includes watches set by the Dedicated Service Tool
(DST). A user session may have as many watches as are available. If
the system maximum is exceeded the watch will not be set. If a watch
condition crosses a page (4 KB) boundary, the system will internally use
two of the available 256 watches; therefore, depending on the watch
locations, the system has the capability to set at least 128 watches and
up to 256. The Display Debug Watch command (DSPDBGWCE) can be
issued from an AS/400 job to display active watches and which jobs set
them.

Stepping Through a Program
You can step through your program using the tool bar step buttons in the
source view window:

Step Over executes the current line but does not enter any called procedure
or program.

Step Debug executes the current line and enters any called procedure or
program that has debug information.

Note: You can also step through your program by selecting the Step Over
or Step Debug choice from the Run menu pull-down in the source window,
or by using mouse button 2 if it is set for stepping.

Displaying and Changing Variables
To display the value of a variable, double-click on the name of the variable
in a source view window. If the variable contains special characters, the
debugger may not correctly select the whole variable name. You must
select the variable with the mouse before double-clicking. To change the
value of a variable:

Double-click on the value of the variable in the monitor window.

Type the new value in the edit area that is displayed.

Press Enter to set the new value.

Writing Code That the Debugger Supports
There are a few points to remember when writing code:

Multiple statements on the same line are difficult to debug.

28 VisualAge for RPG

Because individual statements cannot be accessed separately when you
set breakpoints or when you use step commands, you may want to
avoid the use of multiple statements on the same line.

Although it is possible to create programs that contain more than one
module with the same name (if the modules are in different libraries),
the debugger does not support them.

Attempting to debug programs that contain two or more modules with
the same name will result in the display of an error message.

Debugger Performance Considerations
In general, you should not have to worry about debugger performance, but if
you find that the debugger is stepping slowly, you may want to consider the
points discussed in the following sections.

Expression Evaluations
Complex expressions take longer to evaluate than simple expressions.

Performance is an issue only when you are monitoring an expression,
since the expression must be evaluated each time the debugger stops.

The settings of the Default Data Representation window affect the
performance of expression evaluation:

− Representing character pointers, arrays, and character arrays as
hexadecimal pointers gives the best performance.

− Representing structures using system defaults performs better than
that using user defaults.

− Representing a character array as a string is faster than
representing it as an array.

Evaluating all of the elements of a large array takes longer than
evaluating single elements. Use the Monitor Expression window to
evaluate a single element.

Step Performance
Step performance is affected by the number of enabled monitor windows,
the numbers of expressions in the windows, and the complexity of the
expression. Step performance can be improved by:

Disabling or deleting expressions that no longer need to be monitored.

Displaying only single elements of an array.

After following a chain of pointers to a variable, disabling the pointers
used and leaving only the variable active in the monitor.

Not stepping when the Local Variables window is enabled.

Chapter 2. Debugging 29

Not stepping when the Call Stack window is enabled. (Minimizing the
Call Stack window will disable it.)

Using PC Files Instead of AS/400 Source Mem bers
For n o n - C + + programs, performance can be improved by copying the files
to the PC and using the Change text file choice from the View menu to
specify the path name of the PC file. This technique is especially useful
when debugging from remote sites.

Searching for Strings in Text View
String searches can be speeded up by the following:

Keeping the source file on the workstation.

Using the Find Procedure choice to search for procedures

Searching the *LISTING view instead of a source view that is on the
AS/400.

Using the From/To/Every Entry Fields on Line Breakpoints
Large values specified for these options will significantly slow your program,
because the debugger must stop for the breakpoint and evaluate the
From/To/Every clause at each stop. Even though you do not see the
program stop, it is in fact stopping so that the debugger can evaluate the
stop conditions.

If possible, an alternative is to set a conditional breakpoint by specifying an
expression.

Setting a Large Number of Watches
When a watch is set, the system checks after each instruction whether the
value of the monitored variable or expression has changed. Setting many
watches may lead to slower performance.

Debug Limits of the Cooperative Debugger
The following applies when you debug applications with the ADTS Client
Server for AS/400 cooperative debugger.

Limits
The limits are these:

The largest string that can be displayed is 4080 characters.

The largest number of bytes that can be displayed in a hexadecimal
dump is 1024.

The largest number of elements displayed in a COBOL array or an RPG
array is 500.

30 VisualAge for RPG

The largest number of fields displayed in a COBOL record or an RPG
structure is 500.

Only 256 elements per dimension are returned for C and C + + arrays.

Only 140 characters per line are displayed for the text views retrieved
from the AS/400. Files residing on the workstation will have the entire
line displayed regardless of the line length.

A maximum of 128 bytes can be watched for any variable.

A maximum of 256 watches can be set system-wide. This number may
be lower, because watching a variable can sometimes require more
than one system watch.

Source Files with a Record Size Greater than 240
Source physical files that have a record size greater than 240 characters
cause a message to be written to the job log for each record read. (The job
log that the messages are written to is the job log of the debug server job
that is serving your debug session.) This behavior slows down processing
and may cause your debug session to end if the job log grows too large.

Chapter 2. Debugging 31

32 VisualAge for RPG

Chapter 3. Data Access

In this chapter, we show you different ways of accessing data from a
VisualAge for RPG application. This includes not only the record I/O support
for AS/400 files and local PC files, but also the integration of SQL to access
DB2 databases. Additionally, we explain how AS/400 data areas can be used
in your VisualAge for RPG applications.

AS/400 Files and Record I/O
Accessing AS/400 database files using record I/O in VisualAge for RPG is
relatively straightforward and you will have your first file maintenance
example running quite soon. However, when you look deeper, there are
some additional considerations such as open data paths, overrides, locking,
record blocking, and commitment control, you may want to know a bit more
about.

An Easy Approach
Before an AS/400 file can be accessed through the different file operation
codes, it has to be defined in the file description specifications. First, there
are the fixed-format, column-oriented specifications, such as:

File name

File type

File designation (full procedural, table, or output)

Whether or not file addition is allowed at the end of the file

Whether the file's format is internally or externally described

Record length

Record address type

Whether it is a DISK, PRINTER, or SPECIAL file

This is nothing really new, if you are already familiar with ILE RPG/400.
However, some restrictions apply, if you want to define an AS/400 database
file as a DISK file within your VisualAge for RPG application:

Its format must be externally described.

The file designation can be full-procedural or output.

Refer to the VisualAge for RPG Language Reference manual for a list of all
available options in the different columns and the various option
combinations that can be used.

 Copyright IBM Corp. 1998 33

As in ILE RPG/400, any additional information is provided through keywords
specified in columns 44-80. The most important keyword for an AS/400
database file in VisualAge for RPG is the REMOTE keyword, which is the
indicator for a file that resides on an AS/400 server, rather than a local file
(Figure 8).

Figure 8. File Description Specification Window

If nothing else has been specified, the file is searched on the default AS/400
server as defined on the Servers page of the Define AS/400 Information
window. The library list of the user ID specified during logon to the AS/400 is
used for this search.

If the database file has a different name on the AS/400 than in your
program, or if you would like to specify a certain library rather than having
the libraries of the library list searched, you can specify this information on
the Files notebook page of the Define AS/400 Information window (see
Figure 9). The information provided is used by both the compiler and the
VisualAge for RPG runtime to find the file on the AS/400 server.

34 VisualAge for RPG

Figure 9. Define AS/400 Information Window, Files Page

An entry for your file may also be necessary here, if the files of an
application reside on more than just one AS/400 server. Through this
notebook, you can specify different servers for each of the accessed files.
VisualAge for RPG resolves the information and takes care that every file is
accessed on the correct server.

Additionally, it is possible to override the default setting (*FIRST) for the file
member to be accessed, if the file contains two or more members (see
Figure 10). In this case, use the format Library/File(Member) to qualify the
particular member you need to access.

Figure 10. Overriding the Default Member

Chapter 3. Data Access 35

Keep in mind that this kind of member override is resolved on the
workstation during program initialization. Therefore, it is not really an
override as the AS/400 understands it, and you won't see it on the AS/400
using option 15 of the DSPJOB command.

All this information is stored in the .RST file in the project's directory. This
ASCII file is packaged and shipped with your application and can be
maintained using a standard editor or by calling program FVEDRST.EXE,
which is the command interface of the Define AS/400 Information notebook.
You can pass the .RST file's name as a parameter to the command. See
Figure 11.

RST File

DEFINE_SERVER SERVER_ALIAS_NAME(MYAS400)
REMOTE_LOCATION_NAME(IVL01234)
TEXT(My default server)

DEFINE_FILE FILE_ALIAS_NAME(EMPLOYEEF)
REMOTE_FILE_NAME(*LIBL/EMPLOYEEF(MYMBR))
SERVER_ALIAS_NAME(MYAS400)
TEXT(Employee database file)

Figure 11. Code for the RST File

Let's go back into our VisualAge for RPG source. We could use additional
keywords to define the file in further detail: some of the keywords allow you
to change the information that is included from the external description of
the file, such as the RENAME, PREFIX, INCLUDE, and IGNORE keywords.

For example, the RENAME keyword allows to change the name of a record
format. Through this keyword, it is possible to include two record formats,
which have the same name on the AS/400. Additionally, if there are identical
field names coming from different files, consider the use of the PREFIX
keyword.

See Figure 12, which shows the compiler listing of a sample VisualAge for
RPG program. The listing includes an AS/400 database file twice, renaming
the record format as well as the fields for one of them.

36 VisualAge for RPG

Listing

FEmployeeF IF E K DISK REMOTE
*---
* RPG name External name
* File name : EMPLOYEEF REINHARD/EMPLFILE
* Record format(s) : EMPRCD EMPRCD
*---

FEmplFile IF E K DISK REMOTE
F RENAME(EMPRCD:EMPLREC)
F PREFIX(B)

*---
* RPG name External name
* File name : EMPLFILE REINHARD/EMPLFILE
* Record format(s) : EMPLREC EMPRCD
*---

IEMPRCD
*---
* RPG record format : EMPRCD
* External format : EMPRCD : REINHARD/EMPLFILE
*---

I S 1 7 0NUMBER
I A 8 27 FIRSTNAME
I A 28 47 LASTNAME
IEMPLREC

*---
* RPG record format : EMPLREC
* Prefi x : B : 0
* External format : EMPRCD : REINHARD/EMPLFILE
*---

I S 1 7 0BNUMBER
I A 8 27 BFIRSTNAME
I A 28 47 BLASTNAME

Figure 12. Compiler Listing of a Sample Program

Other keywords allow you to enable or disable commitment control
(COMMIT) or help in file exception handling (INFSR and INFDS). For a
complete list and a detailed description for each of them, please refer to the
VisualAge for RPG Language Reference manual.

To access the data from an AS/400 database file defined in your VisualAge
for RPG program, use one of the following operation codes:

CHAIN Random retrieval from a file

CLOSE Close files

Chapter 3. Data Access 37

COMMIT Commit all changes

DELETE Delete record

EXCEPT Calculation time output

FEOD Force end of data

OPEN Open file for processing

POST Post information into the information data structure

READ Read a record

READE Read equal key

READP Read prior record

READPE Read prior equal

ROLBK Roll back all changes

SETGT Set greater than

SETLL Set lower limit

UNLOCK Unlock a data area or release a record

UPDATE Modify existing record

WRITE Create a new record

Which of these file operation codes are available for your file depends on its
definition and current status. For example, an UPDATE operation code
(opcode) will not work on a file that is opened for input only or is not opened
yet. Again, refer to the VisualAge for RPG Language Reference manual for
all the options, relationships, and dependencies of the different operation
codes available.

The sample VisualAge for RPG source (Figure 13) shows you how easy it is
to access an AS/400 database file. In the action subroutine of the READ
push button part, the opcodes SETLL and READ are used to read the content
of a keyed AS/400 database file sequentially, until the end-of-file indicator
(*IN80) is set on.

38 VisualAge for RPG

RPG

FEmployeeF IF E K DISK REMOTE
*
*

C READ BEGACT PRESS MAIN
*

C *START setll EmloyeeF
C read EMPRCD 80
C dow *IN80 <> *ON
C write EMPLLIST
C read EMPRCD 80
C enddo

*
C ENDACT

Figure 13. Reading an AS/400 Database File

Note that the WRITE opcode is not accessing an AS/400 database file here.
Instead, it is used to place the content of the previously read record into a
subfile part of the graphical user interface of the sample. Keep this in mind,
when you examine a VisualAge for RPG source you don't know.

The special words *START and *STOP are unique for VisualAge for RPG.
Their purpose is to replace the *LOVAL and *HIVAL figurative constants that
are not converted from ASCII to EBCDIC, when they are used as key values
to access the AS/400 database. Using *START and *STOP instead makes
sure that the program is reaching the correct record in the file, also
considering a possibly different coded character set identifier (CCSID) on the
AS/400.

If you build your VisualAge for RPG application, a service job is evoked on
the AS/400 in subsystem QCMN. You can find it by looking for a job that is
named as the LU of your PC workstation and a user name as the user ID
specified for the logon during the build.

AS/400 screen

Subsystem/Job User Type CPU % Function Status
QCMN QSYS SBS 0,2 DEQW

SC02013M LEISING EVK 1,1 RUN

In the joblog, you will find several messages of type Request talking about
'Client Request - Executing the program ...', which can help you identify the
correct job.

Chapter 3. Data Access 39

To reduce compile time, select the Use cache check box on the Compile
page of the Build options notebook (Figure 14). During the next build, the
information for the accessed AS/400 files is stored on the PC and will be
used during future builds instead of resolving the information from the
AS/400.

Figure 14. Build Options Window, Compile Page

Select the Refresh cache check box to have the file information on the PC
refreshed on the next compile. This is necessary if the structure of those
files, for which this information was stored earlier on the PC, has changed.

During runtime, a distributed data management (DDM) job is started in
subsystem QCMN as soon as the first OPEN (implicit or explicit) operation is
performed in your VisualAge for RPG application. The DDM job handles all
database requests coming from the same VisualAge for RPG application to
the AS/400 server. Even if your application consists of different components
and several (or all of them) access AS/400 database files, the serving job on
the AS/400 will always be the same DDM job.

The job will be ended automatically, as soon as the last database file of the
VisualAge for RPG application is closed.

40 VisualAge for RPG

If a user is reporting abnormal terminations or other strange behavior of an
application, more often than not, the problem's circumstances and
symptoms are not described properly. In such cases take a look at the job
log of the DDM job. It contains messages for errors that occurred while
accessing the AS/400 database, such as the sample in Figure 15, where the
user tried to add a new record to a database file with a UNIQUE key that
already existed.

AS/400 screen

Display All Messages
System: MCEAS4

Job . . : SC02013M User . . : LOOSER Number . . . : 145022

Job 145022/LEISING/SC02013M started on 23.04.97 at 20:11:55 in
subsystem QCMN in QSYS. Job entered system on 23.04.97 at 20:11:55.

Target DDM job started by source system.
Duplicate record key in member EMPLOYEEF.
Duplicate key not allowed for member EMPLOYEEF.
Duplicate key not allowed for member EMPLOYEEF.

Figure 15. Sample Job Log Showing Error Messages

Open Data Paths and Overrides
While we are on the AS/400, let's take a closer look at open data paths
(ODP) and overrides and see how those fit into the VisualAge for RPG
environment.

An open data path is basically a temporary object through which all
input/output operations for a file are performed. In a sense, it connects the
program to a file.

As soon as an OPEN operation is performed for a file, an ODP is created. Its
scope depends on whether the program performing the OPEN is running in
the default activation group or not, and on the value specified for the
OPNSCOPE parameter on the Override with Database File command
(OVRDBF) or Open Database File command (OPNDBF).

For programs that run in the default activation group, such as the programs
doing the OPEN in the DDM job serving VisualAge for RPG's database
accesses, the ODP is scoped to the call level. It stays there until the file is
closed, which happens explicitly through a CLOSE operation, by executing
the Reclaim Resources command (RCLRSC) or implicitly when the program
that initiated the ODP's creation is terminated.

Chapter 3. Data Access 41

Sharing Open Data Paths
By default, every OPEN for an AS/400 file results in the creation of an ODP,
enabling the system to have multiple programs in the same job perform I/O
operations to the same file without interfering with each other. Record
locking as well as the current position in the file (as set by the last SETLL,
SETGT, CHAIN or READ operation) will be changed for that ODP through
which the last file operation was done (see “File Locking”).

This default behavior can be changed by using the SHARE parameter
available on the following commands:

Create physical file (CRTPF)
Create logical file (CRTLF)
Change physical file (CHGPF)
Change logical file (CHGLF)
Override with database file (OVRDBF)

Specifying SHARE(*YES) on one of these commands will have the ODP
opened in shared mode. This means that only the first OPEN in a job
creates an ODP object. Any following OPEN in the same job to the same file
specifying the same open options (such as the CCSID of the file) will reuse
the ODP. Record locking and file positioning will then be performed through
the same ODP from different parts of the application.

Note that if the options are not the same for all OPENs on the shared ODP,
the first (shared) OPEN needs to include the options of all following OPENs.
Otherwise, the options of subsequent OPEN operations may be ignored
(message CPF4123) or the OPEN may even fail. For example, if the first
OPEN is of read-only type, then a subsequent OPEN for update will be
ignored, causing problems when trying to perform an UPDATE operation.

A shared open data path can be identified through the Display Open Files
screen (Option 14, F11) of the Display Job (DSPJOB) menu. Figure 16
shows two ODPs, all created for the same database file, EMPLOYEEF. While
the first one was done for a nonshared open, the second ODP serves two
different open requests.

42 VisualAge for RPG

AS/400 screen

Display Open Files

Job . . : SC02013M User . . : LEISING Number . . . : 086370
Number of open data path s : 2

Member/ Record File I/O ----Open--- Relative
File Library Device Format Type Count Opt Shr-Nbr Record
EMPLOYEEF LEISING EMPLOYEEF PHY 0 I NO
EMPLOYEEF LEISING EMPLOYEEF PHY 0 I YES 2

Figure 16. Two Open Data Paths

So far, so good. But how does VisualAge for RPG behave in this area? We
have already learned in the previous section (“An Easy Approach”), that two
different VisualAge for RPG applications result in two different DDM jobs
started on the AS/400. As an ODP cannot be shared between programs
running in different jobs on the AS/400, separate ODPs will be created for
every separate VisualAge for RPG application, even if they are accessing
the same file.

So what happens, if the same AS/400 file is accessed from two or more
components of the same VisualAge for RPG application, or even within the
same component using different file definitions (file aliases)?

If you keep the default *NO for the SHARE parameter of the AS/400 database
file that is accessed by VisualAge for RPG, you always get a separate
instance of the file here as well. A new ODP is created and scoped to the
call level (*ACTGRPDFN in the default activation group). It is kept open until
an explicit CLOSE is performed through the same ODP or the component is
terminated.

If the SHARE parameter is changed to *YES for the accessed file, only the
first open creates an ODP. Any following open to the same file will try to
reuse this ODP, as outlined earlier.

Basically, the AS/400 file behaves the same in this environment as in any
other AS/400 job. Whatever value (*YES or *NO) is specified when you open
a file from VisualAge for RPG, it will be treated like a file from any other
native AS/400 application.

If you find VisualAge for RPG ignoring the SHARE(*YES) parameter and open
duplicate ODPs, you are probably missing one of the PTFs that enable this

Chapter 3. Data Access 43

support for VisualAge for RPG. Refer to Table 2 to find the correct PTF for
your OS/400 release.

Given the correct PTFs installed, the question is, how and where do you
specify this value for the SHARE parameter using VisualAge for RPG? If you
do it through the CRTPF, CRTLF, CHGPF, or CHGLF commands, it is
permanently set at the file level and the behavior will be the same for all
applications (VisualAge for RPG as well as native AS/400) that access the
same file.

You get into trouble with this permanent setting approach as soon as you
need different settings for the SHARE parameter for different applications.
As the difference in behavior is quite significant, you cannot just do a
CHGPF SHARE(*YES), if your program needs this setting. Doing so will
change the value system-wide, and you could cause other applications in
different jobs to fail, if they rely on SHARE(*NO).

Table 2. PTFs for Shared ODP Support

Release PTF

V3R1M0 SF32580 and SF34222

V3R2M0 SF34214

V3R6M0 SF38099

V3R7M0 SF38113

Overriding Database Files
The Define AS/400 Information notebook does not allow you to change the
SHARE parameter, so you cannot have VisualAge for RPG change the value
for you. The only solution is to override during run time using the Override
with Database File command (OVRDBF) as you would do in a native AS/400
application.

The interface to perform an OVRDBF command from a VisualAge for RPG
application is through the QCMDDDM API. Its functionality and interface are
similar to those of the QCMDEXC API known from the AS/400. It allows you
to execute commands on the AS/400. The difference between these two APIs
is the AS/400 server job for which they execute the specified commands.

While the QCMDEXC API runs its commands in a separate server job, which
is also used to run all AS/400 programs called by VisualAge for RPG
through the CALL (LINKAGE(*SERVER)) opcode, the QCMDDDM API
executes commands in the DDM job responsible for the database access of
the application. Both will run on the AS/400 server specified on the Program
page of the Define AS/400 Information notebook.

44 VisualAge for RPG

Figure 17 shows a sample source illustrating how the OVRDBF
SHARE(*YES) operation can be done using the QCMDDDM interface:

RPG

D QCmdDDM C 'QCMDDDM'
D LINKAGE(*SERVER)

*
D OvrDBF C 'OVRDBF EMPLOYEEF +
D SHARE(*YES) +
D OVRSCOPE(*JOB)'

*
C call QCmdDDM
C parm OvrDBF Cmd 255
C parm 255 CmdLen 15 5

Figure 17. Using the QCMDDDM Interface

It is important to specify *JOB for the OVRSCOPE parameter of the OVRDBF
command. By default, the override scope is the call level in the default
activation group, which would result in the override being removed as soon
as QCMDDDM returns control to your VisualAge for RPG program. With
OVRSCOPE(*JOB) the override remains active throughout the lifetime of the
job, or until it is deleted using the DLTOVR command.

If you do an override this way, however, you must keep the following in
mind:

The file for which the override is done must not be open already. If the
override is performed in the same component that also accesses the
file, you need to specify the USROPN keyword on the file description
specification and use the OPEN opcode to open the file after the
override is done. Otherwise, the override is ignored.

If there is an entry for the file in the Define AS/400 information notebook,
the file name specified on the OVRDBF must be the same as the remote
file name entry.

As the override scope is the job level, the override is also active for any
other component of the same VisualAge for RPG application that
accesses the same AS/400 database file.

This kind of override is possible only for the AS/400 server that was
specified on the Program page of the Define AS/400 Information
notebook. If you need to run the QCMDDDM API for DDM jobs on
different AS/400 servers, you have to add multiple alias entries here,
one for each server.

Chapter 3. Data Access 45

Open Query File
So far, so good. Let us now have a look at another topic, which always
comes up when talking about shared ODPs: the Open Query File command
(OPNQRYF).

Now, where we have managed to perform an override on an AS/400
database file from our VisualAge for RPG application, we are able to have a
shared ODP opened. So, it shouldn't be too difficult to use the OPNQRYF
command in our DDM job as well, right?

Well, it's not that easy. Even if you can use the QCMDDDM API to have the
OPNQRYF command performed in the DDM job and the OPNSCOPE
parameter allows us to have the open done on job level, the shared ODP
that gets created won't be reused by any VisualAge for RPG application.

The problem is that the ODP created by the OPNQRYF command gets a
CCSID assigned according to the CCSID of the DDM job. On a US-English
system, this will be 037. On the other hand, VisualAge for RPG tries to open
an ODP with a PC code page that uses 437 for US-English. As a result, the
OPEN operation of VisualAge for RPG will fail, issuing message CPF417C
(error code 1). Unfortunately, changing the CCSID of the job to an ASCII
code page is not possible.

In the older releases V3R1M0, V3R2M0, and V3R6M0, the only solution is to
either:

Change the design of the AS/400 database structure to incorporate
some of OPNQRYF's functions. For example, sorting or selection
specifications could be implemented through a key or through
select/omit criteria in a logical file.

Or, use SQL support of VisualAge for RPG (refer to section “SQL
Support”).

With V3R7M0, the CCSID parameter has been introduced for the OPNQRYF
command, allowing us to specify the CCSID in which data from character,
DBCS-open, DBCS-either, and graphic fields will be returned. Take a look at
the example in Figure 18, where we use the OVRDBF and OPNQRYF
commands to read into a subfile only those records from file Employeef that
have an employee number ranging between two variable values.

46 VisualAge for RPG

Figure 18. The OPNQRYF Sample of Records to Be Read

The action subroutine of the PRESS event changes the SHARE parameter for
the DDM job to *YES, creates a shared open data path using OPNQRYF, and
opens the file with the same attributes, so that it shares the ODP before it
fills the subfile. The code is shown in Figure 19.

RPG

FEmployeeF IF E DISK REMOTE USROPN
*

D OvrDBF C 'OVRDBF EMPLOYEEF +
D SHARE(*YES) +
D OVRSCOPE(*JOB)'

*
D OpnQryF1 C 'OPNQRYF EMPLOYEEF +
D OPNSCOPE(*JOB) +
D CCSID(437) +
D QRYSLT(''NUMBER *GE '

*
D OpnQryF2 C ' *AND NUMBER *LE '
D OpnQryF3 C ''')'

Figure 19 (Part 1 of 2). Sharing an Open Data Path Using OPNQRYF

Chapter 3. Data Access 47

RPG (continued)

D CloF C 'CLOF EMPLOYEEF'
D QCmdDDM S 10A INZ('QCMDDDM')
D LINKAGE(*SERVER)

*
D Cmd S 255A INZ(*BLANKS)
D CmdLen S 15P 5 INZ(%size(Cmd))

*
C READ BEGACT PRESS MAIN

*
C eval Low = %getatr('MAIN':'LOW':'Text')
C eval High = %getatr('MAIN':'HIGH':'Text')
C if Low > High
C InvRange dsply RC 9 0
C else

*
C call QCmdDDM
C parm OvrDBF Cmd
C parm CmdLen

*
C eval Cmd = OpnQryF1 + %trim(Low) + OpnQryF2
C + %trim(High) + OpnQryF3
C call QCmdDDM
C parm Cmd
C parm CmdLen

*
C open EmployeeF

*
C read EMPRCD 80
C dow *IN80 <> *ON
C write EMPLLIST
C read EMPRCD 80
C enddo

*
C close EmployeeF
C call QCmdDDM
C parm CloF Cmd
C parm CmdLen

*
C endif

*
C ENDACT

Figure 19 (Part 2 of 2). Sharing an Open Data Path Using OPNQRYF

48 VisualAge for RPG

File Locking
File and record locks for AS/400 database files accessed by a VisualAge for
RPG application are maintained by OS/400 in the same way as for any other
database file. When file locking is performed by OS/400, one of the
following lock states is placed on a file:

Shared for read (*SHRRD)

Shared for update (*SHRUPD)

Shared, no update (*SHRNUP)

Exclusive, allow read (*EXCLRD)

Exclusive, no read (*EXCL)

When VisualAge for RPG opens a file, only one of the first two lock states is
used. Which state is used depends on the type of OPEN performed:

INPUT Shared for read

UPDATE Shared for update

ADD Shared for update

OUTPUT Shared for update

Locking Conflicts
A file lock is always held by a job, so that it applies only when a program in
another job tries to use the file concurrently. Programs within the same job
are not affected by file lock states. If an application tries to open a file and a
lock state is already set on the file that doesn't allow a second lock, then an
error message is issued.

As all components of a single VisualAge for RPG application use the same
DDM job for database access, file locks do not apply between these
components. However, other VisualAge for RPG applications may access
the same files and try to set locks themselves.

Your VisualAge for RPG application should be able to handle this
contention, either by specifying error indicators for the different file
operation codes or by supplying an information subroutine (INFSR). (For
more information regarding exception handling, please refer to section
“Exception Handling.”)

Additionally, you may consider the WAITFILE parameter of the CRTPF,
CRTLF, CHGPF, CHGLF and OVRDBF commands to specify how long the
application is to wait for another job's lock to be released. (Keep in mind
that the user of your application will have to wait as well.) It may be a
better idea to handle the exception and issue a meaningful message.

Chapter 3. Data Access 49

Record Locking
Record locks are handled in a different way than file locks. There are
usually only two lock states (locked for update and released), and they are
maintained through an open data path, not a job. So, there are far more
occurrences when a record lock could be and will be set through another
ODP, preventing access.

A record lock applies only when the file to be accessed has been opened for
update. Performing this kind of open indicates your intention to change a
record that you have read before. OS/400 then needs to make sure that no
other program is trying to read the same record for update at the same
time.

To handle this situation, OS/400 applies a lock to the record as soon as it is
read for update by your VisualAge for RPG program. Any attempt to perform
another read for update through another ODP will fail.

Dead-Lock Situations
As any open of a file (first shared or not shared) in a VisualAge for RPG
application results in its own ODP, a record lock could also prevent another
component of the same VisualAge for RPG application from reading an
already locked record for update.

This is important to understand, as it will also happen if you are accessing
the same file within a single component through two different ODPs. If both
ODPs have been opened for update and a read for update is performed on
an already locked record, you end up in a dead-lock, where your program is
waiting for itself to release the record.

It is not really a dead-lock, however, as OS/400 is usually not waiting for a
locked record until the end of all days. Instead, it looks for the setting of the
WAITRCD parameter of the database file. By default, it is set to 60 seconds,
which makes a program (or VisualAge for RPG component) performing a
read for update wait for 60 seconds for the record to become released. If
that doesn't happen in the specified time, an exception (RNQ1218) is
signaled to the component.

Can't Wait!

It is usually a good idea to set the record wait time to a value lower than
60 seconds, if you expect record waits in your application. A wait time of
3 or 5 seconds is more appropriate, because users tend to get nervous
when their computer program seems to have stalled.

50 VisualAge for RPG

Read for Update
What exactly is a read for update in VisualAge for RPG language? It is one
of the following operation codes performed on a file opened for update:

CHAIN

READ

READE

READP

READPE

Once, a record has been locked, the lock remains until one of the following
happens through the ODP that placed the lock:

The record is updated (UPDATE).

The record is deleted (DELETE).

Another record is read from the file (CHAIN, READ, READE, READP,
READPE).

A SETLL or SETGT operation is performed against the file.

An UNLOCK operation is performed against the file.

An output operation defined by an output specification with no field
names included is performed against the file (EXCEPT).

The component that opened the file ends.

Duration of Record Lock
As you design your application, you should focus on reducing the amount
and duration of record locks being held. For example, the following action
subroutine is associated with a push button part called Next of a database
maintenance program (Figure 20). When it is pressed, the next record is
read from the file and its content is displayed to the user. So, pressing it
multiple times will allow the user to scroll through the records of the file.

Chapter 3. Data Access 51

RPG

FEmployeeF UF A E K DISK REMOTE USROPN
*
*

C NEXT BEGACT PRESS MAIN
*

C read EMPRCD 80
C if *IN80 = *ON
C EndOfFile dsply RC
C else
C write 'MAIN'
C endif

*
C ENDACT

Figure 20. Action Subroutine for Next Button

As the user will also be able to change the displayed values, the file is
opened for update here, so that an update can be made to a record, if
necessary. However, updating will also cause a record lock being applied to
the record when it is read.

This lock remains until the user presses the Next push button again or the
Change push button, indicating that changes were made and the currently
locked record needs to be updated. In our example, we just need to read
the content from the entry fields of the window and, as these have the same
names as the fields of the database record, perform an UPDATE opcode:

RPG

C CHANGE BEGACT PRESS MAIN
*

C read 'MAIN'
C update EMPRCD

*
C ENDACT

The problem is, that you don't know when the user will press one of these
push buttons. It might take just one second, while scrolling through the file,
but it could also last until the end of the day, as the user is doing something
else while displaying the record. You would have to call the user to have
the lock released.

52 VisualAge for RPG

Read Without Locking
To prevent this kind of lock difficulty, you could use the (N) operation code
extender on the READ opcode. This operation code extender, which is
available for every VisualAge for RPG operation code that usually places a
record lock, prevents OS/400 from applying the record lock, leaving the
record free for any other update request (Figure 20).

RPG

C NEXT BEGACT PRESS MAIN
*

C read(N) EMPRCD 80
C if *IN80 = *ON
C EndOfFile dsply RC
C else
C write 'MAIN'
C endif

*
C ENDACT

However, if the user now decides to change a record, you will have to read
it again from the file without the operation code extender to place a lock on
it. Otherwise, the UPDATE operation would fail as it always expects a locked
record.

But looking at the modified action subroutine for the Change push button,
you can see it is not that simple. The record was accessible, since it was
read first by this user. However, it may have been updated or deleted by
another user by the time the first user reads the record again for update.
Figure 20 shows a modified action subroutine for the Change push button.

Chapter 3. Data Access 53

RPG

FEmployeeF UF A E K DISK REMOTE USROPN
F PREFIX(F)

*
D WdwFields DS
D Number 7S 0
D Firstname 20A
D Lastname 20A

*
D FileFields DS
D FNumber 7S 0
D FFirstname 20A
D FLastname 20A

*
*

C CHANGE BEGACT PRESS MAIN
*

C FNumber chain EMPRCD 80
C if *IN80 = *ON
C NotFound dsply RC
C else

* record was found
C if FileFields <> WdwFields
C OtherUpd dsply RC
C else

* no update since last read
C read 'MAIN'
C move WdwFields FileFields
C update EMPRCD
C endif

*
C endif

*
C ENDACT

Figure 21. Modified Action Subroutine for the Change Push Button

Therefore, we first need to check whether the CHAIN opcode finds the
record or not. If it's not there anymore, a message is issued giving this
information to the user. (At this point, you might consider asking the user
whether or not to add it again.)

Rereading Record for Update
If the record is found, it now is locked by the CHAIN opcode. The next thing
to verify is, if another job updated the record since the first read (with no
lock). To be able to read the record again through the CHAIN and compare

54 VisualAge for RPG

the content of the record with the content of the first (no lock) read, we
changed the names of the record fields using the PREFIX keyword.

Doing so, we have now three different versions of our record fields for the
employee number, the first name and the last name:

The entry field parts of the GUI show the values as they were changed
by the user.

Since we didn't read the content from these entry field parts, the
corresponding VisualAge for RPG variables (Number, Firstname , and
Lastname) still contain the values as read from the file through the
READ(N) opcode.

The input buffer of the file (FNumber, FFirstname, and FLastname) itself
contains the contents of the record fields as it is available in the
database file from the second read (for update).

Comparing the content of the VisualAge for RPG variables with the input
buffer fields allows us to determine whether there has been an update or
not. If there was no update, we receive the new content from the entry field
parts of the GUI into the corresponding VisualAge for RPG variables, copy it
to the file buffer variables and update the record in the database file.

Keep in mind, that this approach works only if the key of the database file is
unique, so that the CHAIN operation will always fetch the correct record. If
the key is not unique, you may be able to identify the correct record using
the RECNO keyword.

Commitment Control
The commitment control feature of OS/400 allows you to process several
database changes as one unit. Every single database change is made
temporarily at first. Only if all of the necessary operations have been
completed successfully are the changes permanently applied to the
database. If something goes wrong, while some but not all of the necessary
changes have been made, you can have OS/400 roll back the changes.

Before we can use the commitment control feature of OS/400 within
VisualAge for RPG, we need to set up the environment for it first.

Journaling
On the AS/400, we need to enable journaling for the database file that will
be accessed under commitment control. So, we create a journal receiver as
well as a journal object and start the journaling for our database to get all
changes logged:

Chapter 3. Data Access 55

AS/400 command

CRTJRNRCV JRNRCV(REINHARD/EMPLOYEEF)
TEXT('Journal receiver object for EMPLOYEEF')

CRTJRN JRN(REINHARD/EMPLOYEEF)
JRNRCV(REINHARD/EMPLOYEEF)
TEXT('Journal object for EMPLOYEEF')

STRJRNPF FILE(REINHARD/EMPLOYEEF)
JRN(REINHARD/EMPLOYEEF)

Commitment control is started for a job through the Start Commitment
Control command (STRCMTCTL). To have this command executed in the
DDM job serving the database requests of our VisualAge for RPG
application, we must specify a lock level other than < N O N E > on the Lock
level page of the Define AS/400 Information notebook (see Figure 22). As
you can see, commitment control is restricted to only one AS/400. However,
you can still access all files residing on other AS/400 servers without
commitment control.

Figure 22. Lock Level for Commitment Control

56 VisualAge for RPG

Lock Level
Which of the available lock levels you choose depends on the type of
commitment control you want to have. Commitment control is exercised by
keeping record locks for all changed records of the database file until the
changes made are permanently applied or removed. With the lock level
parameter, you specify which record locks are kept:

*CHG Every record read for update for a file opened under commitment
control is locked. If a record is changed, added, or deleted, it
remains locked until the changes made are permanently applied
or removed. Records that are accessed for update operations but
are released without being changed are unlocked.

*CS Every record accessed for files opened under commitment
control is locked. A record that is read but not changed or
deleted is unlocked when a different record is read. Records that
are changed, added, or deleted are locked until the changes are
permanently applied or removed.

*ALL Every record accessed for files opened under commitment
control is locked until the changes are permanently applied or
removed.

As soon as the STRCMTCTL command is executed successfully in the DDM
job of our VisualAge for RPG application, the record locks for the file
running under commitment control are kept according to this setting. In the
file description specification for this file, we need to specify the COMMIT
keyword, so that VisualAge for RPG knows which file has to run under
commitment control.

Commit and Rollback
All changes to this database file will be temporary, lasting only until the
program executes a COMMIT operation code. At this point, all record locks
are released and the changes are permanently applied.

If a file operation is unsuccessful, the program can execute a ROLBK
operation code. This will remove all changes done, since the last COMMIT
opcode was executed (or the file was opened). Record locks are also
released. An implicit rollback is performed if the VisualAge for RPG
application is terminated (normally or abnormally) before a COMMIT is
executed. So, don't forget to supply a COMMIT before leaving your
application.

Example
The sample source in Figure 23 gives you an overview of the structure of a
VisualAge for RPG application using commitment control

Chapter 3. Data Access 57

RPG

FEmployeeF UF A E K DISK REMOTE
F COMMIT
FSalaryF UF A E K DISK REMOTE
F COMMIT

:

C UPDATE BEGACT PRESS MAIN
*

C commit
:

C Number chain EMPRCD 80
C EmpNbr chain SALRCD 81

:
C update EMPRCD 80

:
C update SALRCD 81
C if *IN81 = *ON
C rolbk
C else
C commit
C endif

*
C ENDACT

Figure 23. Using Commitment Control

The file and the commitment control operation codes don't need to be
enclosed in a single action or user subroutine. However, if commitment
control spans over multiple action subroutines, you need to make sure that
the sequence of the operations is always consistent.

The COMMIT keyword also has an optional parameter that allows you to
switch commitment control on and off for a certain file during runtime. The
field specified is implicitly defined as a one-byte character field and
initialized with '0' (*OFF). As the file needs to be closed when changing this
value, you will have to specify the USROPN keyword as well. Figure 24
shows an example of the use of the switching parameter for COMMIT.

58 VisualAge for RPG

RPG

FEmployeeF UF A E K DISK REMOTE
F USROPN
F COMMIT(CmtMark)

:

C *INZSR BEGSR
C eval CmtMark = *ON
C open EmployeeF

:
C ENDSR

:

C CMTOFF BEGACT PRESS MAIN
*

C commit
C close EmployeeF
C eval CmtMark = *OFF
C open EmployeeF

*
C ENDACT

Figure 24. Switching COMMIT On and Off

Record Blocking
To improve the performance of an application that sequentially reads data
from an AS/400, VisualAge for RPG implements record blocking where
applicable. This means that the records of a file are not read one by one,
but as a block of multiple sequential records. Blocking reduces the number
of remote accesses to the AS/400 and, therefore, can improve performance
significantly.

VisualAge for RPG offers default record blocking if any of the following is
true:

The file is opened for output only and contains only one record format.

The file is a combined file.

The file is opened for input only and contains only one record format.
The file addition entry (column 20) is blank and only the following
operation codes are used to access the file:

− OPEN

Chapter 3. Data Access 59

− READ

− FEOD

− CLOSE

The RECNO keyword (allowing access by relative record number) has
not been specified on the file description specification.

In addition to this default record blocking, you can enable additional record
blocking explicitly through the BLOCK keyword. Specifying BLOCK(*YES) on
the F-spec of the accessed files tells VisualAge for RPG to perform record
blocking during runtime even if the following operation codes are used on
an input-only file:

CHAIN

SETLL

SETGT

RPG

FMyFile IF E K DISK REMOTE
F BLOCK(*YES)

*
C MyKey setll MyRcd
C read MyRcd 80

If you don't want to have record blocking at all, you can specify BLOCK(*NO)
on a file description specification. This disables even the default record
blocking of VisualAge for RPG. It can be useful if you already know that
there will be just a few sequential read operations on your file, so that
reading blocks of records would affect the performance rather unfavorably.

Exception Handling
Whenever an exception occurs during the access to an AS/400 database file
and no error indicator has been specified on the operation codes that raised
the exception, the VisualAge for RPG default exception handler receives
control (Figure 25).

60 VisualAge for RPG

Figure 25. Default Exception Handler

It allows the user to have the runtime perform one of the following actions:

*DEFAULT Return control from the current action subroutine and
perform the default processing associated with the current
event.

*NODEFAULT Return control from the current action subroutine but do not
perform any default processing. If the Last Record (LR)
indicator is on when processing reaches this point, the
component is terminated.

*ENDCOMP Terminate the component abnormally.

*ENDAPPL Terminate all currently active components, ending the
application.

If you want to have your own exception handler invoked instead of the
default, you can register a user subroutine through the INFSR keyword in
the F-specs of the database file. The specified subroutine receives control
as soon as an exception occurs while accessing the file it is registered for.
Within this subroutine, you now can handle file exceptions differently as the
default exception handler would do. Additional information regarding the
error can be received through the informational data structure (INFDS):

Chapter 3. Data Access 61

RPG

FEmployeeF UF A E K DISK REMOTE USROPN
F INFDS(InfDs)
F INFSR(InfSr)

*
D InfDs DS
D Status *STATUS

We are using here only the status field out of the INFDS, which allows us to
distinguish between the different exceptions that are possible. For further
information about the INFDS and its content, refer to the VisualAge for RPG
Language Reference manual.

In the example in Figure 26, we have created our own exception handler
subroutine. It handles only the exception 1021, which occurs when a WRITE
operation is trying to add a record to a unique keyed file that already
existed (duplicate key). If this exception is raised during a WRITE operation,
we are reading the already existing record and updating its content.

RPG

D DupKey C 1021
*

C InfSr BEGSR
*

C select
*

C when Status = DupKey
C update EMPRCD
C movel '*DEFAULT' ReturnPoint 12

*
C other
C movel *BLANKS ReturnPoint

*
C endsl

*
C ENDSR ReturnPoint

Figure 26. Example of an Exception Handler Subroutine

Exception Resume
Through the value in factor 2 of the ENDSR opcode, you can determine how
the application resumes after leaving your exception handler subroutine. In
the case of the duplicate key exception, we specify *DEFAULT, which means

62 VisualAge for RPG

that control returns to the statement immediately following the operation
code that raised the exception.

As we want to have the default exception handler take care about all other
exceptions, we specify *BLANKS for factor 2. The other available values for
the factor 2 of the ENDSR are *NODEFAULT, *ENDCOMP and *ENDAPPL.
They correspond to the options available through the default exception
handler as shown earlier.

The sample exception handler is called recursively if the CHAIN or UPDATE
operations are unsuccessful and, as a result, raise another exception. This
results in an infinite loop. You can avoid looping by using an indicator as
shown in Figure 27.

RPG

D DupKey C 1021
*

C InfSr BEGSR
*

C if *IN01 = *ON
C movel *ON *INLR
C return
C else

*
C movel *ON *IN01
C select

*
C when Status = DupKey
C update EMPRCD
C movel '*DEFAULT' ReturnPoint 12

*
C other
C movel *BLANKS ReturnPoint

*
C endsl

*
C movel *OFF *IN01
C ENDSR ReturnPoint

Figure 27. Avoiding Recursion in an Exception Handler

Chapter 3. Data Access 63

Local Files
The interface used in VisualAge for RPG to access a local ASCII file on your
PC is very similar to that used for AS/400 database file access. You must
define the characteristics of the file through file description specifications.
You can then apply the different operation codes used for sequential or
relative-record-number processing. Record locking is not available here.

File Definition
Let's first look at what needs to be considered when defining a local file. As
a local file is always program-described ('F' in column 22 of the F-spec), we
also need to specify the layout of its records. This is done using input and
output specifications such at these:

RPG

FRstFile UF F 100 DISK
F RCDLEN(RcdLen)
F RECNO(RRN)

*
D RcdLen S 5P 0 INZ(*ZERO)
D RRN S 5P 0 INZ(*ZERO)

*
IRstFile NS
I A 1 100 RstRecord

In our example, we defined a program-described file called RstFile for
update with a maximum record length of 100 bytes. Through its input
specification, we specified that we want the entire content of a record read
from the file placed in a single field RstRecord. So, this field has to be
defined with the same length as the record (100 bytes).

Record Length
The RCDLEN keyword was added because we want to control the real
length of the records. Local files usually don't contain records of the same
fixed length. So, VisualAge for RPG is determining the end of a record by
searching for the hexadecimal representation of a carriage-return/line-feed
combination (CRLF), when reading from the file. The variable specified as a
parameter of the RCDLEN parameter contains the actual length of the
record just read.

Additionally, when writing a record to the file (either through an UPDATE,
WRITE, or EXCEPT operation code), VisualAge for RPG writes a record of the
specified maximum length, placing the CRLF combination at the end. Thus,
all updated or added records always have the same length. If you want to

64 VisualAge for RPG

keep variable length records, you can specify a smaller number of bytes to
be written to the file using the variable of the RCDLEN keyword.

The RECNO keyword can be used to obtain the relative record number of
the record the file is currently positioned to. In a later example, you will see
how this can help us to access the correct record.

File Name
During runtime, VisualAge for RPG looks for a file in the application
directory with the same name as specified in the F-spec (RstFile in our
example). If you want to specify a different name, you can use the EXTFILE
keyword to specify a variable that contains the external name of your local
file:

RPG

FRstFile UF F 100 DISK USROPN
F EXTFILE(FileName)
F RCDLEN(RcdLen)
F RECNO(RRN)

*
D FileName S 15A INZ('.\\QCMDEXC.RST')
D RcdLen S 5P 0 INZ(*ZERO)
D RRN S 5P 0 INZ(*ZERO)

*
IRstFile NS
I A 1 100 RstRecord

As it is possible to change the value of the variable to a different file name
during runtime, the EXTFILE keyword requires the USROPN keyword. You
must open and close the file yourself.

Another option would be to specify a different file name through the Define
AS/400 information notebook. On its Files page you can specify the file with
a server entry of *CLIENT (Figure 28).

Chapter 3. Data Access 65

Figure 28. Defining a Local File in the Add File Alias Name Window

Using this interface for your local files allows you to maintain them together
with all other external information. As mentioned earlier, a local file can be
processed only sequentially or by relative-record number. Thus, only a
subset of VisualAge for RPG's operation codes are allowed:

CHAIN Random retrieval from a file through RRN

CLOSE Close files

DELETE Delete record

EXCEPT Calculation time output

OPEN Open file for processing

POST Post information into the information data structure

READ Read a record

READP Read prior record

UPDATE Modify existing record

WRITE Create a new record

We will now use some of the operation codes to access the .RST file of a
VisualAge for RPG application that allows to submit commands to an AS/400
using the QCMDEXC API. As we mentioned in “An Easy Approach,” the .RST
file contains the information defined through the Define AS/400 Information
notebook in ASCII format.

The .RST file of our QCMDEXC sample contains the definitions of two
servers MCEAS4 and MCEAS7 as well as the definition for the QCMDEXC
API:

66 VisualAge for RPG

RST File

DEFINE_SERVER SERVER_ALIAS_NAME(MCEAS4)
REMOTE_LOCATION_NAME(IVL$3006)
TEXT()

DEFINE_SERVER SERVER_ALIAS_NAME(MCEAS7)
REMOTE_LOCATION_NAME(IVL$100F)
TEXT()

DEFINE_PROGRAM PROGRAM_ALIAS_NAME(QCMDEXC)
REMOTE_PROGRAM_NAME(*LIBL/QCMDEXC)
SERVER_ALIAS_NAME(MCEAS4)
TEXT(QCMDEXC API entry)

We want to use this information to fill a combination box in the GUI of our
application with the defined server alias names, and change the server alias
for the QCMDEXC API, if the user selects another entry from that
combination box.

After adding a combination box part called Server to the GUI, we use its
CREATE event to read the server definitions from the file and fill the list of
Server with the server alias names (Figure 29).

Chapter 3. Data Access 67

RPG

C SERVER BEGACT CREATE FRA0000B
*

C open RstFile
*

C read RstFile 80
C dow *IN80 = *OFF

*
C select
C when *IN10 = *OFF and
C %scan('DEFINE_SERVER':RstRecord) <> 0
C eval Start = %scan('(':RstRecord) + 1
C eval Length = %scan(')':RstRecord) - Start
C eval %setatr('FRA0000B':'SERVER':'AddItemEnd')
C = %subst(RstRecord:Start:Length)

*
C when *IN10 = *OFF and
C %scan('DEFINE_PROGRAM':RstRecord) <> 0
C movel *ON *IN10

*
C when *IN10 = *ON and
C %scan('SERVER_ALIAS_NAME':RstRecord) <> 0
C eval Start = %scan('(':RstRecord) + 1
C eval Length = %scan(')':RstRecord) - Start
C eval %setatr('FRA0000B':'SERVER':'Text')
C = %subst(RstRecord:Start:Length)
C movel *ON *IN80
C endsl

*
C read RstFile 80
C enddo

*
C ENDACT

Figure 29. Using a Create Event to Read Server Definitions

Within a do-while (DOW) loop we are reading through the .RST file
sequentially, until the end-of-file condition is raised (*IN80 is set to on). For
every found record, we are checking whether it contains information we
need for the combination box.

If the string 'DEFINE_SERVER' is detected, we know we have found the alias
name for one of the defined servers. So, we scan for the left and right
parentheses that enclose this alias name and add it to the list portion of the
combination box.

68 VisualAge for RPG

If instead the string 'DEFINE_PROGRAM' is found, *IN10 is set to *ON
indicating, that the last server definition has been passed.

The last WHEN opcode checks for the current server alias name of the
QCMDEXC API. Therefore, it searches for the next record containing the
string 'SERVER_ALIAS_NAME'. The name found between the parentheses is
then used to set the Text attribute of the combination box (Figure 30). The
relative record number of this record is saved into variable AliasRRN as we
will need this information later.

Figure 30. QCMDEXC Sample with Server List

If the user now selects another entry from the list of available servers, we
need to change the SERVER_ALIAS_NAME for the QCMDEXC program
definition. The action subroutine for the SELECT event of the combination
box part is the place to make the necessary changes to our .RST file
(Figure 31).

Chapter 3. Data Access 69

RPG

D Server S 10A INZ(*BLANKS)
*

D ServerAlias DS
D RstRecord 100A

*
IRstFile NS
I A 1 100 RstRecord

:

C SERVER BEGACT SELECT FRA0000B
*

C eval Server
C = %getatr('FRA0000B':'SERVER':'Text')

*
C AliasRRN chain RstFile 80
C eval %subst(RstRecord:Start:11)
C = %trim(Server) + ')'
C update RstFile ServerAlias

*
C ENDACT

Figure 31. Action Subroutine for the Select Event of the Combination Box

Here, we are using our saved relative record number to CHAIN into the file
again and read the desired record directly. The buffer of the file gets
changed to contain the new server alias name and the record is updated.
The link of the QCMDEXC API has been changed now to another server.

This example should give you an idea how local file access can be used
within your application. The VisualAge for RPG Language Reference manual
contains further information about the other operation codes and more
complex input and output specifications.

SQL Support
VisualAge for RPG supports the access of DB2 databases through SQL.
These databases may be local on your workstation, on other workstation
nodes, or on an AS/400 system. We show you how SQL statements can be
included into your source, what happens during the build process, and what
to consider when the application is installed into another database
environment.

70 VisualAge for RPG

VisualAge for RPG supports the level of function available in DB2 Version
1.2. However, your application will be able to access DB2 on other
platforms or PCs using more recent releases of DB2 as long as only the
Version 1.2 functions and statements are used.

Embedding SQL
In your VisualAge for RPG source, every SQL statement must be preceded
by an /EXEC SQL phrase coded in columns 7-15. The statement itself can be
coded in the same line starting in column 17 and can span more than one
line. Each of these lines must start with a plus (+) sign in column 7 followed
by a blank in column 8. The end of a SQL statement must be indicated by
coding an /END-EXEC phrase in columns 7-15 of a new line.

RPG

C/EXEC SQL
C+ SELECT Number, FirstName, LastName
C+ INTO :Number, :FirstName, :LastName
C+ FROM EmpTable
C+ WHERE Number = 12
C/END-EXEC

With the exception of the SQL statements INCLUDE, BEGIN DECLARE, and
END DECLARE, that can be defined anywhere in your source before the
compile-time data definition (** in columns 1 and 2), all SQL statements
must be coded in the calculation specifications. VisualAge for RPG
comments (* in column 7) are allowed within an embedded SQL statement.
Alternatively, SQL comment indicators (--) can be used to mark the rest of
the current line as comment.

Host Variables
The identifiers in the INTO clause of the SQL statement (Figure 32) are host
variables, which allow communicating information between SQL and the
hosting VisualAge for RPG language. These host variables are identified by
a preceding colon (:) and can be of one of the following VisualAge for RPG
data types:

Character

Graphic

Packed decimal

Zoned decimal

Binary numeric

Date

Chapter 3. Data Access 71

Time

Time stamp

RPG

D/EXEC SQL
D+ INCLUDE SQLCA
D/END-EXEC

:
C/EXEC SQL

* This SELECT returns a single row
C+ SELECT Number, FirstName, LastName
C+ INTO :Number, :FirstName, :LastName
C+ FROM EmpTable -- employee table
C+ WHERE Number = 12
C/END-EXEC

Figure 32. Sample SQL Statement

Although you do not need to specify the same names as those of the
corresponding SQL column name, we recommend it for better
documentation and program understanding.

Data Type Mapping
How the different SQL data types are mapped to the VisualAge for RPG data
types is shown in Table 3.

Table 3. Data Type Mapping between SQL and VisualAge for RPG

SQL
Data Type

VARPG
Data Type

Format
(Col 43)

Length
(Cols
44-51)

Decimal
Positions
(Cols 52)

CHARCTER(m) character A m n/a

GRAPHIC graphic G m*2 n/a

DECIMAL(m,n) packed decimal P m/2+1 n

SMALLINT 4-digit binary B 2 0

INTEGER 9-digit binary B 4 0

DATE date D 10 n/a

TIME time T 8 n/a

TIMESTAMP timestamp Z 26 n/a

72 VisualAge for RPG

Data mapping works in both directions, SQL to VARPG and VARPG to SQL.
If a zoned decimal variable is used as host variable, VisualAge for RPG
converts the content to packed decimal before and after the DB2 operation.

When the host variable type doesn't match the column definition,
appropriate conversions take place. This is also true for the SQL data types
REAL, DOUBLE and VARCHAR, which are not supported by VisualAge for
RPG. You can still access then using a different host variable data type.
The conversion will be made and you will receive a message indicating that
truncation occurred.

When you are defining the host variables for the SQL statements in your
VisualAge for RPG application, please keep in mind that the limits for the
various data types may differ between SQL and VisualAge for RPG. For
example, a host variable of the character type may have a maximum length
of 254 bytes, while VisualAge for RPG allows specifying up to 32767 bytes.
Refer to the documentation of your DB2 database to find these data type
limits.

All variables within your source are considered to be used as host variables
with the exception of multiple occurrence data structures, indicators (*INxx),
tables, indexed arrays, or the reserved words UDATE, UDAY, UMONTH, and
UYEAR. This differs from the SQL standard, which expects all host variables
to be defined within the BEGIN DECLARE and END DECLARE SQL
statements. You can still use these SQL statement to document your host
variables. However, the VisualAge for RPG compiler will not indicate any
host variable that has not been defined.

Single occurrence data structures with no subfields are treated like
variables of normal data character type. Data structures with subfields are
considered host structures. They can be used as a convenient way to
specify a series of host variables. So, our first sample SELECT statement
can be modified to use such a host structure as shown in Figure 33.

Chapter 3. Data Access 73

RPG

D EmplRow DS
D Number 7S 0
D FirstName 20A
D LastName 20A

*
C/EXEC SQL
C+ SELECT Number, FirstName, LastName
C+ INTO :EmplRow
C+ FROM EmpTable
C+ WHERE Number = 12
C/END-EXEC

Figure 33. Using Host Structure in SELECT Statement

Connecting to the Database
Before an SQL table or view can be accessed within your VisualAge for RPG
application, you first need to connect to the database, where the table or
view resides. This connection can be made explicitly through the SQL
statement CONNECT TO or through an implicit connect.

Using the implicit method means that a connection to a database is
established by the system as soon as your VisualAge for RPG application
tries to execute its first SQL statement. This connection remains active until
the application is terminated.

The name of the database, the user identification, and the password needed
to establish the connection must be supplied through the environment
variables DB2DBDFT, DB2USERID, and DB2PASSWORD. These can be set in
your AUTOEXEC.BAT file or from a command prompt window:

Batch file

SET DB2DBDFT=VARPG
SET DB2USERID=STADE7
SET DB2PASSWORD=STADE7

Using the explicit connect method allows you to specify the database name,
user ID, and password during runtime in the same way as host variables
can be specified for this information on the CONNECT TO statement:

74 VisualAge for RPG

RPG

D Database 10A INZ('VARPG')
D Userid 10A INZ('STADE7')
D Password 10A

*
C movel 'STADE7' Password

*
C/EXEC SQL
C+ CONNECT TO :Database USER :Userid USING :Password
C/END-EXEC

Regardless of which method you use, the connection is always limited to the
VisualAge for RPG application. So, another explicit CONNECT TO is
performed in one of the application's components, it will either reset the
current connection or cause an error message to be issued (if there are
pending row locks and no COMMIT or ROLLBACK was performed before the
second connect).

Sample SQL Application
Let's create a sample VisualAge for RPG application that accesses a
database file using different SQL statements. We will modify the employee
list example, that was already used in “AS/400 Files and Record I/O.”

For this example, a subfile part has to be filled with information for
employees, where the lowest and highest employee number of the rows to
be displayed can be specified (see Figure 34). To help the user choose an
employee number range that makes sense, we add two read-only entry
fields showing the lowest and highest employee number available in the
table.

Chapter 3. Data Access 75

Figure 34. Employee List Example Using SQL

To keep the example simple, the accessed table EmplTable consists of only
three columns. The following SQL statement was used to create it:

SQL

CREATE TABLE EmplTable (Number DECIMAL(7,0),
Firstname CHARACTER(20),
Lastname CHARACTER(20))

Database Connection
The first thing to do is to establish a connection to our database. An explicit
CONNECT TO statement could be placed into the initialization subroutine
(*INZSR) of our VisualAge for RPG application. However, we want to get the
necessary information from the user through a separate window (see
Figure 35), so we start an already available component called DBLOGON,
which does this for us.

76 VisualAge for RPG

Figure 35. Database Logon Component

We don't look at this component in more detail, beyond noting that it
ensures that all necessary information is specified by the user, updates the
parameters with the entered information, and signals successful completion
in an indicator variable (entry field part) called DONE. This is the code:

RPG

C *INZSR BEGSR
*

C start 'DBLOGON'
C parm 'VARPG' Database 10
C parm 'STADE7' Userid 10
C parm Password 10

*
C ENDSR

The indicator's CHANGE event can be monitored by our application using a
component reference part (see Exercise 5, “Using the Component
Reference Part” for further details about component reference parts).

When the NOTIFY event for the component reference part is raised, we know
that the information necessary to connect to the database is available. Thus,
we can now perform the CONNECT TO operation.

To verify that the CONNECT statement is completed successfully, we are
checking the content of SQLCOD (SQL codes below zero indicate an error).
Although we did not include the SQL communications area (SQLCA), its
subfields are available within our application. This is because VisualAge for
RPG always includes SQLCA (Figure 36).

Chapter 3. Data Access 77

RPG

DSqlExcpt M MSGNBR(*MSG0001)
D MSGDATA(SQLCOD)

:
C DBLOGON BEGACT NOTIFY MAIN

*
C/EXEC SQL
C+ CONNECT TO :Database USER :Userid USING :Password
C/END-EXEC
C if SQLCOD < 0
C SqlExcpt dsply RC
C movel *ON *INLR
C else

*
C/EXEC SQL
C+ SELECT MIN(Number), MAX(Number)
C+ INTO :Min, :Max
C+ FROM EmplTable
C/END-EXEC
C write 'MAIN'
C eval %setatr('MAIN':'MAIN':'Visible') = 1
C endif

*
C ENDACT

Figure 36. Checking the SQL Return Code

Before we make the MAIN window of our sample application visible, a
SELECT INTO statement is executed on the employee table. The SQL
functions MIN() and MAX() determine the lowest and highest employee
number in the table and pass this information into the host variables Min
and Max. As these are also the names of the corresponding entry field
parts, this information can be updated through a WRITE to the MAIN window.

Database Cursor
We cannot use a simple SELECT INTO statement to fill the subfile. This is
because more than just one row is likely to be returned (even though the
specified range of numbers would result in only one row). As a result, we
have to declare an SQL cursor in this case, which is basically nothing more
than a temporary space, which holds the result of a SELECT statement and
allows accessing the rows one at a time.

Let's next look at the action subroutine for the PRESS event of the Read
push button to see how SQL cursor processing can be embedded into
VisualAge for RPG (Figure 37).

78 VisualAge for RPG

RPG

D EmplRow DS
D Number 7S 0
D FirstName 20A
D LastName 20A

:
C READ BEGACT PRESS MAIN

*
C clear EMPLLIST
C read 'MAIN'

*
C/EXEC SQL
C+ WHENEVER SQLERROR GOTO SqlErrRead
C/END-EXEC

*
C/EXEC SQL
C+ DECLARE c1 CURSOR FOR
C+ SELECT Number, FirstName, LastName
C+ FROM EmplTable
C+ WHERE Number BETWEEN :Low AND :High
C/END-EXEC
C/EXEC SQL
C+ OPEN c1
C/END-EXEC
C/EXEC SQL
C+ FETCH c1 INTO :EmplRow
C/END-EXEC
C dow SQLCOD <> 100
C write EMPLLIST
C/EXEC SQL
C+ FETCH c1 INTO :EmplRow
C/END-EXEC
C enddo
C/EXEC SQL
C+ CLOSE c1
C/END-EXEC
C goto EndRead

*
C SqlErrRead tag
C SqlExcpt dsply RC 9 0
C EndRead tag

*
C ENDACT

Figure 37. Action Subroutine for the Press Event of the Read Push Button

Chapter 3. Data Access 79

Before we can use an SQL cursor, we need to declare it. This is done
through the SQL statement DECLARE CURSOR, where a unique cursor
name (c1) is assigned to a SELECT statement. The SELECT statement in our
example provides all employee rows from the table called EmplTable with
an employee number in the specified range. Low and High are the names of
the corresponding entry field parts, where the user can specify the range.

When the SQL cursor is opened by executing the SQL OPEN statement, the
SELECT statement is actually executed and the results are placed into the
temporary space represented by the cursor.

The rows of the cursor can now be accessed through the SQL statement
FETCH. In our example, we fetch the rows from the cursor sequentially and
receive the content into a host structure called EmplRow. Instead, we could
have also specified separate host variables for each column of the table
(separated by commas).

After every FETCH statement, we are checking the content of SQLCOD. If
the FETCH has been successful, the record is added to the subfile part
called EMPLLIST. A SQL code of 100 signals that there was no row
remaining in the cursor and nothing could be fetched. In this case, the
cursor is closed through the SQL statement CLOSE.

SQL Exceptions
In the above example, we are using a particular method to handle SQL
exceptions. The SQL statement WHENEVER SQLERROR defines a branch
tag, which will get control as soon as one of the subsequent SQL statements
results in a SQL code below zero. Once a WHENEVER SQLERROR has been
coded in your program, the branch tag definition remains active until
another WHENEVER SQLERROR statement with a different tag or with the
clause CONTINUE is specified. See Figure 38.

80 VisualAge for RPG

RPG

C/EXEC SQL
C+ WHENEVER SQLERROR GOTO ...
C/END-EXEC

*
C/EXEC SQL
C+ FETCH c1 INTO :EmplRow
C/END-EXEC

*
C/EXEC SQL
C+ WHENEVER SQLERROR CONTINUE
C/END-EXEC

Figure 38. Example of a Branch Tag Definition

It is important to keep this in mind, as the branch tag must reside in the
same (action or user) subroutine as the SQL statement that might raise an
SQL exception. The piece of code shown in Figure 39 fails to compile and
returns an error message RNF8530E.

RPG

C READ BEGACT PRESS MAIN
*

C/EXEC SQL
C+ FETCH c1 INTO :EmplRow
C/END-EXEC

*
C ENDACT

:
C *INZSR BEGSR

*
C/EXEC SQL
C+ WHENEVER SQLERROR GOTO SqlErr
C/END-EXEC

*
C goto EndInzSr
C SqlErr tag
C SqlExcpt dsply RC 9 0
C EndInzSr tag

*
C ENDSR

Figure 39. Example of Branch Tag

Chapter 3. Data Access 81

Currently, the database connection will be active until the program ends. So,
the user is able to press the Read push button multiple times, specifying
different ranges of employee number. If you would like to end the
connection explicitly (for example, because you want to connect to a
different database), you can use the SQL statement DISCONNECT. We are
using it in the action subroutine for the PRESS event of the Exit push button
in our example to clean up things:

RPG

C EXIT BEGACT PRESS MAIN
*

C/EXEC SQL
C+ DISCONNECT :Database
C/END-EXEC

*
C movel *ON *INLR

*
C ENDACT

Sorting Records
There is one problem left: The list of employees is not sorted. When we
used record I/O processing to fill the subfile, we were reading from a keyed
physical file, so that the list was always sorted by employee numbers. To
achieve the same thing within SQL, we can add an ORDER BY clause to our
SELECT statement:

RPG

C/EXEC SQL
C+ DECLARE c1 CURSOR FOR
C+ SELECT Number, FirstName, LastName
C+ FROM EmplTable
C+ WHERE Number BETWEEN :Low AND :High
C+ ORDER BY Number
C/END-EXEC

This would work perfectly. But wouldn't it be nice to have the user decide
whether to sort the list by number, first name, or last name? All we would
need to do is add another column name specified for the ORDER BY. But as
this is a column name, not just a value, we can't use it as a host variable.

82 VisualAge for RPG

Dynamic SQL
One way of providing user choice in sorting would be to code three different
DECLARE CURSOR statements for each sorting choice. However, if we use
dynamic SQL instead, then we can assemble the SQL statement during
runtime. Figure 40 shows the modified action subroutine for the PRESS
event of the Read push button:

RPG

D DclCsr C 'SELECT Number, +
D Firstname, Lastname +
D FROM EmplTable +
D WHERE Number BETWEEN ? AND ? +
D ORDER BY '
D DclCsrC1 S 254A

:
C READ BEGACT PRESS MAIN

*
C clear EMPLLIST
C read 'MAIN'
C select
C when %getatr('MAIN':'ORDNBR':'Checked') = 1
C movel 'Number ' OrderBy 10
C when %getatr('MAIN':'ORDFIRST':'Checked') = 1
C movel 'Firstname ' OrderBy
C when %getatr('MAIN':'ORDLAST':'Checked') = 1
C movel 'Lastname ' OrderBy
C endsl

*
C/EXEC SQL
C+ WHENEVER SQLERROR GOTO SqlErrRead
C/END-EXEC

*
C movel *BLANKS DclCsrC1
C eval DclCsrC1 = DclCsr + OrderBy

*
C/EXEC SQL
C+ PREPARE DeclareCursor FROM :DclCsrC1
C/END-EXEC

*
C/EXEC SQL
C+ DECLARE c1 CURSOR FOR DeclareCursor
C/END-EXEC

Figure 40 (Part 1 of 2). Modified Action Subroutine for the Press Event

Chapter 3. Data Access 83

RPG (continued)

C/EXEC SQL
C+ OPEN c1 USING :Low, :High
C/END-EXEC
C/EXEC SQL
C+ FETCH c1 INTO :EmplRow
C/END-EXEC
C dow SQLCOD <> 100
C write EMPLLIST
C/EXEC SQL
C+ FETCH c1 INTO :EmplRow
C/END-EXEC
C enddo
C/EXEC SQL
C+ CLOSE c1
C/END-EXEC
C goto EndRead

*
C SqlErrRead tag
C SqlExcpt dsply RC 9 0

*
C EndRead tag

*
C ENDACT

Figure 40 (Part 2 of 2). Modified Action Subroutine for the Press Event

The DECLARE CURSOR statement no longer contains the SELECT
statement. Instead, an SQL statement named DeclareCursor must be
specified. This SQL statement name represents the SQL statement prepared
before, using the SQL statement PREPARE. This PREPARE routine expects
a character host variable (DclCsrC1) that contains the SELECT statement to
be prepared.

In our example, we have the user choose between the different sorting
options by selecting one of three radio buttons ORDNBR, ORDFIRST and
ORDLAST. Depending on which one is selected, we assemble the host
variable for the SELECT. Figure 41 shows the list sorted by employee last
name.

84 VisualAge for RPG

Figure 41. Employee List Sorted by Last Name

Have you noticed that the host variables Low and High are no longer part of
the character variable that is used for the PREPARE portion of the SELECT
statement? This is because host variables are not allowed in a SQL
statement to be prepared in dynamic SQL. You can, however, use
parameter markers that are represented by question marks (?). These
parameter markers are replaced during runtime by the content of those host
variables specified on the USING clause of the OPEN statement. The
sequence in which you specify these host variables must correspond to the
(relative) position of the parameter markers.

Build Process and Options
Before VisualAge for RPG is able to compile a component that contains
embedded SQL statements, you need to set up the build options properly.
There are two pages on the Build options notebook, that allow you to do
this.

Chapter 3. Data Access 85

Database Name
The most important information is the DB2 Database Name entry on the DB2
notebook page (see Figure 42), as this will be the DB2 database from which
the VisualAge for RPG compiler will retrieve the necessary information
about the tables and views accessed.

Figure 42. Build Options Window, DB2 Page

During the build, VisualAge for RPG automatically starts the database
manager for this DB2 database and establishes an SQL connection to it,
using the user ID and password supplied on the DB2 connect notebook page
(see Figure 43).

86 VisualAge for RPG

Figure 43. Build Options Window, DB2 Connect Page

Binding to the Database
Providing the information on the Build Options notebook is enough to have
VisualAge for RPG compile a component containing embedded SQL
statements. During this build process, a .BND file is created containing all
the information regarding the different SQL statements as well as the tables
and views used in the application.

By default, the .BND file has the same name as all the other files of your
application and is placed together with them into the application's runtime
directory (RT_WIN32 or RT_WIN). To change its name, type the new name
into the entry field beside the Bind file check box. This check box is
checked by default; if you deselect it, the .BND file is no longer created.

This .BND file is needed to bind the VisualAge for RPG application to the
DB2 database that will be used during runtime. An SQL package is created
for this application in the database, allowing it to connect to the database
and execute its SQL statements.

To have this bind performed automatically as part of the build process, you
must select the Package name check box on the DB2 Build Options

Chapter 3. Data Access 87

notebook page. You can also invoke the bind process manually by calling
the BIND command through the DB2 command line processor. This is very
useful if your application needs to be set up for a database that you don't
have access to.

SQL CLP

I: \>DB2CMD

DB2CLP I:\>DB2 CONNECT TO varpg

Database Connection Information

Database product = DB2/Windows 95 2.1.2
SQL authorization ID = STADE7
Local database alias = VARPG

DB2CLP I:\>DB2 BIND SqlSmpl3.bnd COLLECTION varpg

LINE MESSAGES FOR SqlSmpl3.bnd
------ --

SQL0061W The binder is in progress.
SQL0091N Binding was ended with "0" errors and "0" warnings.

DB2CLP I:\>DB2 LIST PACKAGES

NAME CREATOR BOUNDBY TOTALSECT VALID FORMAT ISOLATION BLOCK
-------- -------- -------- --------- ----- ------ --------- -----
SQLSAMPL STADE7 STADE7 1 Y 1 CS U
SQLSMPL2 STADE7 STADE7 2 Y 1 RR N
SQLSMPL3 STADE7 STADE7 2 Y 1 RR N
SQLSMPL4 STADE7 STADE7 3 Y 1 RR U

4 record(s) selected.

DB2CLP I:\>

Figure 44. Binding to Database

The LIST PACKAGES command can be used to verify that the package has
been added to the database successfully.

Also included in the package created during bind are the other options
available on the DB2 page of the Build Options notebook: Date/Time format,
Isolation Level, and Record blocking.

88 VisualAge for RPG

The Date/Time format option is used if you are receiving the content of date
or time columns into character host variables. Table 4 illustrates the
different formats.

Table 4. Date and Time Formats

Date/Time
Format
Option

Description Date Format Time Format

EUR European Standard dd.mm.yyyy hh.mm.ss

USA U.S. Standard mm/dd/yyyy hh.mm AM (or PM)

ISO International
Standard
Organization

yyyy-mm-dd hh.mm.ss

JIS Japanese Industrial
Standard

yyyy-mm-dd hh.mm.ss

Record Blocking
Record blocking becomes important, when a SELECT statement returns
multiple rows. The application must declare a cursor and use the FETCH
statement to retrieve the rows one at a time. With a remote database, this
means that each request and each reply must travel across the network.
With a large number of rows, this leads to a significant increase in network
traffic.

When you specify record blocking and use a read-only cursor, the Database
Manager at the database server returns a block of rows to the database
client in one network transmission. These rows are retrieved one at a time
from the database client when Database Manager processes a FETCH
request. When all rows in the block have been fetched, Database Manager
at the database client sends another request to the remote database, until
all output rows have been retrieved.

Record blocking can lead to results that are not entirely consistent with the
database when used in combination with the cursor stability or
uncommitted-read isolation levels (see below).

The following list shows you the available record blocking options and their
effects:

No blocking
No record blocking occurs for any cursor.

Chapter 3. Data Access 89

Read-only and ambiguous cursors
Record blocking is performed for read-only and ambiguous
cursors. An ambiguous cursor is a dynamic cursor that does not
include either the FOR READ ONLY clause or the FOR UPDATE
clause. A cursor is considered read-only, if one of the following
is true:

The cursor is based on a read-only SELECT statement such
as join or union SELECTs.

The cursor is declared with a DISTINCT, ORDER BY, GROUP
BY, or FOR FETCH ONLY clause.

Read-only cursors
For all read-only cursors, record blocking is performed.

Through the Isolation level setting you can control which rows of a cursor
will be locked until the next SQL COMMIT or ROLLBACK statement is
performed:

Repeatable read
All rows accessed by the application will remain locked until the
next commit or rollback. Using this isolation level, you can make
sure that a record read by your application is not updated by
another application.

Cursor stability
Only the last fetched row is locked. As soon as the next row is
fetched, the lock is released. However, if an update was done on
the row, it remains locked until the next commit or rollback.

Uncommitted read
No lock is placed on a row that is read by a FETCH or SELECT
INTO statement. This should be your preferred choice if you only
read the rows of a cursor.

The locking of rows affects only different VisualAge for RPG applications, not
different components of the same application.

Data Area
In addition to file access through record I/O and SQL, VisualAge for RPG is
also able to access AS/400 data areas. These are often used on the AS/400
to exchange information between different programs running in the same or
different AS/400 jobs.

90 VisualAge for RPG

Defining a Data Area
To use data areas within a VisualAge for RPG application, you need to
define them within the definition specifications or using the DEFINE
operation code. In the D-specifications the keyword DTAARA can be
specified for a stand-alone field, a data structure, or a data structure
subfield. To define a data area through the DEFINE operation code, the
reserved word *DTAARA must be specified in its factor 1, while the data
area's name is coded in the result field:

RPG

D MyDtaAra S 20A DTAARA
*

D MyDs DS DTAARA
D Part01 10A
D Part02 10A

*
D MyDta S 20A

*
*

C *DTAARA define MyDta

By default, VisualAge for RPG runtime looks for a data area in the library
list on the AS/400 with the name specified in columns 7-21 on the D-spec or
in the result field of the DEFINE opcode. To override this name, you can
specify an external name through the optional parameter of the DTAARA
keyword or a factor 2 of the DEFINE opcode.

RPG

D MyDtaAra S 20A DTAARA(MyDtaAra4)
*

D MyDta S 20A
*
*

C *DTAARA define MyDtaAs4 MyDta

Another method to override the name specified within the VisualAge for
RPG source is through an entry on the Data areas page of the Define AS/400
Information notebook (Figure 45). Please note, if an external name has
been specified in your program, the name specified as Data area alias must
be equal to this name.

Chapter 3. Data Access 91

Figure 45. Define AS/400 Information Window, Data Areas Page

Reading and Writing Data Areas
To read the content of a data area, you can use the IN operation code. It
retrieves the content of the data area into the defined field or subfields of
the defined data structure. If the reserved word *LOCK is specified, an
exclusive-read (*EXCLRD) lock is placed on the data area. Other programs
are thus allowed to read the content of the data area without being able to
place their own lock.

An IN operation with *LOCK in factor 1 is the prerequisite for executing an
OUT operation, which writes the content of the defined field or the subfields
of the defined data structure back to the data area. Usually, an OUT
operation also releases the lock on the data area. If you would like to keep
the lock, *LOCK must be specified in factor 1:

RPG

C *LOCK in MyDta
*

C in MyDtaDs
*

C out MyDta

92 VisualAge for RPG

On both operations, the internal name of the data area must be specified in
factor 2. Instead, you can use the special word *DTAARA, causing the
operation to be performed on all available data areas. But you then need to
make sure that all data areas are in the appropriate state. For example, the
OUT operation in the following sample will fail as data area MyDtaDs has
not been locked when read.

RPG

C *LOCK in MyDta
*

C in MyDtaDs
*

C out *DTAARA

Instead of executing an OUT operation with a blank factor 1, you can also
use the UNLOCK operation code to release the lock for a data area.

Data Area Data Structure
If you specify a U in column 23 of a data structure definition for a data area,
it becomes a data area data structure. This is a special type of data area
definition, for which an implicit IN (*LOCK) is executed during program
initialization (before *INZSR is executed). When the program terminates, an
implicit OUT operation is performed. This happens even if the lock on this
data area was released by an UNLOCK:

RPG

D MyDtaDs UDS DTAARA(DtaAraAs4)
D DtaDsFld 20A

If you have defined such a data area data structure, and VisualAge for RPG
runtime cannot find the corresponding data area on the AS/400 during
startup, it creates it for you in library QTEMP. For any ordinary data area, an
exception is raised in this case, which can be handled in the *PSSR
subroutine. The status field in the program status data structure will contain
one of the error codes listed in Table 5.

Table 5 (Page 1 of 2). Error Codes for Data Area Access

Error Code Condition

00401 Data area specified on IN/OUT not found

00411 Data area type or length does not match

00412 Data area not locked for output

Chapter 3. Data Access 93

Table 5 (Page 2 of 2). Error Codes for Data Area Access

Error Code Condition

00413 Error on IN/OUT operation

00414 User not authorized to use data area

00415 User not authorized to change data area

00421 Error on UNLOCK operation

00431 Data area previously locked by another program

00432 Data area locked by program in the same process

94 VisualAge for RPG

Chapter 4. Programs, Procedures, and Functions

In this chapter, we show the abilities of VisualAge for RPG to invoke and
communicate with local and remote programs, VisualAge for RPG
procedures, and functions from a foreign dynamic link library. We explain
what the different operation codes, such as CALL, CALLP, CALLB, and
START do, how parameters are being passed, and how return codes can be
retrieved.

AS/400 Programs and Commands
While working in a client/server environment, it may sometimes be
necessary to execute programs or commands on your AS/400 servers. For
example, you may need to change the library list, do overrides to your
database files, use AS/400 objects that can't be accessed by any RPG
operation code directly, or use other functionality of the AS/400.

For example, it could be necessary to place certain information into a
spooled file on the AS/400. Unfortunately, we can't access an AS/400 printer
file from our VisualAge for RPG application. Thus, we need to invoke an
AS/400 program that receives the information to be printed and does the
spooling for us.

The CALL Opcode
The VisualAge for RPG interface used to invoke an AS/400 program is the
CALL operation code. It always calls the program represented by the name
in factor 2:

RPG

D PrtToAS400 S 20A INZ('PRTCUST')
D LINKAGE(*SERVER)

*
C call PrtToAS400 60

This name must be defined in the D-specs either as a constant or as a field
initialized with the program name. Optionally, you can specify the library
name as well.

 Copyright IBM Corp. 1998 95

RPG

D PrtToAS400 C CONST('MYLIB/PRTCUST')
D LINKAGE(*SERVER)

*
C call PrtToAS400 60

Through the keyword LINKAGE(*SERVER), the VisualAge for RPG runtime
knows that the program to be called resides on an AS/400 system. If nothing
else is specified in your application, the runtime will look for an AS/400
program object with the same name as the CONST (or INZ) value of the
D-spec in the specified library. If only a program name is supplied, the
library list of the user that signed on to the applications default server is
searched.

If an error message tells you that a default server could not be found for
your application, you most probably didn't define one through the Define
AS/400 Information dialog of the GUI Designer. This dialog is also the place
where you should specify the location of your AS/400 program, instead of
hard-coding the program name and library information into the program
itself. On its Program notebook page (Figure 46), you can maintain all
AS/400 programs called by your application.

Figure 46. Define AS/400 Information Window, Program Page

96 VisualAge for RPG

The link defined here is stored, together with all other AS/400 related
information, in the .RST file of your project. You can easily change it later,
when you ship the application and run it in another environment. The
definition is:

RST File

:
DEFINE_PROGRAM PROGRAM_ALIAS_NAME(PRTCUST)

REMOTE_PROGRAM_NAME(*LIBL/PRTCUSINF)
SERVER_ALIAS_NAME(MYAS400)
TEXT(Print customer information)

:

This information is now used by the VisualAge for RPG runtime to locate the
program object, if the variable or constant for the program name has been
initialized without library information. The specified value is then treated as
an alias name that resolves through the appropriate entry in the .RST file.

While the call to PrtToAS4_1 invokes program PRTCUSINF from the library
list, the second call to PrtToAS4_2 searches for program PRTCUST in library
MYLIB:

RPG

D PrtToAS4_1 C CONST('PRTCUST')
D LINKAGE(*SERVER)

*
D PrtToAS4_2 C CONST('MYLIB/PRTCUST')
D LINKAGE(*SERVER)

*
C call PrtToAS4_1 60

*
C call PrtToAS4_2 60

Parameters
If you need to pass parameters, you can do so by coding a PLIST name into
the result field of the CALL opcode or through PARM opcodes immediately
following the CALL:

Chapter 4. Programs, Procedures, and Functions 97

RPG

D PrtToAS400 S 20A INZ('PRTCUST')
D LINKAGE(*SERVER)

*
D CustNbr S 7A
D CustName S 40A
D CustCity S 30A

*
C call PrtToAS400 60
C parm CustNbr
C parm CustName
C parm CustCity

Parameters are always passed by reference; that is, you have direct access
to their changed values as soon as control returns back to your VisualAge
for RPG application.

As no prototyping is possible, you need to make sure that the attributes of
the arguments correspond to the parameter definition of the called AS/400
program. Otherwise, you may experience unpredictable results, depending
on what is overlaid by the content of an incorrectly passed parameter.

Exceptions
If an error occurs during the call, a resulting indicator in columns 73 and 74
is set on and the program status data structure is updated. The *STATUS
field contains a return code of 00202 or 00211, while the exception type in
positions 40-42 is set to *RT.

To get more detailed information about errors that can occur during
execution of the AS/400 program, we suggest you implement an additional
parameter for your calls. This could be a data structure containing, for
example, the exception ID and exception data information from the program
status data structure of the called program.

RPG

DErrorCode DS
D ExcptID 7A INZ(*BLANKS)
D* Exception Id
D ExcptData 100A INZ(*BLANKS)
D* Exception data

98 VisualAge for RPG

The AS/400 program is then responsible for monitoring the exceptions and
filling the data structure properly. In ILE RPG/400, this could look like the
example in Figure 47.

RPG

H
FPRTCUSINFFO E PRINTER INFSR(*PSSR)
F USROPN

*
D PSDS SDS
D EXCP_TYPE 40 42
D EXCP_NUM 43 46
D EXCP_DATA 91 170

*
D/COPY REINHARD/QRPGLESRC,ErrorCode

*
C *entry plist
C parm CustNbr
C parm CustName
C parm CustCity
C parm ErrorCode

*
C open PRTCUSINFF
C write PRTCUSTR
C close PRTCUSINFF

*
C movel *ON *INLR

*
C *PSSR begsr
C eval ExcptID = EXCP_TYPE + EXCP_NUM
C eval ExcptData = EXCP_DATA
C movel *ON *INLR
C endsr '*DETL'

Figure 47. Monitoring Exceptions

Back in your VisualAge for RPG application, you can use this additional
information, for example, to react to an error in much more detail. Or, you
can display a message containing the exception ID and data for unexpected
errors, so that you get more information if an error occurs (Figure 48).

Chapter 4. Programs, Procedures, and Functions 99

RPG

D/COPY *REMOTE REINHARD/QRPGLESRC,ErrorCode
*

D PrtError M MSGNBR(*MSG0002)
D MSGDATA(ExcptID:ExcptData)

*
C call PrtToAS400 60
C parm CustNbr
C parm CustName
C parm CustCity
C parm ErrorCode

*
C if Excpt_ID <> *BLANKS
C PrtError dsply RC
C endif

Figure 48. Displaying Message with Exception ID and Data

We are using the /COPY *REMOTE compiler directive to include the
ErrorCode data structure from the AS/400 source member used in the ILE
RPG/400 program. Thus, we don't have to maintain two versions of the
same include file and we also make sure that this parameter has the same
attributes in both programs.

Asynchronous Call
Usually, a call to an AS/400 program is done synchronously, so the
VisualAge for RPG application on the PC is waiting for the AS/400 program
to complete before it executes the statements following the CALL. However,
it is also possible to call an AS/400 program and have the VisualAge for
RPG application resume immediately. The only thing to do is to add the
NOWAIT keyword to the definition of the program name variable:

RPG

D PrtToAS400 S 20A INZ('PRTCUST')
D LINKAGE(*SERVER)
D NOWAIT

*
C call PrtToAS400 60
C parm CustNbr
C parm CustName
C parm CustCity
C parm ErrorCode

100 VisualAge for RPG

Now, the program will be submitted without waiting for its completion. The
error indicator in columns 73 and 74 is set to *ON only if the submit itself
went wrong. An error during execution of the AS/400 program will not be
indicated to the calling VisualAge for RPG application.

Parameters
When using asynchronous calls, parameters are passed by value. As a
result, you do not get any feedback about the results of the AS/400
program's execution. You keep the old parameter values, even if they were
changed by the called program.

But suppose we do not want to wait for the completion of the AS/400
program, but still need the feedback from it. In our Spooling example, it
might take some time to have a complex spooled output finished. It does not
make sense to have the user on the PC wait for the completion. The
answer is to use a data queue.

Data Queue
We can use the same data queues that we would use in a similar
asynchronous environment on the AS/400. As we are able to invoke AS/400
programs, we can call the data queue APIs. The data queue is created with
a length of 114 bytes:

The first 7 bytes are for the customer number, so we know to which
record each entry belongs.

The next 7 bytes contain the message ID, if an error occurred.

The remaining 100 bytes are for the exception data (the message text).

Instead of setting the ErrorCode parameter, the called AS/400 program adds
an entry to the data queue object for every entry that is spooled (see
Figure 49).

Chapter 4. Programs, Procedures, and Functions 101

RPG

H
FPRTCUSINFFO E PRINTER INFSR(*PSSR)
F USROPN

*
D PSDS SDS
D EXCP_TYPE 40 42
D EXCP_NUM 43 46
D EXCP_DATA 91 170

*
C *entry plist
C parm CustNbr
C parm CustName
C parm CustCity

*
C open PRTCUSINFF
C write PRTCUSTR
C close PRTCUSINFF

*
C movel CustNbr DtaQEntry
C exsr SndDtaQ
C movel *ON *INLR

*
C *PSSR begsr
C eval DtaQEntry = CustNbr
C + EXCP_TYPE + EXCP_NUM
C + EXCP_DATA
C exsr SndDtaQ
C movel *ON *INLR
C endsr '*DETL'

*
C SndDtaQ begsr
C call 'QSNDDTAQ'
C parm 'PRTCUSINFQ' DtaQName 10
C parm '*LIBL' DtaQLib 10
C parm 114 DtaQELen 5 0
C parm DtaQEntry 114
C endsr

Figure 49. Using Data Queues

When we call our VisualAge for RPG application, the invocation of the
AS/400 program changes so that we no longer need to pass the ErrorCode
parameter. Because it would be passed by value, it would not return any
error information.

102 VisualAge for RPG

To get feedback from the data queue, we add a timer part, which sends a
TICK event every 10 seconds (Interval attribute is set to 10000, Multiplier
defaults to 1). On every TICK event, we have the application check for an
entry from the data queue object on the AS/400, as shown in Figure 50.

RPG

D PrtError M MSGNBR(*MSG0002)
D MSGDATA(RcdNbr
D :ErrID
D :ErrMsg)
D PrtOK M MSGNBR(*MSG0003)
D MSGDATA(RcdNbr)

*
*
* TICK event of the new Timer part
*

C CHKDTAQ BEGACT TICK PRTMON
*

C call RcvDtaQ
C parm DtaQName
C parm DtaQLib
C parm DtaQELen
C parm DtaQEntry
C parm Wait

*
C select
C when DtaQELen > 0
C and %subst(DtaQEntry:15:100) <> *BLANKS
C eval RcdNbr = %subst(DtaQEntry:1:7)
C eval ErrID = %subst(DtaQEntry:8:7)
C eval ErrMsg = %subst(DtaQEntry:15:100)
C PrtError dsply RC
C when DtaQELen > 0
C and %subst(DtaQEntry:15:100) = *BLANKS
C PrtOK dsply RC
C endsl

*
C ENDACT

Figure 50. Using the Tick Event for Monitoring a Data Queue

If there is an entry, we check whether or not an exception occurred. If there
was an exception, a message is issued showing the employee number of
the record processed when the exception was raised, as well as the
exception ID and the message text. If everything went fine, an appropriate
completion message is issued for every processed record.

Chapter 4. Programs, Procedures, and Functions 103

AS/400 Commands
Using the QCMDEXC or QCMDDDM APIs makes it possible to execute
commands on an AS/400. While QCMDEXC is run in the AS/400 job that
performs all operations on programs and data areas, QCMDDDM can be
used to execute commands in the DDM job responsible for the file I/O. This
is very helpful, if you need to do things like database overrides or library list
changes. But you can, for example, also provide an AS/400 command line
within your application through this interface (see Figure 51).

Figure 51. Submit AS/400 Commands Window

The PRESS event for the Execute push button reads the command entered
into the entry field part and calls QCMDEXC to execute it on the AS/400, as
shown in Figure 52.

104 VisualAge for RPG

RPG

D QCmdExc S 10A INZ('QCMDEXC')
D LINKAGE(*SERVER)
D CmdLen S 15P 5 INZ(255)

*
C EXECUTE BEGACT PRESS FRA0000B

*
C read 'FRA0000B'

*
C call QCmdExc 60
C parm Cmd
C parm CmdLen

*
C if *IN60 = *OFF
C *MSG0001 dsply RC 9 0
C else
C CmdError dsply RC
C endif

*
C ENDACT

Figure 52. Executing a Remote Command

Handling AS/400 Exceptions
There is a problem if an exception occurs, however. The messages from
the AS/400 are not accessible from VisualAge for RPG. The program status
data structure indicates only a status code 00202, "Called program or
procedure failed." which doesn't tell the user what really went wrong.

It may be better to call a small CL program on the AS/400 instead of
QCMDEXC directly. This CL program will, in turn, call QCMDEXC, but it will
also monitor for any exception that occurs. In that case, the program
receives the message ID and text of the last received diagnostic or escape
message and provides this information back to your application as two
additional parameters, as shown in Figure 53

Chapter 4. Programs, Procedures, and Functions 105

CL

PGM PARM(&CMD &CMDLEN &MSGID &MSGTEXT)
DCL VAR(&CMD) TYPE(*CHAR) LEN(255)
DCL VAR(&CMDLEN) TYPE(*DEC) LEN(15 5)
DCL VAR(&MSGID) TYPE(*CHAR) LEN(7)
DCL VAR(&MSGTEXT) TYPE(*CHAR) LEN(132)
DCL VAR(&MSG) TYPE(*CHAR) LEN(1000)

CHGVAR VAR(&MSGID) VALUE(' ')
CHGVAR VAR(&MSGTEXT) VALUE(' ')

CALL PGM(QCMDEXC) PARM(&CMD &CMDLEN)

MONMSG MSGID(CPF0000 CPD0000 MCH0000) EXEC(DO)
RCVMSG MSGQ(*PGMQ) MSGTYPE(*DIAG) RMV(*NO) +

MSG(&MSG) MSGID(&MSGID)
IF COND(&MSGID *EQ ' ') THEN(+

RCVMSG MSGQ(*PGMQ) MSGTYPE(*EXCP) +
RMV(*NO) MSG(&MSG) MSGID(&MSGID))

CHGVAR VAR(&MSGTEXT) VALUE(%SST(&MSG 1 132))
ENDDO

ENDPGM

Figure 53. Monitoring Exceptions in a CL Program

In your VisualAge for RPG application, only the program name in the D-spec
needs to be changed and the two new parameters must be added to the
CALL. The error indicator on the CALL statement is no longer necessary,
as the called CL program handles all exceptions itself. To determine
whether an error occurred, we are now looking for the content of the MsgID
field, as shown in Figure 54.

You can then issue messages on the workstation with detailed information
about the error that occurred on the AS/400 (see Figure 55).

106 VisualAge for RPG

RPG

D QCmdExc S 10A INZ('CMDEXEC')
D LINKAGE(*SERVER)
D CmdLen S 15P 5 INZ(255)

*
C EXECUTE BEGACT PRESS FRA0000B

*
C read 'FRA0000B'

*
C call QCmdExc
C parm Cmd
C parm CmdLen
C parm MsgID 7
C parm MsgText 132

*
C if MsgID = *BLANKS
C *MSG0001 dsply RC 9 0
C else
C CmdError dsply RC
C endif

*
C ENDACT

Figure 54. Executing a Remote Command Through CL Program

Figure 55. Error Details

Chapter 4. Programs, Procedures, and Functions 107

Local Programs
From VisualAge for RPG, it is also possible to call programs, that reside on
the local PC like .EXE, .BAT, and .COM files. You may, for example, want to
call another application or tool from your VisualAge for RPG application, or
run system functions of your hosting operating system like copying files
from one directory to another.

VisualAge for RPG offers two different operation codes to invoke a local
program.

CALLP Operation
The CALLP operation executes the local program synchronously. Thus,
your VisualAge for RPG program waits for the called program to complete
before it continues execution.

CALLP uses the free-form style, where the extended factor 2 holds the name
of the prototype of the called program, as well as all parameters to be
passed. The prototype must be defined in the D-specs providing the external
name of the called program through the CLTPGM keyword:

RPG

D ChgHlpFile PR CLTPGM('CHGHLPF.BAT')
*

C callp ChgHlpFile

The specified value can be a variable, which enables you to specify the
program name dynamically during runtime. The program as provided in
CLTPGM is searched using the PATH environment variable. Make sure that
the extension is included. Otherwise, the VisualAge for RPG runtime is
looking for .EXE files only.

If you precede the name by .\\ , the VisualAge for RPG runtime will also look
into the current directory (the directory, the application is called from):

RPG

D ChgHlpFile PR CLTPGM(PgmName)
*

D PgmName S 15A INZ(*BLANKS)
*

C eval PgmName = '.\\CHGHLPF.BAT'
C callp ChgHlpFile

108 VisualAge for RPG

All parameters that need to be passed to the program must have an entry
immediately following the prototype line for the program. Please note, that
this is just the prototype; the variable definitions need to be coded
separately. Additionally, all parameters can be passed by value only. So, the
prototypes need to include the keyword VALUE:

RPG

D ChgHlpFile PR CLTPGM('. \\CHGHLPF.BAT')
D FromFile 12A VALUE
D ToFile 12A VALUE

*
D FromFile S 12A INZ('CONTAINE')
D ToFile S 12A INZ('CONTAENU')

*
C callp ChgHlpFile(FromFile:ToFile)

And here is the batch file, so you see what is called:

Batch file

@echo off
@del %2.HLP >nul
@copy %1.HLP %2.HLP >nul
@echo on

START Operation
The START operation can be used to invoke a local program
asynchronously and immediately continue execution of your calling
VisualAge for RPG program.

As this opcode is also used to invoke a VisualAge for RPG component, the
VisualAge for RPG runtime needs to distinguish between these two types of
objects. It does this through the keyword LINKAGE(*CLIENT). If the variable
or constant specified in factor 2 has this keyword in its definition
specification, the VisualAge for RPG runtime assumes the value to be a
local program:

RPG

D ChgHlpFile S 15A INZ('. \\CHGHLPF.BAT')
D LINKAGE(*CLIENT)

*
C start ChgHlpFile

Chapter 4. Programs, Procedures, and Functions 109

As for the CALLP operation, the VisualAge for RPG runtime is searching the
directories in the PATH environment variable for the program to be called.
Specifying \\ in front of the name will result in the runtime search in the
current directory as well.

Parameters do not need to be prototyped and are always passed by value.
They can be specified as parameter list (PLIST) in the result field of the
START operation or as consecutive PARM opcodes. It is your responsibility
to invoke the program, providing arguments with the correct attributes.

Examples
To give you an idea of what can be done with the CALLP and START
opcodes, here are some samples.

Changing Password
Assume you would like to have the users of your application change their
passwords to the serving AS/400 regularly (always a good idea). What about
the automatic logon feature of VisualAge for RPG?

You could have the Define Server Logon dialog of VisualAge for RPG
invoked by your application automatically through this interface, enabling
the user to change the automatic logon password as necessary.

This feature may come in handy when used with the sample of section
“AS/400 Commands,” which submits commands to the AS/400. After adding
another push button to its graphical user interface, the PRESS event will
simply call program FVDEPW.EXE, which is shipped with VisualAge for RPG.

RPG

D ChgLogonInf PR CLTPGM('FVDEPW.EXE')

:

C CHGPWD BEGACT PRESS FRA0000B
*

C callp ChgLogonInf
*

C ENDACT

The Define Server Logon dialog shows up in front of the application window
disabling any input to it (Figure 56). A START operation instead of the
CALLP used would keep the application window enabled.

110 VisualAge for RPG

Figure 56. Define Server Logon Window

Changing Server
The same sample application could also be enhanced to be able to change
the server on the fly, before submitting the command. The Define AS/400
Information dialog can be invoked by calling FVDERST.EXE providing the
.RST file as parameter. The action subroutine of the PRESS event for a new
push button could do this:

RPG

D ChangeServer PR CLTPGM('FVDERST.EXE')
D PgmName 255A VALUE

:

C CHGSRV BEGACT PRESS FRA0000B
*

C callp ChangeServer('QCMDEXC.RST')
*

C ENDACT

Chapter 4. Programs, Procedures, and Functions 111

Please note that PgmName is a prototype only and is not used on the
CALLP opcode. Instead, the .RST file is passed as literal.

You could also use these two features to write your own setup and
maintenance tool. If so, you may want to add another window allowing you
to specify the .RST file to be edited. Besides improving the GUI look of your
tool, using the FVDERST.EXE for this purpose ensures that the .RST file does
not contain invalid data. Invalid data could happen, if you allowed the user
to use an ASCII editor instead.

Calling REXX
Another good example would be to call REXX.EXE (shipped with VisualAge
for RPG) to enable your application to execute REXX code (Figure 57). It
expects a .CMD file with REXX instructions as parameter.

Figure 57. Executing REXX Code

112 VisualAge for RPG

Procedures
VisualAge for RPG supports procedures that enable you to write your code
in a more modular way. Local variables and prototyping reduce the risk of
unwanted side effects, and your code becomes more reliable. Additionally,
VisualAge for RPG allows you to separate certain functions from the rest of
your code, making your code more readable and maintainable. Functionality
can be reused in other applications.

Prototyping and Invocation
To call a VisualAge for RPG procedure, you first need to define its interface
by specifying the prototype in the D-specs. This prototype is examined by
the VisualAge for RPG compiler, to make sure that all invocations of the
procedure are correct. This includes the number and nature of the
parameters as well as the data type of the return code.

The following sample source shows the prototype and invocation of a simple
VisualAge for RPG procedure. Its purpose is to place the window of a
VisualAge for RPG application into the middle of the screen, before showing
it to the user:

RPG

D CenterWindow PR

:

C MAIN BEGACT CREATE MAIN
*

C callp CenterWindow
C eval %setatr('MAIN':'MAIN':'Visible') = 1

*
C ENDACT

The CALLP opcode, as used here, is one of the options to invoke a
procedure. It calls the procedure synchronously waiting for its completion
before continuing execution.

Implementation
Looking at the implementation, you find the executable statements of the
procedure enclosed by two procedure specification lines. These
P-specifications mark the beginning (B in column 24) and end (E in column
24) of the procedure definition (Figure 58).

Chapter 4. Programs, Procedures, and Functions 113

RPG

PCenterWindow B
DCenterWindow PI

* System attributes
D %DspWidth S 4P 0
D %DspHeight S 4P 0

* Local variables
D winWidth S 4P 0
D winHeight S 4P 0

*
C 'MAIN' getatr 'Width' winWidth
C eval %setatr('MAIN':'MAIN':'Left')
C = (%DspWidth - winWidth) / 2

*
C 'MAIN' getatr 'Height' winHeight
C eval %setatr('MAIN':'MAIN':'Bottom')
C = (%DspHeight - winHeight) / 2
C + winHeight

*
PCenterWindow E

Figure 58. Procedure Specification: CenterWindow

Directly below the beginning P-specification follow the D-specifications that
define the procedure's interface: the parameters and the type of the return
code. These must match the corresponding prototype. As we don't use
parameters or a return code in our first example, the procedure interface
definition consists of just one line with a PI entry in columns 24 and 25.
Together with the two P-specs, these D-specification lines make up the
procedure's header.

The body of the procedure may consist of additional definition or calculation
specification lines only. This means that, for example, files must be defined
outside of any procedure. However, they are still accessible within a
procedure.

The same restriction applies to data areas as well as preruntime and
compile-time arrays. They can't be defined within the scope of a procedure,
but accessing their data from a procedure is possible.

Variables
All variables defined within a procedure have local scope only and are
accessible within the procedure only. If a variable of global scope is defined
with an identical name, it is not accessible within the procedure and,
therefore, remains unchanged.

114 VisualAge for RPG

By default, local variables are stored into automatic storage. Therefore, if a
procedure is called multiple times, they are initialized every time. However,
the keyword STATIC can be specified to store a variable in static storage,
keeping its value across multiple invocations of the same procedure. This
could be used, for example, to implement a counter to keep track of how
often the procedure was called. Please note, that the scope of the variable
remains unchanged (it's still local).

Parameters
Besides the global variables, that are always accessible in any procedure
(with the one exception outlined earlier), you can also use parameters to
pass information to your procedure. These are passed by value, by
reference, or by constant reference.

Which of these methods is used to pass your parameters has to be specified
in the procedure prototype as well as interface. Coding the keyword VALUE
for a parameter results in a pass by value. Any change to the parameter
within the procedure will not be returned to the calling procedure. This, for
example, allows you to specify a literal or even an expression as the value
for the parameter.

A parameter is passed by reference, if the VALUE keyword is not specified.
Any change to it within the procedure is returned to the calling procedure at
the end of the called procedure.

Coding
To show you the coding of parameters, we will enhance our first example
and replace the CenterWindow procedure by a new PositionWindow
procedure. This procedure will be able to position the window on the screen
depending on two passed parameters.

The first parameter, VPosition specifies the vertical position of the window
and may have the values Left, Center, or Right. The second parameter,
HPosition, is used for the horizontal positioning and can contain Top, Center,
or Bottom.

Through a third parameter, ErrCode, which is passed by reference, we
return to the calling procedure one of the following:

0, to signal successful completion of the procedure

-1, to signal an invalid vertical positioning parameter

-2, to signal an invalid horizontal positioning parameter

The prototype of the new procedure now looks like this:

Chapter 4. Programs, Procedures, and Functions 115

RPG

DPositionWindow PR
D VPosition 6A VALUE
D HPosition 6A VALUE
D ErrCode 1P 0

The implementation changes as shown below in Figure 59.

RPG

PPositionWindow B
D PI
D VPosition 6A VALUE
D HPosition 6A VALUE
D ErrCode 1P 0

*
* System attributes

D %DspWidth S 4P 0
D %DspHeight S 4P 0

*
* Local variables

D winWidth S 4P 0
D winHeight S 4P 0

*
C z-add *ZERO ErrCode

*
C 'MAIN' getatr 'Width' winWidth
C select
C when VPosition = 'Left'
C eval %setatr('MAIN':'MAIN':'Left') = 0
C when VPosition = 'Center'
C eval %setatr('MAIN':'MAIN':'Left')
C = (%DspWidth - winWidth) / 2
C when VPosition = 'Right'
C eval %setatr('MAIN':'MAIN':'Left')
C = %DspWidth - winWidth
C other
C eval ErrCode = -1
C endsl

*

Figure 59 (Part 1 of 2). Procedure Specification: PositionWindow

116 VisualAge for RPG

RPG (continued)

C 'MAIN' getatr 'Height' winHeight
C select

*
C when HPosition = 'Top'
C eval %setatr('MAIN':'MAIN':'Bottom')
C = winHeight

*
C when HPosition = 'Center'
C eval %setatr('MAIN':'MAIN':'Bottom')
C = (%DspHeight - winHeight) / 2
C + winHeight

*
C when HPosition = 'Bottom'
C eval %setatr('MAIN':'MAIN':'Bottom')
C = %DspHeight
C other
C eval ErrCode = -2
C endsl

*
PPositionWindow E

Figure 59 (Part 2 of 2). Procedure Specification: PositionWindow

For the invocation, Factor 2 of the CALLP opcode now contains the name of
the procedure prototype followed by the parameters to be passed. As the
first two parameters are passed by value, literals are allowed during the
invocation. The third parameter value can be examined after returning from
the procedure, to see if an invalid value was specified for one of the first two
parameters:

RPG

C z-add *ZERO ErrCode 1 0
C callp PositionWindow('Right':'Bottom':ErrCode)
C if ErrCode <> 0
C DspErr dsply RC 9 0
C endif

Specifying the keyword CONST for a parameter in the procedure prototype
and interface will have it passed as a constant reference. The parameter is
passed by reference, but any attempt to change its content within the
procedure will result in compile time errors such as RNF5346 ("Result of
EVAL operation must not be a field that cannot be modified").

Chapter 4. Programs, Procedures, and Functions 117

For example, the EVAL opcode in the piece of code shown in Figure 60
would result in this error.

RPG

D AddNumbers PR
D NumA 6P 0 CONST
D NumB 5P 0 VALUE

*
D NumA S 6P 0
D NumB S 5P 0

*
C callp AddNumbers(NumA:NumB)

*
*

P AddNumbers B
D PI
D NumA 6P 0 CONST
D NumB 5P 0 VALUE

*
C eval NumA = NumA + NumB

*
P AddNumbers E

Figure 60. Procedure Prototype with Constant Reference Parameter

If you want to allow a value for one of the parameters to be omitted by using
the *OMIT figurative constant, you must enable your procedure to handle
this situation by specifying the OPTIONS(*OMIT) keyword for these
parameters.

A parameter must be passed by reference or as a CONST reference to allow
the *OMIT feature, as shown in Figure 61.

118 VisualAge for RPG

RPG

D AddNumbers PR
D NumA 6P 0
D NumB 5P 0 CONST OPTIONS(*OMIT)

*
D NumA S 6P 0
D NumB S 5P 0

*
C callp AddNumbers(NumA:*OMIT)

*
*

P AddNumbers B
D PI
D NumA 6P 0
D NumB 5P 0 CONST OPTIONS(*OMIT)

*
C if NumB = *NULL
C eval NumA = NumA + 1
C else
C eval NumA = NumA + NumB
C endif

*
P AddNumbers E

Figure 61. Using a CONST Reference to Allow the OMIT Option

Return Values
Using procedures gives you a lot of advantages over user subroutines. Your
code becomes more modular and parameter checking is done. However,
with the definition of a return value, procedures become even more
powerful.

A return value is defined in the D-spec of the procedure interface line (PI in
columns 24 and 25). As its data type and length is checked by the compiler,
it needs to be prototyped in the procedures prototype line (PR in columns 24
and 25) as well.

Looking at our example, the PositionWindow procedure could be enhanced
to pass the information of the third parameter (the error code) through the
return value back to its caller. Here is the prototype of the procedure:

Chapter 4. Programs, Procedures, and Functions 119

RPG

DPositionWindow PR 1P 0
D VPosition 6A VALUE
D HPosition 6A VALUE

In the implementation, the procedure header is changed accordingly and the
code that manipulated the ErrCode parameter is replaced by a RETURN
operation. The appropriate error code values that are to be passed back to
the caller have to be placed into the RETURN statement's factor 2, as shown
in Figure 62.

RPG

PPositionWindow B
D PI 1P 0
D VPosition 6A VALUE
D HPosition 6A VALUE

*
* System attributes

D %DspWidth S 4P 0
D %DspHeight S 4P 0

* Local variables
D winWidth S 4P 0
D winHeight S 4P 0
C 'MAIN' getatr 'Width' winWidth
C select

*
C when VPosition = 'Left'
C eval %setatr('MAIN':'MAIN':'Left') = 0

*
C when VPosition = 'Center'
C eval %setatr('MAIN':'MAIN':'Left')
C = (%DspWidth - winWidth) / 2

*
C when VPosition = 'Right'
C eval %setatr('MAIN':'MAIN':'Left')
C = %DspWidth - winWidth

*
C other
C return -1
C endsl

*

Figure 62 (Part 1 of 2). PositionWindow Procedure with Return Value

120 VisualAge for RPG

RPG (continued)

C 'MAIN' getatr 'Height' winHeight
C select

*
C when HPosition = 'Top'
C eval %setatr('MAIN':'MAIN':'Bottom')
C = winHeight

*
C when HPosition = 'Center'
C eval %setatr('MAIN':'MAIN':'Bottom')
C = (%DspHeight - winHeight) / 2
C + winHeight

*
C when HPosition = 'Bottom'
C eval %setatr('MAIN':'MAIN':'Bottom')
C = %DspHeight

*
C other
C return -2
C endsl

*
C return 0

*
PPositionWindow E

Figure 62 (Part 2 of 2). PositionWindow Procedure with Return Value

To receive the return value, we need to replace the CALLP by an EVAL
opcode. The PositionWindow procedure now is invoked as part of an
expression. When control returns, the return value is assigned to the error
code variable:

RPG

C z-add *ZERO ErrCode 1 0
C eval ErrCode
C = PositionWindow('Right':'Bottom')
C if ErrCode <> 0
C DspErr dsply RC 9 0
C endif

It is important to remember that a procedure invoked within an expression
always needs to return a value. When designing a procedure, you need to
make sure that a return without a return value is not possible. However, as

Chapter 4. Programs, Procedures, and Functions 121

a procedure can be invoked as part of an expression, we can put it directly
into the expression of the IF opcode this way:

RPG

C if PositionWindow('Right':'Bottom') <> 0
C DspErr dsply RC 9 0
C endif

External Procedures
Up to now, we have examined the basics about procedures: how to define
and prototype them, and where they get invoked. The modularity we can
achieve with this knowledge is a big advantage. But we still cannot separate
procedures from the rest of our code and make them reusable from another
VisualAge for RPG application.

Utility DLL
To address the separation difficulty, VisualAge for RPG supports the
creation of a utility dynamic link library (DLL), that can be linked to any
VisualAge for RPG application that intends to use the contained procedures.

Before we implement such a utility DLL, let's first have a look at its general
structure in Figure 63.

122 VisualAge for RPG

RPG

H NOMAIN
*
* Global definitions

FMyFile ...
IMyFile ...
D GlobalVar S 100A

*
* Prototype

DExtProc PR 4P 0
D P1 5P 0 VALUE
D P2 10A VALUE
DIntProc PR 5P 0
D P1 10A VALUE

*
* Procedure definition (will be exported)

PExtProc B EXPORT
D PI 4P 0
D P1 5P 0 VALUE
D P2 10A VALUE

*
C here's the code of ExtProc
C eval P1 = IntProc('Literal')
C some more code

*
PExtProc E

*
* Procedure definition (internal only)

PIntProc B
D PI 5P 0
D P1 10A VALUE

*
C here's the code of IntProc

*
PIntProc E

Figure 63. General Structure of Utility DLL

The keyword NOMAIN has to be added to the control specification of your
source. This is the indicator that instructs the VisualAge for RPG compiler to
generate a .DLL and .LIB file instead of the .EXE and .DLL file for a usual
VisualAge for RPG application.

The NOMAIN keyword can be followed by file and input specifications or
definition specifications for global variables. Everything defined here is
accessible across all procedures of the utility DLL.

Chapter 4. Programs, Procedures, and Functions 123

You must also include prototypes for any procedure defined in the DLL that
must be accessible from outside. If a specific procedure is to be accessible
from outside, indicate that with the keyword EXPORT in the beginning
P-spec of the procedure's definition header. Without this keyword, the
procedure will be callable from any procedure in the DLL, but completely
hidden to the outer world.

When dealing with utility DLLs, consider the following restrictions:

A utility DLL may contain calculation specifications within procedures
only. Therefore, BEGSR and ENDSR operations must be completely
enclosed within a procedure.

No GUI operation codes or built-in functions are allowed. This includes
START, STOP, SETATR, GETATR, SHOWWIN, CLSWIN, and READS as
well as %GETATR and %SETATR. The DSPLY opcode is allowed, but
will be ignored when the procedure is called by a VisualAge for RPG
application. To include any of these opcodes in your procedure, place
them into separate source files and include them through the /COPY
compiler directive.

*INZSR and *TERMSR are not permitted.

*ENTRY PLIST is not allowed.

The default exception handler is not invoked when an exception occurs
in the utility DLL.

We now extend our window positioning example to address the fact that the
PositionWindow procedure doesn't calculate the new vertical and horizontal
itself. Instead, it invokes two new procedures VPosWindow and
HPosWindow, passing either procedure the width (or height, respectively) of
the display and the window as well as the positioning information Left,
Center, or Right (or Top, Center, or Bottom, respectively).

The return value of these two procedures will contain the newly calculated
value for the LEFT (or BOTTOM, respectively) attribute of the window part to
be positioned. If you pass to the procedures a window size that is larger
than the corresponding size of the display, -1 will be returned. If the
positioning value is invalid, the return value will be -2.

We now look at the PositionWindow procedure, from which the two new
procedures will be invoked. Please note that the procedure can't be
exported, as it contains GUI operation codes. It remains a part of our
VisualAge for RPG application. Figure 64 shows the code for the procedure.

124 VisualAge for RPG

RPG

PPositionWindow B
D PI 1P 0
D VPosition 6A VALUE
D HPosition 6A VALUE

* System attributes
D %DspWidth S 4P 0
D %DspHeight S 4P 0

* Local variables
D winWidth S 4P 0
D winHeight S 4P 0
D newPos S 4P 0

* Prototype of local procedures
DVPosWindow PR 4P 0
D dspHeight 4P 0 VALUE
D winHeight 4P 0 VALUE
D position 6A VALUE
DHPosWindow PR 4P 0
D dspWidth 4P 0 VALUE
D winWidth 4P 0 VALUE
D position 6A VALUE

*
C 'MAIN' getatr 'Width' winWidth
C eval newPos
C = VPosWindow(%DspWidth:winWidth
C :VPosition)
C if newPos >= 0
C eval %setatr('MAIN':'MAIN':'Left') = newPos
C else
C return -1
C endif

*
C 'MAIN' getatr 'Height' winHeight
C eval newPos
C = HPosWindow(%DspHeight:winHeight
C :HPosition)
C if newPos >= 0
C eval %setatr('MAIN':'MAIN':'Bottom') = newPos
C else
C return -2
C endif

*
C return 0

*
PPositionWindow E

Figure 64. PositionWindow Procedure with Local Procedure Prototype

The two new procedures are prototyped within the scope of the calling
PositionWindow procedure. They can be called from this procedure only. If

Chapter 4. Programs, Procedures, and Functions 125

they need to be called from anywhere else in the program, the prototype
must be repeated there as well.

The SELECT constructs have been replaced by the invocation of the
procedures. As the return value may contain error codes (-1 or -2), we need
to make sure that the return value is not used as the new value for the LEFT
and BOTTOM attributes of the window. Instead, we will return from
PositionWindow with an appropriate return value.

You can avoid the negative return codes by checking the parameters before
calling one of the procedure. In this case, you can code the invocation as
follows:

RPG

:
*

C 'MAIN' getatr 'Width' winWidth
C if VPosition <> 'Left'
C or VPosition <> 'Center'
C or VPosition <> 'Right'
C return -1
C else
C eval %setatr('MAIN':'MAIN':'Left')
C = VPosWindow(%DspWidth
C :winWidth
C :VPosition)
C endif

*
:

VPosWindow and HPosWindow reside in a utility DLL called SERVICE.DLL.

As the prototype information needs to be placed into the utility DLL as well
as into all VisualAge for RPG programs that may call the procedures, we
placed it into a separate /COPY file (Figure 65). This way we make sure
that the interface of the procedures is defined correctly for all occurrences.

126 VisualAge for RPG

RPG

H NOMAIN
*
* Prototype of the DLL's interface

D/COPY I:\VARPG\SERVICE\SERVICE.CPY
*

PVPosWindow B EXPORT
D PI 4P 0
D dspWidth 4P 0 VALUE
D winWidth 4P 0 VALUE
D position 6A VALUE

*
C if dspWidth < winWidth
C return -1
C else
C select
C when position = 'Left'
C return 0
C when position = 'Center'
C return (dspWidth - winWidth) / 2
C when position = 'Right'
C return dspWidth - winWidth
C other
C return -2
C endsl
C endif

*
PVPosWindow E

*
PHPosWindow B EXPORT
D PI 4P 0
D dspHeight 4P 0 VALUE
D winHeight 4P 0 VALUE
D position 6A VALUE

*
C if dspHeight < winHeight
C return -1
C else
C select
C when position = 'Top'
C return winHeight
C when position = 'Center'
C return (dspHeight - winHeight) / 2 + winHeight
C when position = 'Bottom'
C return dspHeight
C other
C return -2
C endsl
C endif

*
PHPosWindow E

Figure 65. Using a COPY File for Procedure Prototypes

The build process generates a SERVICE.DLL and a SERVICE.LIB file. While
the DLL is stored in the RT_WIN32 subdirectory, the .LIB file is placed in the
utility component's project directory.

Chapter 4. Programs, Procedures, and Functions 127

Binding
To use the procedures of this utility DLL in our window positioning example,
we need to link the DLL to it during the program's build process. This can
be done by specifying the .LIB file through the Link libraries and objects
entry field of the build options (Figure 66).

Figure 66. Build Options Window, Compile Page

The procedures get bound to the application statically. The compiler listing
shows the external information in its External References section:

Listing

E x t e r n a l R e f e r e n c e s

Statically bound procedures:
Procedure References
VPOSWINDOW 0
HPOSWINDOW 0

* * * * * E N D O F E X T E R N A L R E F E R E N C E S *

128 VisualAge for RPG

It is also possible to have an EXE file created from a source that contains
only procedures. However, the EXE keyword must be specified in the
control specifications.

In addition to the restrictions of a utility DLL, the source file must have a
procedure definition with the same name as the source file itself. This is the
main procedure that is invoked when the EXE is called. Any other included
procedures cannot be exported to the outside world. They can be called
from other procedures in the same EXE file only.

The only allowed method of passing parameters is by value. A return value
must be of type binary or integer, but is not accessible if the calling program
is a VisualAge for RPG application.

The general structure of such an EXE file is as shown in Figure 67.

Chapter 4. Programs, Procedures, and Functions 129

RPG

H EXE
*
* Global definitions

FMyFile ...
IMyFile ...
D GlobalVar S 100A

*
* Prototype

DMainProc PR
D P1 5P 0 VALUE
D P2 10A VALUE
DIntProc PR 5P 0
D P1 10A VALUE

*
* Main procedure definition

PMainProc B
D PI
D P1 5P 0 VALUE
D P2 10A VALUE

*
C here's the code of MainProc
C eval P1 = IntProc('Literal')
C some more code

*
PMainProc E

*
* Procedure definition (internal only)

PIntProc B
D PI 5P 0
D P1 10A VALUE

*
C here's the code of IntProc

*
PIntProc E

Figure 67. General Structure of an EXE File Example

You can call this EXE file from whatever application you want. If it is
another VisualAge for RPG program, the CALLP together with the CLTPGM
keyword is to be used (see “Local Programs”).

130 VisualAge for RPG

Functions from Foreign DLLs
It may sometimes be necessary to invoke from a DLL a function that was
written in a different language than VisualAge for RPG. For example you
may need to perform mathematical calculations that are not supported by
VisualAge for RPG, or to access the APIs of Client Access/400.

Prototyping
VisualAge for RPG allows the invocation of functions from foreign DLLs, as
long as they follow the __cdecl linkage convention. The two operation codes
available are CALLP and CALLB. Additionally, a prototyped function can be
invoked within an expression using IF or EVAL opcodes.

CALLP should be your first choice, as CALLB doesn't support any
prototyping and offers no additional features over CALLP. It is provided for
compatibility only, as VisualAge for RPG applications that use this opcode
may have been migrated from OS/2.

As for the CALLP syntax, it really makes no difference whether you are
calling a procedure of a VisualAge for RPG utility DLL or a function from a
DLL written in a different programming language. Look at “Procedures” for
basic syntax information.

Considerations
There are some special considerations when working with foreign DLLs, for
example, function names. By default, the VisualAge for RPG compiler is
looking for a function with the name of the prototype in any of the specified
DLLs. However, this search is not case sensitive and, therefore, wouldn't be
successful if the DLL exports a function in lower or mixed case.

We need to establish a link between the prototype name and the name of
the function exported from the DLL. This is done through the EXTPROC
keyword, which can be specified on the prototype D-spec:

RPG

D Sin PR 8F EXTPROC('getSin')
D Radian 8F VALUE

*
D Cosin PR 8F EXTPROC('getCosin')
D Radian 8F VALUE

*
*

C eval SINE = Sin(RADIAN)
C eval COSINE = Cosin(RADIAN)

Chapter 4. Programs, Procedures, and Functions 131

Instead of the literal, you can code a procedure pointer. This allows you to
dynamically call one of several possible functions. However, you must
make sure that the return values and the attributes of all passed parameters
are the same (Figure 68).

RPG

D Sin PR 8F EXTPROC('getSin')
D Radian 8F VALUE
D Cosin PR 8F EXTPROC('getCosin')
D Radian 8F VALUE

*
D TrigonFunc PR 8F EXTPROC(TrigonFuncP)
D Radian 8F VALUE
D TrigonFuncP S * PROCPTR

*
D Function S 5A INZ(*BLANKS)
D Result S 8F INZ(*BLANKS)

*
*

C select
C when Function = 'sin'
C eval TrigonFuncP = %paddr('getSin')
C when Function = 'cosin'
C eval TrigonFuncP = %paddr('getCosin')
C other
C InvalidFct dsply RC 9 0
C endsl

*
C eval Result = TrigonFunc(RADIAN)

Figure 68. Procedure Pointer

Note, that the prototypes of the callable functions need to be included in the
code. Otherwise, the procedure address cannot be resolved.

During runtime, VisualAge for RPG is looking for the .DLL file in the
directory of your application. However, placing it into a directory that is part
of the PATH environment variable should work as well. This would have the
added advantage that only one copy of a commonly used DLL needs to exist
on the target PC.

If implemented in C, the functions getSin and getCosin look like this:

132 VisualAge for RPG

C

#include <math.h>

double getSin(double radian)
{

return(sin(radian));
}

double getCosin(double radian)
{

return(cos(radian));
}

Null-Terminated Strings
If the functions to be called are written in C or C + + , alphanumeric
parameters often need to be passed as null-terminated strings.

One way to do this is to define a data structure that consists of the
alphanumeric variable to be passed and a 1-byte field initialized with x'00',
like this:

RPG

D MyFunc PR EXTPROC('myFunc')
D String 32767A OPTIONS(*VARSIZE)

*
D NullString DS
D MyParm 10A
D Nullterm 1A INZ(X'00')

*
C callp MyFunc(NullString)

Please note that the keyword OPTIONS(*VARSIZE) can be used, if the
function is able to handle strings with variable lengths (such as (char *) in
C). This allows you to pass character strings of any size (up to 32767 bytes).

Using the OPTIONS(*STRING) keyword, passing null-terminated strings is
much easier. Have a look at the following example, which calls a C function
to determine the real length (without the trailing blanks) of an alphanumeric
field:

Chapter 4. Programs, Procedures, and Functions 133

RPG

D Length PR 4B 0 EXTPROC('Length')
D String * CONST OPTIONS(*STRING)

*
D String S 255A
D StrLen S 4B 0

*
C eval StrLen = Length(%trimr(String))

The C function Length simply returns the output of the standard strlen()
function:

C

#include <string.h>

long int Length(char *string)
{

return(strlen(string));
}

Through the OPTIONS(*STRING) keyword, an alphanumeric parameter is
first copied into a temporary variable. (That's why the parameter must be
passed by value or by constant reference.) It then gets an X'00' added at its
end, which is needed by most C functions. Using the %TRIMR built-in
function makes sure that the X'00' is added directly after the last nonblank
character.

The %LEN built-in function, together with %TRIMR, would give the same
result as the C function:

RPG

D String S 255A
D StrLen S 4B 0

*
C eval StrLen = %len(%trimr(String))

With the null-terminated string support of VisualAge for RPG you will be able
to create your own VisualAge for RPG procedure to calculate the length of a
given string. Even literals and expressions are allowed parameter values
(see Figure 69).

134 VisualAge for RPG

RPG

D Length PR 4B 0
D String * CONST OPTIONS(*STRING)

*
D String S 255A
D StrLen S 4B 0

*
C eval StrLen = Length(String)

*
*

P Length B
D PI 4B 0
D String * CONST OPTIONS(*STRING)

*
C return %len(%trimr(%str(String)))

*
P Length E

Figure 69. Using Null-Terminated String

The %STR built-in function is used here to provide the string, which has a
pointer variable pointing to it, and which is terminated by X'00'.

Chapter 4. Programs, Procedures, and Functions 135

136 VisualAge for RPG

Chapter 5. Messages

Messages are always important for an application, as they build one of the
interfaces to the user. Good messages can help greatly while the user is
interacting with the application. In this chapter, we show you the different
ways to define and display various types of messages. We show how they
can be used during validity checking of user input, whether to enforce a
decision from the user, or to confirm a requested action.

Messages in Your Source
One way to define a message is to code appropriate definition specifications
(M in column 24) using various VisualAge for RPG keywords. This definition
is always split into two parts.

Message Style
First, you need to specify the type and look of the message. The STYLE
keyword is used to define whether a message is displayed as information
(*INFO), warning (*WARN), or exception (*HALT) message:

RPG

D Warning M STYLE(*WARN)
D BUTTON(*OK)

Depending on this keyword, an appropriate icon is displayed in the message
window (see a warning message sample in Figure 70).

Buttons
With the BUTTON keyword, the number and text of the available push
buttons can be defined. The available values are *OK, *CANCEL, *RETRY,
*ABORT, *IGNORE, *ENTER, *NOBUTTON, and *YESBUTTON. You can
specify up to three values separated by a colon (:) character.

Figure 70. Example of a Warning Message

 Copyright IBM Corp. 1998 137

The second part of the message definition is done through another message
D-spec. Here, the message text to be displayed must be specified through
the MSGTEXT keyword:

RPG

D Message M MSGTEXT('This is a warning -
D message.')

To display a message, the DSPLY operation code is used. It expects the
message text as factor 1 and the message type definition as factor 2:

RPG

C Message dsply Warning RC 9 0

The result field must be a numeric field with a length of 9 bytes and 0
decimal positions. If control returns to the VisualAge for RPG application,
the variable specified here will contain a numeric representation of the push
button pressed by the user.

Return Codes
The return value from the message box was not useful in our first example,
where the only choice was the OK push button. However, suppose a user is
in the middle of changing the fields of a certain record. By accident, the
user presses the Exit push button, which ends the application. Wouldn't it
be good to display a message to the user asking for a confirmation
(Figure 71)?

Figure 71. Example of a Message Seeking Confirmation

This can easily be done, as the VisualAge for RPG sample in Figure 72
shows:

138 VisualAge for RPG

RPG

D ExitType M STYLE(*WARN)
D BUTTON(*YESBUTTON
D :*NOBUTTON)

*
D ExitPgm C 'Do you really want to -
D exit the application?'

*
D RC S 9P 0

*
C EXIT BEGACT PRESS MAIN

*
C ExitPgm dsply ExitType RC
C if RC = *YESBUTTON
C movel *ON *INLR
C endif

*
C ENDACT

Figure 72. Sample Code to Insert a Confirmation Message

You don't need to code a message D-spec for factor 1 of the DSPLY opcode;
any literal, named constant, or variable is allowed as well.

You can check the return code variable in the result field against the
numeric representation of the available push buttons. However, the easiest
and best documenting method is to use the same figurative constants in the
compare expression as you used as values for the BUTTON keyword.

Define Messages Dialog
The other method of defining the messages for your application is through
the Define messages dialog of the GUI designer (Figure 73). You should
prefer this method, as you can omit most of the message definitions from
your VisualAge for RPG source. Additionally, this prepares your application
for national language support (NLS) enhancements (refer to chapter
Chapter 7, “National Language Support”).

Chapter 5. Messages 139

Figure 73. Define Messages Dialog Window

Message Definition
If you select the Create push button, another window appears allowing you
to define the parts of a message (Figure 74). Everything that is available
through the various VisualAge for RPG keywords is also available here. The
Type combination box allows you to specify the style of the message, while
the Message entry field shows the text to be displayed. The BUTTON
keyword is represented by the Button combination box.

140 VisualAge for RPG

Figure 74. Edit Message Window

In addition, you can also define additional attributes for the message
window, that are not available through VisualAge for RPG keywords. For
example, if more than one push button is defined for the message window,
you can select a default push button that receives the PRESS event, when
the Enter key is pressed.

Selecting the Movable check box allows the user to move the message
window into the background and go on with the application. By default, this
check box is not selected, so that the message window becomes application
modal, forcing the user to reply to the message before being able to
continue the application.

The Message Help multiline edit allows you to specify help information for
the message window. For further information regarding second-level help
text and information presentation facility (IPF) tags, refer to Chapter 6,
“Defining Help.”

Displaying Messages
How can these messages be displayed to the user? Once again, the DSPLY
opcode does the job.

Chapter 5. Messages 141

Instead of specifying the message text in factor 1, you code the message ID
assigned to the message on the Define Messages dialog (see Figure 74),
preceded by a asterisk (*) character:

RPG

C if %getatr('MAIN':'EMPLIST':'NbrOfSel') = 0
C *MSG0001 dsply RC
C else

*
* Code to be performed, if there was an entry selected
*

C endif

The message D-spec in factor 2 representing the style becomes obsolete, as
this information is available through the message ID. However, if you specify
a message D-spec in factor 2, it overlies the definition of the Define Message
dialog.

Instead of the message ID, you can also specify a message definition name,
which is linked to the message ID through the MSGNBR keyword:

RPG

D NotSelected M MSGNBR(*MSG0001)
*

C NotSelected dsply RC

This makes your code more readable, as someone looking at the source
gets an idea of what kind of message is displayed without having to invoke
the Define Messages dialog. If you want to keep the message ID variable,
you can also code like this:

RPG

D Number S 8A
D NotSelected M MSGNBR(Number)

*
C movel '*MSG0001' Number
C NotSelected dsply RC

Replacement Variables
There is more you can do with this kind of predefined message. For
example, assume you are designing an application to maintain a list of
employees. Most probably, there will be a Remove push button to allow the

142 VisualAge for RPG

user of the application to remove the name of an employee who has left the
company.

To avoid an accidental removal, you may want to display a message, when
the Remove push button is pressed, asking the user to confirm the action.
Wouldn't it help to have the information of the selected entry in the message
text?

Text Substitution
To achieve this, VisualAge for RPG offers the text substitution feature. In the
Define Messages dialog, you can specify replacement variables within the
message text. Replacement variables are entered as a percent sign (%)
followed by a number ranging from 1 to 9 (see Figure 75).

Figure 75. Specifying Replacement Variables in the Edit Messages Window

These replacement variables are filled with the content of those variables
specified through the MSGDATA keyword on the message definition
specification. See Figure 76.

Chapter 5. Messages 143

RPG

D FirstName S 10A
D SurName S 10A

*
D RemoveEmp M MSGNBR(*MSG0002)
D MSGDATA(FirstName:SurName)

*
C if %getatr('MAIN':'EMPLIST':'NbrOfSel') = 0
C *MSG0001 dsply RC
C else
C RemoveEmp dsply RC
C if RC = *YESBUTTON
C eval %setatr('MAIN':'EMPLIST':'RemoveItem')
C = %getatr('MAIN':'EMPLIST':'FirstSel')
C else
C eval %setatr('MAIN':'EMPLIST':'DeSelect') = 0
C endif
C endif

Figure 76. Coding for Replacement Variables

In our example, this is the first and last name of the employee. The
message will be shown as in Figure 77.

Figure 77. Message Window with Substitution Text

Did you notice the blanks following the first and the last name? This is
because VisualAge for RPG is filling up each entire field, defined as
characters 10 bytes in length. If you want to get rid of these trailing blanks,
define the message with just one replacement variable. The variable then
needs to contain the rest of the message, starting from its first variable part:

144 VisualAge for RPG

RPG

D RemoveEmp M MSGNBR(*MSG0002)
D MSGDATA(RemoveEmpE)

*
D RemoveEmpE S 35A INZ(*BLANKS)

*
C eval RemoveEmpE = %trim(FirstName) + ' '
C + %trim(SurName)
C + ' from the list box?'
C RemoveEmp dsply RC

The message will now be displayed as shown in Figure 78.

Figure 78. Substitution Text without Blanks

Message Subfile
Another way of displaying messages in VisualAge for RPG is through a
message subfile part. Like a message window, it is able to display
messages defined in the Define Messages dialog as well as text provided by
your program logic.

Whether a subfile message is better or worse than a message window
depends on the situation.

Multiple Messages
While the message window always displays just one message, a message
subfile can show multiple messages at the same time. As the user can
scroll through the list of messages, this might be the better choice if the
sequence of messages is important or if more than one error occurs at the
same time.

On the other hand, if you have an inquiry message that needs a response
from the user, a message subfile doesn't make much sense. It is better to
use a message window that allows the user to select one of the displayed
push buttons.

Chapter 5. Messages 145

If you add a message subfile to the GUI of your application, it is always
placed at the bottom of the window frame (Figure 79). It is not possible to
place it elsewhere or resize its width. This is done automatically when the
window itself is resized. The height of the message subfile can be changed
to fit your needs. If more messages are added to the message subfile than
can be displayed at one time, the user will be shown a scroll bar, allowing
him or her to scroll through the messages.

Figure 79. Example of an Employee List Window with Message Subfile

Adding Messages
Within your VisualAge for RPG source code, you can add messages to the
message subfile using its AddMsgID or AddMsgText attributes. While the
AddMsgText expects a character string, the AddMsgID needs a numeric
variable or literal representing the ID of the message as defined in the
Define Messages dialog.

146 VisualAge for RPG

In our example, we are issuing messages if no first or no last name was
specified before pressing the Add push button. If both are missing, we
display both messages in the subfile (Figure 80).

Figure 80. Message Example Window—Subfile with Two Error Messages

Using a message window here would mean that the user first gets a
message for the missing first name and, after this error is fixed, another
message for the missing last name. This is hardly optimal application
design.

Coding a Message Subfile
In the action subroutine of the PRESS event of the Add push button, after
clearing the message subfile through its RemoveMsg attribute, checks are
performed on the content of the FirstName and SurName entry fields. If they
contain blanks, an appropriate message is added to the message subfile for
each of them, and the focus is set to the first blank entry field (Figure 81).

Chapter 5. Messages 147

RPG

C read 'MAIN'
*

C eval %setatr('MAIN':'MSGSFL':'RemoveMsg') = 0
*

C if FirstName = *BLANKS
C eval %setatr('MAIN':'MSGSFL':'AddMsgID') = 3
C eval %setatr('MAIN':'FIRSTNAME':'Focus') = 1
C endif
C if SurName = *BLANKS
C eval %setatr('MAIN':'MSGSFL':'AddMsgID') = 4
C if %getatr('MAIN':'MSGSFL':'Count') = 0
C eval %setatr('MAIN':'SURNAME':'Focus') = 1
C endif
C endif

*
C if %getatr('MAIN':'MSGSFL':'Count') = 0

*
* Add the code that adds the item to the list here.
*

C endif

Figure 81. Adding Messages to the Message Subfile

The Count attribute makes it possible to determine the number of messages
currently in the message subfile. If there is no existing message, and all
necessary information has been specified by the user, a new item can be
added to the subfile.

The code that adds the item to the list will also be enhanced to issue a
completion message into the message subfile. This message, defined
through the Define Message dialog, contains two replacement variables
representing the first and last name of the employee who was added to the
list.

To fill the variables with proper values, we are using the MsgSubText
attribute of the message subfile. As we are passing two substitution texts,
we need to place a blank between them, so that VisualAge for RPG knows
where the first ends and the second begins.

148 VisualAge for RPG

RPG

C eval %setatr('MAIN':'EMPLIST':'Sequence') = 1
C eval %setatr('MAIN':'EMPLIST':'InsertItem')
C = Name
C eval %setatr('MAIN':'MSGSFL':'MsgSubText')
C = %trim(Firstname)
C + ' ' + %trim(SurName)
C eval %setatr('MAIN':'MSGSFL':'AddMsgID') = 5
C movel *BLANKS Name

The piece of code in Figure 82 shows the action subroutine of the SELECT
event of our message subfile. This event occurs if a message was selected
or deselected by the user. We are using the NbrOfSel, Count, Index,
Selected, and GetItem attributes of a message subfile to find the selected
entry. We then focus on the appropriate entry part for which this message
was issued.

RPG

C MSGSFL BEGACT SELECT MAIN
*

C if %getatr('MAIN':'MSGSFL':'NbrOfSel') > 0
C 'MSGSFL' getatr 'Count' Count 5 0
C 1 do Count Idx 5 0
C eval %setatr('MAIN':'MSGSFL':'Index') = Idx
C if %getatr('MAIN':'MSGSFL':'Selected') = 1
C 'MSGSFL' getatr 'GetItem' MyMessage 255
C select
C when %scan('firstname':MyMessage) <> 0
C eval %setatr('MAIN':'FIRSTNAME':'Focus') = 1
C when %scan('nurname':MyMessage) <> 0
C eval %setatr('MAIN':'SURNAME':'Focus') = 1
C endsl
C endif
C enddo
C endif

*
C ENDACT

Figure 82. Handling the SELECT Event of the Message Subfile

We achieved here a functionality similar to the one available during the
build process of the GUI designer. If errors are found during the build
process, double-clicking on the error message in the Error Messages

Chapter 5. Messages 149

window positions you on the source statement that caused the error
message.

Messages as Labels
Messages that are defined in the Define Messages dialog can also be used
to set the Label attribute of a part (if the part supports the Label attribute).
The following example source shows how this is done:

RPG

C eval %setatr('MAIN':'MYTEXT':'Label')
C = '*MSG0001'

The message identifier must be enclosed by single quotes. apostrophes.
Therefore, it is not possible to specify the name of a message definition
here.

Using messages as labels is very useful, if your intention is to write an
NLS-enabled application. If you want to know more about this topic, refer to
Chapter 7, “National Language Support” for further details.

Here, we use this feature to implement an information area as it is provided
in the GUI designer of VisualAge for RPG in a sample clipboard editor.
After defining the informational messages in the Define Messages dialog, we
first add a static text part, which has a Label attribute, at the bottom of our
GUI for the application as shown in Figure 83.

150 VisualAge for RPG

Figure 83. Edit Clipboard Window—Example with Static Text Part

In the VisualAge for RPG source code, we need to add action subroutines
for the MOUSEMOVE event of those parts, for which help information should
appear in the information line. The following is the action subroutine for the
MOUSEMOVE event of the WRITE push button:

RPG

C WRITE BEGACT MOUSEMOVE MAIN
*

C eval %setatr('MAIN':'INFOLINE':'Label')
C = '*MSG0003'

*
C ENDACT

If the user now moves the mouse pointer over different parts of the
application's GUI, the static text part INFOLINE shows the appropriate
information (Figure 84).

Chapter 5. Messages 151

Figure 84. Clipboard Example with Information Line

152 VisualAge for RPG

Chapter 6. Defining Help

In this chapter, you explore the help facilities of VisualAge for RPG and
learn how to define help text for context-sensitive help and second-level
help for messages. We also explain the basics of the Information
Presentation Facility (IPF), which is used to create the .HLP file for
applications, and show you how its tags can be used to create your own
application help.

Context-Sensitive Help
The first type of help we examine is context-sensitive help. This is the help
for a part of your graphical user interface. The help window will be
displayed, if the user presses the F1 function key while the part has got the
focus. Figure 85 shows the help text defined for the Read from the clipboard
push button of our sample clipboard editor.

Figure 85. Context-Sensitive Help for a Push Button

 Copyright IBM Corp. 1998 153

LPEX Editor
To add context-sensitive help for a GUI part you must invoke the LPEX editor
from the GUI designer of VisualAge for RPG via the context menu of that
part (Figure 86).

Figure 86. The Context Menu of a Push Button Part

Selecting the Help text menu choice results in making LPEX load (or create)
a .VPF file with the name of your application (see Figure 87). In this .VPF
file, VisualAge for RPG will save the context-sensitive help for all parts of
the application.

Default Header
If you invoke the Help text menu option for the first time, a default header is
added at the bottom of the .VPF file. The first three IPF tags are already
there.

The .* identifies the line as comment line.

The :h1. marks a header of level 1. Levels between 1 and 6 are allowed.
You can use those headers in your help as well.

154 VisualAge for RPG

The r e s = (resource) parameter is used by VisualAge for RPG to assign
this piece of help information as context-sensitive help for the part used
to invoke the editor. Therefore, it is important that you don't change the
supplied number. Otherwise, VisualAge for RPG may no longer find the
defined help. The rest of the line represents the header text to be
displayed at the top of the help window. By default, this contains the
VisualAge for RPG name of the part.

The :p. marks the beginning of a new paragraph in your text. Use this
tag every time, if you don't want IPF to attach the subsequent text to the
end of the previous paragraph. (Any blank line is removed during the
build of a .HLP file.)

In Figure 87, the word Help represents the help text you want to key in
as help for the selected part.

Figure 87. Default .VPF File

The following IPF source was used as the source for the context-sensitive
help for the Read from the clipboard push button as already shown in
Figure 85:

Chapter 6. Defining Help 155

IPF

:h1 res=15.READ FROM CLIPBOARD push button
.*
:p.Press the :hp2.Read from the clipboard:ehp2. push
button to read the content of the system clipboard into the
:hp2.Multi-line edit:ehp2. part.

Highlighting
Did you notice the :hp2. and :ehp2. tags? Those are highlighting tags, that
show the enclosed text as bold . More highlighting tags are available
(ranging from 1 to 9), so you can display a text in various styles. For
example, the :hp1./:ehp1. tags cause the enclosed text to be displayed as
italics.

After saving the application, the VisualAge for RPG build process also
generates the .HLP file using this source. If there is an error in your .VPF
file, the Error List window comes up with an error message telling you
what's wrong. The Error List window shown in Figure 88 resulted from a
missing :ehp2. tag.

Figure 88. Error List Window Showing a Sample Message

As we want to show you some more basic tags, let's look at the
context-sensitive help for the multiline edit part contained in the sample
clipboard editor (Figure 89). In addition to some further highlighting, it
includes an ordered list as well as a note at the bottom.

Looking at the source, you will see how easily this can be defined. The
items of the ordered list are enclosed by the tags :ol. and :eol.. Every item is
preceded by a :li. tag. To point the user to an important part of the text,
enclose it into the note tags :nt. and :ent., as done in Figure 90.

156 VisualAge for RPG

Figure 89. Windows Help Window—Help for the Multiline Edit

IPF

:h1 res=12.MULTI-LINE EDIT.
.*
:p.
The multi-line edit part will hold the content of the system clipboard,
when the :hp2.Read from clipboard:ehp2. push button has been pressed.
:p.
You might change the clipboard's content by directly typing into
this MLE. Its context menu will assist while editing.
:p.
To delete the entire content from the MLE
:ol.
:li.:hp2.Move:ehp2. the mouse pointer to the MLE
and :hp2.press:ehp2. the right mouse button. The context menu appears.
:li.:hp2.Select:ehp2. the :hp1.Select All:ehp1. menu choice.
:eol.
:nt.
All changes not take effect, before you select the :hp2.
Write to clipboard:ehp2. push button.
:ent.

Figure 90. Source for Multiline Edit Help Window

Chapter 6. Defining Help 157

Resource Identifier
Note that the multiline part got a different resource ID assigned as the Read
from clipboard push button. All parts used in your project will have such a
unique resource identifier.

You may wonder whether it is possible to invoke the editor with the .VPF file
just once and code the context sensitive help for all your parts directly, even
though you don't know the resource IDs for all the parts. Yes, it's possible.

You can find the resource ID for a certain part by invoking its properties
notebook (Figure 91). In the window's title line, the resource ID is displayed
in brackets.

Figure 91. Properties Notebook with Bracketed Resource ID

You have to be very careful if you are editing the .VPF file this way,
however. Not all parts support the context-sensitive help, and you could
include a typo that might cause unpredictable results.

If you invoke the editor for every part first, then default headers get added to
the .VPF file. You can still edit the .VPF file afterwards. Remember, do not
touch the r e s = parameter if you are not sure.

158 VisualAge for RPG

The Help Push Button
Providing context-sensitive help is always a good thing to do. But it may
also be necessary to implement a Help push button, which, if it is pressed,
displays more general help about the application or the currently displayed
window.

Adding such a Help push button to our graphical user interface is easily
done. But how to get the help displayed when the push button is gets
pressed is another matter. Usually, the PRESS event occurs and the
associated action subroutine is executed.

Redirecting Events
There is a function in VisualAge for RPG that allows us to redirect the
PRESS event of a push button part. On the Action page of its properties
notebook (see Figure 92) we can select the Display help radio button, which
will cause help information to be displayed when the PRESS event occurs.

Figure 92. Push Button Part Properties Notebook, Action Page

The help displayed here, however, is the context-sensitive help of the push
button part itself. We must then add the help text to the .VPF file. If the Help
push button is pressed now, the help window displaying general help about
the application pops up (see Figure 93).

Chapter 6. Defining Help 159

Figure 93. General Help Window for the Clipboard Editor

Symbols
If we look at the source, we can find out how the command-line invocation of
the sample application is included:

160 VisualAge for RPG

IPF

:h1 res=19.General Help
.*
:p.
The :hp2.Clipboard Editor:ehp2. sample application can be
used to maintain the textual part of your system clipboard. Graphical
parts in the clipboard are ignored.
:p.
Click :link reftype=hd res=11.here:elink. to get more
information regarding the applications window and its parts.
:p.
To invoke it from the command line type in the following command:
:xmp.

C:&bsl.path&bsl.CLIPBOAR.EXE
:exmp.

That may look strange. It is fairly clear that the :xmp. and :exmp. are the
tags used to enclose an example. They change the font to monospaced and
switch automatic reflowing off, so that the lines stay as they were specified.
But what about those &bsl. tags? These are predefined symbols, used to
display a character that may not be on your keyboard. The &bsl. stands for
backslash and inserts the \ character. For a complete list of available
predefined symbols, please refer to the IPF reference manual.

Hypertext Links
There is more to discover in the general help text. In Figure 93, the word
here is not just underlined, it represents a hypertext link to a
context-sensitive help text of another part. The resource ID as specified for
the r e s = parameter of the :link. tag is 11. Looking through the properties
notebooks of the available parts shows that this ID is associated with the
window part itself.

If we move the mouse pointer to this word, it changes to a pointing hand.
Pressing the left mouse button will show the help defined for the window
part (see Figure 94).

Chapter 6. Defining Help 161

Figure 94. Help for the Window Part

On the window in Figure 94, the words Clipboard Editor are again hypertext
links. The source in Figure 95 shows that the resource ID is 19, which is
associated with the help defined for the Help push button.

162 VisualAge for RPG

Embedded Images
Directly following the first paragraph in Figure 95, we included a bitmap of
the application's main window, so that the user can look at the parts of the
window, which are described further down in the help text. The :artwork.
keyword can be used for this purpose.

IPF

:h1 res=11.MAIN window
.*
:p.
This is the main window of the :link reftype=hd res=19.Clipboard
Editor:elink. application. It is of type :hp1.Window with
canvas:ehp1. and contains all other parts, that make up the
graphical user interface of the sample.
:p.
:artwork name='CLIPEDIT.BMP' align=center.
:p.
The other parts used to build the graphical user interface are:
:ul.
:li.a :link reftype=hd res=12.Multi-line edit:elink.
:li.a :link reftype=hd res=15.Read from
clipboard:elink. push button
:li.a :link reftype=hd res=13.Write to
clipboard:elink. push button
:li.an :link reftype=hd res=16.Exit:elink. push
button
:li.a :link reftype=hd refid=HELPPB.Help:elink.
push button
:li.and an :link reftype=hd res=18.Information
area:elink.
:eul.

Figure 95. Source Code for the Main Window Help

Further down in the help text for the window part, we list all parts of the
application. All have been implemented as hypertext links, allowing the user
to jump from one help window to another.

Please note that we are using the re f id= parameter for the Help push
button help. Here, we want to explain the use of the push button itself, not
the display of the general help for the application. So, we use this
referencing parameter instead of the r e s = parameter. The header
information of the corresponding help text definition has to replace the r e s =
parameter with an i d = parameter:

Chapter 6. Defining Help 163

IPF

:h1 id=HELPPB.HELP push button

The list itself is an unordered list, instead of the already used ordered list
(:ol./:eol.). The begin and end tags for an unordered list are :ul. and :eul..

Using the IPF tags described (and other IPF tags) enables you to create
helpful and comprehensive information for the user of your application. The
extent to which you need to use these features will depend on user
characteristics and skill level.

Displaying Table of Contents
When the user invokes help via F1 or the Help push button, the standard
Windows 95 or Windows NT help facility is used. This also allows the user to
display the table of contents of the entire help file by pressing the Contents
push button. For our VisualAge for RPG sample application, the table of
contents consist of all header tag (:h1-6.) entries defined in the IPF source
as hypertext links in the order they were added to the .VPF file (see
Figure 96).

Figure 96. Sample Table of Contents of a Help File

All are at the same level, and VisualAge for RPG adds an entry to the file,
representing the application's name (HELP00 in this case).

164 VisualAge for RPG

To change the heading, you can replace some of the :h1. entries with :h2. or
another heading tag. Rearranging the help text can also be used to change
the sequence of the table entries.

The additional entry comes from another file residing in the source directory
of your application. The .IPF file shown below controls the .VPF and the .IPM
files used to create the .HLP file: (The .IPM file contains the second-level
text for predefined messages. This is discussed in further detail in
“Second-Level Help for Messages.”)

IPF

:userdoc.
:h1. Help00
:p. Help00.
.im Help00.ipm
.im Help00.vpf
:euserdoc.

Commenting the :h1. and :p. lines out removes this additional item from the
table of contents (Figure 97).

Figure 97. Altered Sample Table of Contents

Chapter 6. Defining Help 165

Second-Level Help for Messages
The other type of help text available within VisualAge for RPG is
second-level help for messages, which is also defined using IPF.

To add help information for a predefined message, invoke the Define
messages dialog. If you select the Edit push button the Edit Message window
comes up. In Figure 98, this window shows the confirmation message for
the Exit push button of our sample clipboard editor.

Figure 98. Adding Message Help in the Edit Message Window

In the Message Help multiline edit field, you can add the help information for
the message. Doing this will result in adding a Help push button to the
message window (Figure 99).

Figure 99. Message Window with Additional Help Push Button

166 VisualAge for RPG

Pressing the Help push button (or the F1 function key) provides additional
information to the user as to why the message occurred, and what
consequences selecting Yes will have (Figure 100).

Figure 100. Help for the Exit Push Button

As mentioned, the information specified in the Message Help multiline edit
field is stored as an IPF source file with the extension .IPM in your project's
directory. Therefore, instead of using quotation marks or uppercase to
highlight text portions, you can use IPF tags to format the information. If, for
example, you want the Yes and No push buttons displayed as bold , add the
:hp2. and :ehp2. IPF tags (see Figure 101).

Chapter 6. Defining Help 167

Figure 101. Use IPF Tags in the Message Help Multiline Edit Field

Please note that we also made the words Multiline edit a hypertext link to
the context-sensitive help information for that part of the GUI. This allows us
to reuse this already available piece of help information in the second-level
help text of a message. If you do, the help text now shows up as shown in
Figure 102.

Figure 102. Message Help Window MSGOOO5 with IPF Tags

168 VisualAge for RPG

If we look at the table of contents (Figure 103), we can see that the
second-level help text has been added to it.

Figure 103. Table of Contents with Second-Level Topics

Every second-level help text is shown as an entry at the top of the list. To
change this so that the messages appear at the end of the list, look at the
.IPF file of your project, which controls the other files (.VPF and .IPM) during
the build:

IPF

:userdoc.
.* :h1. Help02
.* :p. Help02.
.im Help02.ipm
.im Help02.vpf
:euserdoc.

Among other things, the .IPF file controls the sequence of the .IPM and .VPF
file. Through the .im tag, the .IPM file gets imbedded into the help file first,
followed by the .VPF file. Replacing these two .im lines makes the message
help appear below the context-sensitive help topics (Figure 104).

Chapter 6. Defining Help 169

Figure 104. Table of Contents with Second-Level Help at the Bottom

170 VisualAge for RPG

Chapter 7. National Language Support

In this chapter, we discuss the national language support features of
VisualAge for RPG. We point out the areas where problems can occur when
developing applications for different languages, and we also show you
coding techniques that make your code more language independent.

Labels in GUI Parts
First, we look at the design phase of a graphical user interface. Many of the
parts you are using to compose the windows of your application have TEXT
and LABEL attributes. They may be specified directly through the properties
notebook of these parts. For example, look at Figure 105. It shows the GUI
of the Container example shipped with VisualAge for RPG. Any text
displayed here, such as the window and container titles, the push button
labels, or the static text represents attributes that were specified while
putting the parts for the GUI parts together.

Figure 105. GUI for Container Example

The advantage of this approach is that you need not alter these settings
within your RPG code. If these attributes need changes during run time, as

 Copyright IBM Corp. 1998 171

for implementing an information area such as the GUI Designer, a SETATR
opcode has to be coded.

Label Substitution
If you are focusing on writing an application that is independent of national
language, hardcoding TEXT and LABEL attributes into the GUI itself is not a
good approach. You must then change these attributes for all affected parts
through your RPG code when starting the application—for example, for the
CREATE event of the window. Therefore, you would have to maintain
different versions of your RPG code for every language you intend to
support.

The better alternative is to use label substitution instead. This can be
specified for any TEXT and LABEL attribute by coding a caret sign (^)
followed by a free label name. In Figure 106, the originally specified title of
the window is replaced by the substitute label ^Title, which is defined
through the properties notebook.

Figure 106. Window Part Properties Notebook, General Page

All parts that support TEXT and LABEL attributes and that allow you to
specify them through their properties notebook such as windows, static text,
push and radio buttons, check and group boxes, notebook pages, and menu
items also allow you to use label substitutions instead.

172 VisualAge for RPG

Label Names
When coding for label substitution, always use label names that reflect the
part they are used for. It is good coding style to use the real attribute value
of a part as its label name. For example, the label substitution name for the
Close push button could be ^Close. Figure 107 shows the Container
example using label substitution for all TEXT and LABEL attributes.

Figure 107. Container Example with Label Substitution

While designing the GUI, keep in mind that the size of the values you want
to put into TEXT and LABEL attributes differ significantly from one language
to another. Therefore, make sure that the parts are large enough to hold the
entire text or label for any of the supported languages. However, as this can
result in too large a distance between an entry field part and a describing
static text part, such as the VSpacing and HSpacing static text parts in the
Container example. Take the additional step of making sure that the TEXT
attribute is aligned to the right of the part (Figure 108).

Figure 108. VSpacing and HSpacing Static Text Parts

Chapter 7. National Language Support 173

Compiling and running this application now would result in a window
showing the names of the label substitutes as their TEXT and LABEL
attributes. To change this, open the Define Messages dialog. As shown in
Figure 109, a label message has been generated for each of the label
substitutions specified in the GUI.

Figure 109. Define Messages Dialog

You can edit the message text for every label to show the correct value for
the TEXT and LABEL attributes of all parts of the GUI. You don't need to go
into any properties notebook to change these attributes. However, there are
more benefits than this when using label substitution instead of just
hardcoding static text, and they are discussed in “Message Versions.”

First, lets look into another area, where hardcoding might prevent you from
developing a language-independent application: the RPG source code.

RPG Constants and Literals
It may sometime be necessary to change the TEXT and LABEL attribute for
a certain part within your RPG source. For example, if you would like to
insert an information area that gives the user help information for a part the
mouse pointer is pointing to, you must code an action subroutine for the
MOUSEMOVE event:

174 VisualAge for RPG

RPG

C EXIT BEGACT MOUSEMOVE MAIN
*

C eval %setatr('MAIN':'INFOLINE':'Label')
C = 'Press this button to exit the '
C + 'application.'

*
C ENDACT

This is burdensome in an NLS environment. You can easily replace the
literal by a constant or variable name defined in the D-Specs, but you must
still maintain a different version of your RPG source for every supported
language.

Using Messages
You can get around this difficulty by using messages. First, you define an
appropriate message through the Define Messages dialog and then assign it
to the attribute of the part as follows:

RPG

C EXIT BEGACT MOUSEMOVE MAIN
*

C eval %setatr('MAIN':'INFOLINE':'Label')
C = '*MSG0001'

*
C ENDACT

Using this coding technique makes your RPG source independent of the
language. You then have to change the message text through the Define
Message dialog, where you already placed all your substitute labels.

The same approach should be used for the DSPLY opcode. Never use the
MSGTEXT keyword when defining a message variable in the D-Specs:

RPG

D MsgTxt M MSGTEXT('Value is invalid')
D OK M STYLE(*HALT)
D BUTTON(*OK)

*
C MsgTxt dsply OK rc 9 0

Instead, define a message for that literal and specify the MSGNBR keyword:

Chapter 7. National Language Support 175

RPG

D MsgTxt M MSGNBR(*MSG0001)
D OK M STYLE(*HALT)
D BUTTON(*OK)

*
C MsgTxt dsply OK rc 9 0

Constants
If you need to define constants in your program and have them appear to
the user, place the D-specs into a /COPY member and prepare separate
versions for every supported language. You can then use the conditional
compile feature of VisualAge for RPG to have the proper /COPY member
included. The coding is as follows:

RPG

D/IF DEFINED(ENGLISH)
D/COPY I:\VARPG\MyConst.ENU

*
D/ELSEIF DEFINED(GERMAN)
D/COPY I:\VARPG\MyConst.DEU

*
D/ELSE
D/COPY I:\VARPG\MyConst.DFT

*
D/ENDIF

On the Build Options dialog (see Figure 110) you can now specify the
appropriate condition name through the User defines entry field:

176 VisualAge for RPG

Figure 110. Build Options Dialog, Compile Page

Message Versions
Now that we have converted much of the former static text to messages,
let's see how to get multiple versions of our messages.

All messages defined through the Define Messages dialog, regardless of
whether they are used as a substitution label, for the DSPLY opcode, or for
a message subfile, are stored in a single ASCII file in your project. The file,
which has an extension of .TXM, can be found in the source directory of
your application (see “Help Text” for information regarding the handling of
the second-level help text for messages). For the modified Container
example, the content of this message file looks like the list in Figure 111.

Chapter 7. National Language Support 177

Flat f i le

MSG
MSG0001P: Employee Number must be specified
MSG0002P: Employee Name must be specified
MSG0003I: as Chil&d
MSG0004I: &Add Record
MSG0005I: &Arrange
MSG0006I: &Clear
MSG0007I: &Close
MSG0008I: VARPG Container Example
MSG0009I: &Detail
MSG0010I: HSpacing
MSG0011I: &Icon
MSG0012I: Enter data in the entry fields below, and press Add ...
MSG0013I: Name
MSG0014I: Employee Number
MSG0015I: &Remove
MSG0016I: VARPG - Container Example
MSG0017I: &Tree
MSG0018I: &Tree line
MSG0019I: VSpacing
MSG0020I: &View

Figure 111. Message File for the Container Example

To reproduce this message file for another language, create a copy of it
first. You can then use an ASCII editor to key the translated message text
into the original .TXM file. However, make sure that the sequence of the
messages in the file remains unchanged.

It is probably a better idea to copy the .TXM file to something like
xxxENU.TXM (to reflect it contains the messages in English language) and
then modify the message text in the original .TXM file through the Define
Messages dialog for whatever language you want to support (see
Figure 112). You can make another copy of this changed version of the
.TXM file afterward, such as xxxDEU.TXM if it contains the German version.

178 VisualAge for RPG

Figure 112. Defining German Versions of the Messages

While translating the label messages for parts that have a mnemonic key
assigned (by specifying an & in front of the character representing the
mnemonic), try to keep the same characters for all supported languages.
This makes your application more consistent. This is especially important if
you are developing a multinational application (refer to “Multilanguage
Application” for further details).

During compilation, the only thing that happens to messages is that the
.TXM file is copied from the source directory of your application to the
RT_WIN32 or RT_WIN subdirectory. So, for example, if you compile the
Container example with the English message file active (ContaENU.TXM
renamed to Containe.TXM), the GUI looks like the original version shipped
with VisualAge for RPG (refer to Figure 105).

However, copying the ContaDEU.TXM file with the German messages as
Containe.TXM file into the RT_WIN32 subdirectory and calling the application
again makes it look like Figure 113.

Chapter 7. National Language Support 179

Figure 113. GUI in German Language for the Container Example

For any additional language you need to support, you need only add and
maintain another .TXM file for your application.

Column Headings
There are two parts, the subfile and container part, that can have column
headings for the contained columns. The only place where these column
headings can be changed is the properties notebook for each of the two
parts. Achieving an NLS-sensitive solution is still doable.

Let's look at the detail view of the Container example as shown in
Figure 114. This view can be selected by the user through the pop-up menu
of the container. Doing so adds a line of column headings below the
container's title but above the records in the container.

180 VisualAge for RPG

Figure 114. Detail View of Container Part

These headings always show the information specified on the Properties
notebook of the container part. Figure 115 shows the properties for the
second column of the container part in the Container example.

Chapter 7. National Language Support 181

Figure 115. Properties of Column Number

To solve this problem, we add another static text part to the GUI of our
application (Figure 116). We place it, where the column headings of the
detailed view of the container part appear. The background and font have
been changed, so that it resembles the original column headings.

182 VisualAge for RPG

Figure 116. Adding a Static Text Part

Its LABEL attribute contains the label substitution ^Header, so that we will
be able to maintain different headers for each language through the
message file (see Figure 117 which shows the German version).

Note the vertical bar (|) character as the first character of the message. This
prevents VisualAge for RPG from removing the leading blanks needed to
adjust the column headings.

Chapter 7. National Language Support 183

Figure 117. Change in the ^Header Substitution Label—Edit Message Window

There is still some work left. The column headings are displayed only for the
detail view of the container. We need to deselect the VISIBLE attribute on
the Properties notebook of the static text part and make it visible only if the
user selects the Detail menu item from the pop-up menu:

RPG

C MNI00043 BEGACT MENUSELECT FRA00038
*

C 'CT1' Setatr 3 'View'
C 'CT1HDR' Setatr 1 'Visible'

*
C ENDACT

It is important to have the VIEW attribute of the container-changed first.
Otherwise, the static text part with the column headings will be overlaid by
the container part. Additionally, we need to make sure that another event
doesn't overlay the container the static text part. For example, selecting the
Remove menu item from the pop-up menu of the container results in an
update of the container part, which would overlay the static text. Therefore,
at the end of these events, we need to update the static text part as well:

184 VisualAge for RPG

RPG

C MNI00048 BEGACT MENUSELECT FRA00038
*

C 'CT1' Getatr 'FirstSel' TmpID 6 0
C 'CT1' Setatr TmpID 'RemoveRcd'
C if %getatr('FRA00038':'CT1HDR':
C 'Visible') = 1
C 'CT1HDR' Setatr 0 'Visible'
C 'CT1HDR' Setatr 1 'Visible'
C endif

*
C ENDACT

Finally, if the user selects another view, we will switch the VISIBLE attribute
off again.

Figure 118 shows the detail view of the modified Container example with the
new column headings in German.

Figure 118. Modified Dialog View, German Version

Chapter 7. National Language Support 185

Help Text
An integral part of an application is the help feature. Let's see how we can
achieve to have help text in the same national language as the application
itself.

If you have added some help text through the pop-up menus of the different
parts of your window or the Define Messages dialog, VisualAge for RPG
stores it into three different files, that are used to create a .HLP file:

.IPF The file with this extension contains all control information
needed to create the .HLP file.

.VPF This file contains the stored help text that has been specified for
the parts help.

.IPM This file stores the second-level help text stored for messages
that were defined through the Define Messages dialog.

To create separate versions of help text for every supported language, make
a copy of these three files that are stored in the source directory of your
application (for example, use ContaENU to save the English version of these
files).

Now, through the GUI Designer, change the help information of the original
files to another language. Use the Help text menu items from the pop-up
menus of the parts to change the help text to another language. For the
second-level help text go to the Define Messages dialog.

After saving the project, make another copy of the .IPF, .VPF, and .IPM files
to preserve the translated versions of these files.

You can also use an ASCII editor to make the necessary changes, but if you
do, be careful to preserve the references of the different help text
paragraphs to their corresponding parts of the GUI. In the .IPM file, do not
change any information in header lines such as

IPF

:h1 res=99.MSG0001

A change would corrupt the connection between the message identifier and
the second-level text associated with it.

In the .VPF file, do not change or remove the heading tags or the resource
ID. These are essential if VisualAge for RPG is to find the correct help for
parts of the graphical user interface.

186 VisualAge for RPG

An English IPF entry and the corresponding German text IPF entry is shown
here:

IPF

.*
:h1 res=57.List of added items
.*
:p.Press the right-hand mouse button to get a pop-up menu with all
available operations you are allowed to perform on the container and
its items.

IPF

.*
:h1 res=57.Liste der hinzugefuegten Saetze
.*
:p.Druecken Sie den rechten Mausbutton um ein Menu mit allen
Funktionen zu bekommen, die Sie auf dem Container bzw. den
enthaltenen Saetzen ausfuehren duerfen.

The text immediately following the r e s = tag should be translated, as it gets
presented to the user as the header information for the help text (refer to
Figure 119).

Figure 119. Help Text for the Container Part—German version

Chapter 7. National Language Support 187

Building the Help File
Now, where we have edited the sources needed to build the .HLP file, how
do we actually get it created?

There are two options to choose from:

Change the names of the .IPF, .IPM, and .VPF files of the language for
which you want to create the .HLP file back to their original names and
invoke the build from the GUI designer.

Perform only those steps of the build process manually, that are needed
to create the .HLP file.

For the second option, consider the following sample batch file,

Batch file

d: \adtswin \system \ ipfxlate.exe imbed %1.ipf imbed.ipf
d:\adtswin\system\ipfxlate.exe rtf imbed.ipf %1.rtf
d:\adtswin\system\hcrtf.exe -xn %1.hpj

Here, d: is the drive on which you installed VisualAge for RPG and %1 is the
name of your application. You need to rename the language-specific .IPF,
.IPM, and .VPF files to the applications defaults before calling this batch file.
A new .HLP file will be created. Copying it to the RT_WIN32 subdirectory will
make it the active .HLP file during run time.

Multilanguage Application
Up to now, we have learned how to create an application for a specific
language, depending on the source files we specify for the build process.
But what about a multilanguage application?

Assume you want to create an application that first displays a window in
which the user can choose a language and then shows information to the
user in the chosen language. For example, an airport information terminal
that serves travelers from all over the world should be able to direct
travelers to different facilities of the airport in any of several languages.

To make our Container example a multilanguage application, we first create
this starting window. It could, for example, look like Figure 120, where flags
of the different countries are used to allow the user to identify the preferred
language.

188 VisualAge for RPG

Figure 120. Window to Select a Language

If one of the graphic push buttons is pressed, the window should disappear
from the screen, while Container example window FRA00038 is shown,
displaying all information in the chosen language. To achieve this, we begin
by deselecting the Open Immediately check box from the Properties window
of the Container example. We will then add the following action subroutine
for the PRESS event of all graphic push buttons (the English version is
shown here):

Chapter 7. National Language Support 189

RPG

C ENGLISH BEGACT PRESS MAIN
*

C eval %setatr('*COMPONENT':'*COMPONENT':
C 'MsgFile') = '.\\ContaENU.TXM'

*
C callp ChgHlpFile('ENU')

*
C eval %setatr('MAIN':'MAIN':'Visible') = 0

*
C showwin 'FRA00038'

*
C ENDACT

The MsgFile attribute of the *COMPONENT part is used, to have the
VisualAge for RPG runtime environment search in the specified message file
for messages that couldn't be found in the .TXM file that has the same name
as the application.

As we want the VisualAge for RPG runtime to find all messages in the
specified alternate .TXM file, we provide an empty original .TXM file. This
needs to hold just one line containing the keyword MSG. For every
supported language, we also provide an alternative .TXM file with all
messages used by the application.

Depending on the pressed image push button, we then switch among these
different alternate .TXM files.

We also prepare different versions of the .HLP file, one for every supported
language. To make sure the help texts are displayed from the correct .HLP
file, invoke the procedure ChgHlpFile with the following prototype:

RPG

D ChgHlpFile PR CLTPGM('.\\CHGHLPF.BAT')
D PartName 3A VALUE

Behind this procedure stands a simple batch file, which deletes the current
version of the application's .HLP file and recreates it using the version in the
chosen language:

190 VisualAge for RPG

Batch file

@echo off
@del CONTAINE.HLP >nul
@copy CONTA%1.HLP CONTAINE.HLP >nul
@echo on

Finally, if the Close push button is selected here, the application should not
end, but return to the language selection window. Therefore, we do not set
LR to *ON, but close the Container example window and make the menu
selection window visible again, as follows:

RPG

C PSB0003B BEGACT PRESS FRA00038
*

C clswin 'FRA00038'
*

C eval %setatr('MAIN':'MAIN':'Visible') = 1
*

C ENDACT

Chapter 7. National Language Support 191

192 VisualAge for RPG

Chapter 8. Managing Projects

In this chapter, we show you more about VisualAge for RPG projects, their
structure, and how they can be manipulated using the project organizer and
the available tools. We also show you how to deal with nonvisual
components. Finally, we offer you some guidelines you can use if you are
developing applications together with other programmers and you want
them to share their work.

Project Structure
Regardless of whether you are developing a VisualAge for RPG application
or a component, VisualAge for RPG always refers to the development as a
project. This term is basically a virtual folder, which holds all the associated
files logically together and defines the actions and tools available for the
entire project or parts of it.

Creating a Project
A project is created whenever you save the development environment for a
VisualAge for RPG application for the first time using the Save as
Application dialog (see Figure 121). You assign a name to it and specify
whether you want to have a VisualAge for RPG application created or a
VisualAge for RPG component.

Figure 121. Save as Application Dialog

 Copyright IBM Corp. 1998 193

If you select the New component check box, a VisualAge for RPG dynamic
link library is created as the target object of the build process, which may
be called by other VisualAge for RPG components. However, if you select
the New application check box, an EXE file will be created in addition to the
VisualAge for RPG DLL, allowing you to invoke the DLL and pass
parameters to it.

Source Files
To hold all the different source files of the project, a source directory with
the name specified in this dialog is created. The following list shows the
possible file extensions and a brief description of their content: (All files
have the same source file name as specified in the corresponding entry field
of the Save as Application dialog.)

.VPG This file contains all VisualAge for RPG source code you have
coded.

.TXM This file contains the predefined messages.

.ODF This file contains the information about the windows and the
contained parts of your application. It also contains the link
information to the associated action subroutines and is used to
create the .ODX file.

.TXC This file contains the text that was added as technical description
in the properties notebook of the different GUI parts.

.IPF This file contains the control information needed to create the
.HLP file using the .IPM and the .VPF files.

.IPM This file contains the second-level help text specified for the
predefined messages.

.VPF This file contains the context-sensitive help information for the
different parts of the GUI.

.TRC Whenever a problem occurred during the last build process, this
file contains the executed commands and all resulting messages.

.EVT This file contains feedback information about the compiler, which
is displayed in the Error list window.

.LST This file contains the compiler listing created on the last build.

.RC There can be several of these resource files. They are used to
create the links between the context-sensitive help and the
different parts of the application or component.

194 VisualAge for RPG

Runtime Files
Additionally, two subdirectories are added to the project's source directory
to hold the runtime files of the application or component. Subdirectory
RT_WIN32 holds the files created by a Windows 95 or Windows NT build,
while RT_WIN contains the Windows 3.1 version of the files, after the
corresponding build is performed. The following list shows the possible file
extensions and their meaning:

.DLL This file contains the executable code for the VisualAge for RPG
application or component.

.EXE The .EXE file is created for a VisualAge for RPG application only
and allows invoking the application's DLL.

.ODX The .ODX file contains all the information about the GUI of the
application or component and the links to the associated action
subroutines.

.HLP This file contains the context-sensitive help information as well
as the second-level help text for predefined messages.

.TXM This file contains the information on all messages defined
through the Define messages dialog.

.RST The .RST file contains all the server aliases, file overrides, data
area overrides, program overrides, and lock level information
you define for your application using the Define AS/400
information notebook.

.BND The .BND file is created if your application contains embedded
SQL statements and the Bind file check box on the DB2 page of
the Build options notebook is checked. It contains all information
necessary to perform a bind to the DB2 database to be accessed.

Project File
All the information specified in the Save as Application dialog is saved into a
project file with the project name as file name and an extension of IVG. This
is now used as an entry point to the project and all of the available
VisualAge for RPG utilities require this file in order to find their way to the
different parts of the project. For example, if you would like to load a
certain VisualAge for RPG application or component into the GUI designer,
the Open Component dialog expects you to specify the corresponding
project file (see Figure 122).

Chapter 8. Managing Projects 195

Figure 122. Open Component Dialog

As you can see in the sample IVG file below, the build options for Windows
95 or Windows NT buildOpts and Windows 3.1 buildWinOpts are also
included in this file. Therefore, do not touch this file. If you should corrupt its
content, the VisualAge for RPG utilities may be unable to read it any more.
For example, if you split the build option lines, so that they span more than
one line, the continuations are ignored when loading the project. The
sample IVG file is as follows:

Project (IVG) fi le

-VRPG300ProjectInfo
sourceDir=I:\VARPG\SqlSampl
targetPgm=SQLSampl.EXE
buildOpts=0 /GL 10 /Ti /RN /RT /SVC /SVG /L /LX /LV /LC /LD /LE ...
buildWinOpts=0 /TW /GL 10 /Ti /RN /RT /SVC /SVG /L /LX /LC /LD ...

Where the IVG file is physically stored depends on the type of object you
have specified in the Target folder or Project entry field of the Save as
Application dialog. If an ordinary Windows 95 or Windows NT folder is
selected, the IVG file is put into the corresponding drive or directory.

However, if you specify another project here, the IVG file is stored in the
source directory of that project. The saved project then shows up as a
subproject of the enclosing project.

Using this method of saving a project allows you to group different projects
together. You can organize complex applications into project hierarchies,

196 VisualAge for RPG

which give you a visual perspective of how your code is structured (see
Figure 123). It also enables the different VisualAge for RPG utilities (refer to
Table 6) to take care of these subprojects, if they perform an action on the
enclosing project.

Figure 123. Complex Project Hierarchy

Only the project file of the component is stored into the source directory of
the enclosing application or component. The source as well as the runtime
files of the subcomponent remain in their own source directory structure.

Utilities and Actions
VisualAge for RPG offers a large variety of utilities, that allow to perform
actions on the different parts of your projects. They all have in common that
they know how to read and interpret the content of a project's IVG file and
keep the structure of a project consistent when they work with its parts.

For example, if you would like to rename the source directory of your
project, it is not sufficient to use the Rename function provided in the
Windows 95 or Windows NT explorer, or execute the RENAME command in a
DOS prompt. As these tools won't update the content of the project's IVG

Chapter 8. Managing Projects 197

file, the project structure would be destroyed. The GUI Designer would no
longer be able to locate the files of the project. The Rename Utility of
VisualAge for RPG, however, takes care of these dependencies and makes
all necessary changes.

Utility Description
In Table 6, all available VisualAge for RPG utilities as well as the actions
they perform are listed. Additionally, hints are provided about their usage.

Table 6 (Page 1 of 5). VisualAge for RPG Utilities

Utility Action(s) Additional Considerations

GUI Designer This is the central utility
when developing VisualAge
for RPG applications. It can
be used to design the GUI of
your application and
incorporates many other
utilities to create and
manipulate the different
parts of a VisualAge for RPG
project.

The Save As item of the
Project menu can be used to
combine a duplicate and a
rename of the currently
loaded project.

Project
Organizer

The Project Organizer gives
you a graphical view of your
project structure. It also
allows the invocation of
many of the other VisualAge
for RPG utilities.

LPEX Editor The LPEX editor is used to
edit or browse the source
code of your application or
component. Additionally, you
can browse the compiler
listing and maintain the IPF
source of your help
information.

Build All runtime files of your
application/component are
created. The build utility
invokes the VisualAge for
RPG as well as the IPF
compiler. If all parts have
been created successfully,
the files are placed into the
proper runtime subdirectory
of the project.

The runtime files are also
copied to the TEST
subdirectory of the ADTSWIN
directory. Refer to the Run
and Debug utility entries for
additional information.

198 VisualAge for RPG

Table 6 (Page 2 of 5). VisualAge for RPG Utilities

Utility Action(s) Additional Considerations

Error list The .EVT file of the project,
which was created by the
VisualAge for RPG compiler,
is read and its content is
displayed. A double-click on
a listed message displays
the corresponding line in the
LPEX editor.

Run This utility allows the
execution of a VisualAge for
RPG application on a
development workstation
without having the VisualAge
for RPG runtime installed.

The runtime files in the
project's RT_WIN32 (or
RT_WIN) subdirectory are
used by this utility. For any
component that is started by
the application, the runtime
files in the TEST
subdirectory of the ADTSWIN
directory are used.

Debug The selected VisualAge for
RPG application can be
debugged. Other
components that get started
by the application can be
added by the active utility.

The runtime files in the
project's RT_WIN32 (or
RT_WIN) subdirectory are
used by this utility. For any
component that is started by
the application, the runtime
files in the TEST
subdirectory of the ADTSWIN
directory are used.

Duplicate The project's IVG file is
duplicated into the specified
folder or project and all
source and runtime files are
copied to a new source
directory.

Only the project and source
directory name are altered
for the duplicated project.
The file names remain
unchanged.

Rename Any of the following
attributes of a VisualAge for
RPG projects can be
changed with this utility:

the project name

the file name

the source directory
name

Do not rename a project that
is currently loaded into the
GUI Designer.

Chapter 8. Managing Projects 199

Table 6 (Page 3 of 5). VisualAge for RPG Utilities

Utility Action(s) Additional Considerations

Delete All source and runtime files
of a project as well as its
IVG file are deleted.

This includes the IVG file of
any subproject. However,
the associated source and
runtime files are not deleted.
Therefore, in this case, it is
better to delete the
subprojects, first.

Not included are the
versions of the runtime files
that were copied to the TEST
subdirectory of the ADTSWIN
directory.

Do not delete a project that
is currently loaded into the
GUI Designer.

Check-In A VisualAge for RPG project
is checked in as a part into
an Application Development
Manager/400 project
hierarchy. Any ADM/400 part
lock is released.

See “Share Your Work” for
further details.

Check-Out A VisualAge for RPG project
is checked out from the
Application Development
Manager/400 project
hierarchy it was previously
checked into. The
corresponding ADM/400 part
is locked to prevent other
users from checking out the
same ADM/400 part as well.

See “Share Your Work” for
further details.

Extract A VisualAge for RPG project
is checked out from the
Application Development
Manager/400 project
hierarchy it was previously
checked into without being
locked.

See “Share Your Work” for
further details.

200 VisualAge for RPG

Table 6 (Page 4 of 5). VisualAge for RPG Utilities

Utility Action(s) Additional Considerations

Backup The source and runtime files
of a project are compressed
and saved as members of
either a database file or a
source physical file in a
specified library on the
AS/400.

The name for both files
corresponds to the name
specified for the files of the
project with an additional
ending of 'DF' for the
database file (binary format)
and 'SF' for the source
physical file (text format).

All subprojects included in a
project selected for backup
are also saved into the
same library on the AS/400.
Each will result in a separate
set of the two AS/400 files.

Restore A previously saved
VisualAge for RPG project is
received from the AS/400
and its entire structure is
restored on the workstation.

The project might be
restored to a different
workstation or to a different
directory on the same
workstation. The new
location can be specified
during the restore.

Possible subprojects must be
restored separately.

Application
Packaging

The files in the RT_WIN32 or
RT_WIN subdirectory of a
project as well as the
runtime files in the
corresponding subdirectory
for any subproject are
packaged to a diskette or
into a directory.

Optionally, the VisualAge for
RPG runtime code is
packaged as well.

It is also possible to package
only the VisualAge for RPG
runtime. In this case, it is
okay if no project name is
specified in the appropriate
entry field.

Define Server
Logon

This utility allows defining
user ID and password for
different AS/400 servers.
Each time an application
needs to connect to one of
the defined AS/400 servers,
the specified user ID and
password are used instead
of prompting the user.

This utility is not only
available on the
development workstation,
but is also shipped as part of
the VisualAge for RPG
runtime.

Chapter 8. Managing Projects 201

Table 6 (Page 5 of 5). VisualAge for RPG Utilities

Utility Action(s) Additional Considerations

Define AS/400
Information

This utility allows editing the
content of the .RST file of a
VisualAge for RPG
application or component.

The utility is shipped as part
of the VisualAge for RPG
runtime and, therefore,
might also be used to
configure the application
according to the
environment it will run in.

Migration The source files of a
V3R6M0 or V3R1M1 project
are migrated to a VisualAge
for RPG project for V3R2M0.

Before migrating the source
files, make sure they are all
located in one directory. The
migration utility will not
convert files contained in
any subdirectory.

The directory must contain
the .ODF file of the project.

Component
Packaging

The files of a VisualAge for
RPG project are compressed
and packaged to the
specified target diskette or
directory. You can select, via
check boxes, whether the
runtime, the source, or both
types of files should be
included into the package.

See “Share Your Work” for
further details.

Component
Installation

The IVG file of a project
previously packaged using
the Component Packaging
utility is added in the
specified target folder or
project. The source files are
installed into the
also-specified source
directory.

See “Share Your Work” for
further details.

User-defined
Part

Packaging

The selected user-defined
part is packaged to the
specified target diskette or
directory.

See “Share Your Work” for
further details.

User-defined
Part

Installation

The selected previously
packaged user-defined part
is added to the parts catalog
as well as the parts palette
of the GUI Designer.

See “Share Your Work” for
further details.

202 VisualAge for RPG

Now that we know what utilities are available, let's see how they can be
invoked.

Using Utilities
The first place to go is into the Start menu of Windows 95 or Windows NT
(see Figure 124). A menu item ADTS Client Server for AS/400 is added to
the Programs menu during installation of the product. This in turn contains
menu items for the different parts of the Application Development Toolset
Client Server/400 license program. Selecting the menu item VisualAge for
RPG opens a list of many of VisualAge for RPG's utilities.

Figure 124. Start Menu Chain

This is the place, where you most probably will start the GUI Designer for
the first time.

Taskbar
It is a fairly long way from the initial Start button to this last menu, so the
Application Development Toolset Client Server/400 offers its own Application
bar (see Figure 125), which has a look and feel similar to those of the
taskbar of Windows 95 or Windows NT. Its VisualAge for RPG button opens a
list with the same utilities.

Chapter 8. Managing Projects 203

Figure 125. ADTS CS/400 Application Bar

To invoke this bar, select the Start VisualAge menu item from the ADTS
Client Server for AS/400 menu (see Figure 124) or start the BAR400.EXE
program. Like the Windows 95 or Windows NT taskbar, you can move it to
another side of your screen by selecting it with the left-hand mouse button
and dragging it to the new location. Through its context menu, you can also
specify whether the bar is to always be on top of any other window and
whether it disappears as soon as it loses the focus.

Most of the utilities can also be invoked by selecting an action from the
context menu of a project's IVG file (see Figure 126). When a menu item is
selected, the corresponding utility is started, passing it the name of the IVG
file. The Edit action, for example, starts the GUI Designer immediately
loading the project it was selected for.

204 VisualAge for RPG

Figure 126. Context Menu of an IVG File

If you look at the File Types page of the Options notebook, which can be
invoked via the corresponding menu item in the View menu of a folder or
Windows 95 or Windows NT Explorer. The file type VisualAge for RPG
project was added during the installation of VisualAge for RPG and
represents the files with an extension of IVG.

Editing one of the actions defined for this file type shows you its command
line interface (see Figure 127).

Chapter 8. Managing Projects 205

Figure 127. Edit an Action of the VisualAge for RPG Project File Type

If you select the Open action from the context menu of a IVG file, VisualAge
for RPG's Project Organizer is started, which allows you to invoke many of
the utilities through its Project menu.

Despite the fact that it also gives you a good overview of the structure of
your project, it offers an option available nowhere else. The Target type
menu item of its Settings menu (Figure 128) allows you to change the type
of the project: VisualAge for RPG application or component.

206 VisualAge for RPG

Figure 128. Changing the Type of a Project

If this or any other option has been grayed out, check whether the project
has been loaded into the GUI Designer. As the project's IVG file is updated
when the type is changed, the menu item is available only for a project not
currently loaded.

Last but not least, the GUI Designer allows you to invoke the different
utilities. Some are invoked implicitly, such as the editor, if an action
subroutine should be coded. Others, such as the build, run, or debug utilities
are executed explicitly by selecting the corresponding menu item from the
Project menu or the toolbar item. Its Window menu even offers a Project
Organizer option to invoke the Project Organizer for the currently loaded
project.

There are many different places from which to invoke the VisualAge for RPG
utilities. However, Table 7 offers you an overview.

Chapter 8. Managing Projects 207

Table 7 (Page 1 of 2). Invoking VisualAge for RPG Utilities

Utility Command line interface

S
ta

rt
or

A
pp

l.
B

ar
M

en
u

G
U

I
D

es
ig

ne
r

P
ro

je
ct

O
rg

an
iz

er

IV
G

C
on

te
xt

M
en

u

GUI Designer X X X X FVDEGUIB ProjName.IVG

Project
Organizer

X X FVDEPORG ProjName.IVG

LPEX Editor X X X CODEEDIT FileName.Ext

Build 95/NT X X X FVDECPL ProjName.IVG

Build Win 3.1 X X X
FVDECPL ProjName.IVG
/WIN

Error list X CODEEVNT FileName.EVT

Run X X X FVDEAPLN ProjName.IVG

Debug X X X
FVDEAPLN ProjName.IVG
/DEBUG

Duplicate X X FVDEDUP ProjName.IVG

Rename X X FVDEREN ProjName.IVG

Delete X X X FVDEDEL ProjName.IVG

Check-In X X
FVDEBKUP ProjName.IVG
/ADMIN

Check-Out X X
FVDEREST ProjName.IVG
/ADMOUT

Extract X X
FVDEREST ProjName.IVG
/ADMEXT

Backup X X X FVDEBKUP ProjName.IVG

Restore X X X FVDEREST ProjName.IVG

Application
Packaging

X X X FVDIPACK ProjName.IVG

Def. Server
Logon

X X FVDEPW

Def. AS/400
Information

X FVDERST FileName.RST

Migration X FVDEMIG

Component
Packaging

X FVDEKAPK

208 VisualAge for RPG

Table 7 (Page 2 of 2). Invoking VisualAge for RPG Utilities

Utility Command line interface

S
ta

rt
or

A
pp

l.
B

ar
M

en
u

G
U

I
D

es
ig

ne
r

P
ro

je
ct

O
rg

an
iz

er

IV
G

C
on

te
xt

M
en

u

Comp. Install X FVDEKAIN

User-defined
Part
Packaging

X FVDEKUPK

User-defined
Part Install

X FVDEKUIN

Nonvisual Components
When you are developing a nonvisual component and you have added either
the EXE or the NOMAIN keyword in the control specification definitions of
your VisualAge for RPG source file, then you can use the VisualAge for RPG
utilities for a visual component.

Start the GUI Designer for a new project as usual, remove the predefined
window part through its context menu (Figure 129), add the VisualAge for
RPG source using the LPEX editor, and save the project for the first time.
The source directory and IVG file are created, enabling you to perform the
build process and invoke the Run, Debug or any other available utility.

Figure 129. Removing the Default Window Part

Chapter 8. Managing Projects 209

The only problem when developing a nonvisual component in this
environment is the build process. As you don't have a GUI, you need the
.EXE file (keyword EXE) or the .DLL and .LIB files (keyword NOMAIN) only,
so the compile step of the build process would be enough. Instead, the
build creates the .ODX and .HLP files for you as well; this, though not an
insuperable impediment, costs some extra performance.

To avoid the extra overhead, consider invoking VisualAge for RPG's
compiler using its command interface. The file to be executed is called
FVDFNFE.EXE, which resides in the SYSTEM subdirectory of the ADTSWIN
directory. It expects the name of the .VPG file as a parameter, followed by
the list of compiler options. Table 8 shows the available options and their
meaning.

Table 8 (Page 1 of 2). Compiler Options

Option Description

General compile options

/GL nn Specify the generation severity level. The range of errors
is 1 to 99.

/BL filename Specify the .LIB and .OBJ files, which contain all functions
called by the component.

/D DefName Define DefName as user; define before compilation.

/d or /TI Generate debug information.

/RF Fix invalid numeric data.

/RT Truncate numeric values, if an overflow occurs.

/RN Allow null-capable fields from AS/400 files for input-only
access. This option mutually excludes /RNU. Omitting both
means null-capable fields are not allowed.

/RNU Allow null-capable fields from AS/400 files for read, write,
and update access. Null values must be controlled by the
program code. This option mutually excludes /RN. Omitting
both means null-capable fields are not allowed.

/HCU Enable caching.

/HCR Enable cache refresh.

/SVC Convert variable-length characters to fixed-length
character variables.

/SVG Convert DBCS graphic variables to fixed-length character
variables.

/Tw Generate a Windows 3.1 object.

Listing options

210 VisualAge for RPG

Please note that the SYSTEM subdirectory of the ADTSWIN directory must
be added to the LIB environment variable to be able to invoke the compiler
from the command line. You get an error message LNK1094 about a missing
FVDRNRT.LIB, if this has not been done.

For example, to generate the .LIB and .DLL file as well as a compiler listing
for a NOMAIN utility DLL project Service, the command to be executed
would look like this:

Command

D:\ADTSWIN\SYSTEM\FVDFNFE I:\VARPG\SERVICE\SERVICE.VPG /L

Table 8 (Page 2 of 2). Compiler Options

Option Description

/L Create a compiler listing.

/LX Create a field cross-reference list in the compiler listing.

/LV Create a visual cross-reference list in the compiler listing.

/LC Expand /COPY in the compiler listing.

/LS Show skipped lines in the compiler listing.

/LD Expand DDS in the compiler listing.

/LE Show external references in the compiler listing.

/LM2 Show second-level message text in the compiler listing.

/LI '**' Use this option to specify up to two character for
indentation in the compiler listing.

/LP nn Specify the lines per page for the compiler listing.

DB2 options

/SN DBName Specify the SQL database name

/SB [BndName] Generate a SQL bind file (called BndName.BND).

/SP [PkgName] Generate a SQL package (called PkgName).

/SF xxx SQL format for date/time columns (EUR, USA, ISO, or JIS)

/SI xx SQL isolation level (RR, CS, or UR)

/SR xxx Perform SQL record blocking (NO, ALL, UNAMBIG).

DB2 connect options

/SU UserID User ID used to connect to the SQL database.

/SUP Password Password used to connect to the SQL database.

Chapter 8. Managing Projects 211

All files are created in the directory, the command is executed from. To
avoid the path specification, you might add the SYSTEM subdirectory to your
PATH environment variable.

The compile operation always ends without issuing any messages in the
MS-DOS Prompt window. You have to look into the project's .EVT file for
compiler feedback. However, as the .EVT file is the file that is read by the
Error list utility (see Figure 130), you can look at its content using this utility.
Beside the options mentioned in table Table 7, you can also invoke it from
the Windows menu of the LPEX editor.

Figure 130. Error List Utililty

With LPEX, we have a highly programmable editor. Therefore, we can add
the command-line invocation of the compiler as an additional item to one of
its menus. The Actions menu might be the right place for this (see
Figure 131).

212 VisualAge for RPG

Figure 131. New Menu Item in the Actions Menu

To get this menu item included into the Actions menu, we added the
following two lines to the VRPG400.LXL macro in the MACRO subdirectory of
the ADTSWIN directory:

LPEX

'SET ACTIONBAR.LP_ACTIONS.SEPARATOR'
'SET ACTIONBAR.LP_ACTIONS.VARPG_Compile CMPVARPG'

Whenever the VARPG Compile item is selected, another LPEX macro
CMPVARPG is invoked, which queries the user about the compiler options,
starts the compiler, and invokes the Error list to show compiler feedback:

LPEX

'SET LINEREAD.TITLE Compiler Options'
'SET LINEREAD.PROMPT Specify compiler options:'
'LINEREAD 255'
'EXTRACT LASTLINE INTO MyOptions'

'EXTRACT NAME INTO FileName'
'START FVDFNFE 'FileName MyOptions

FileName = substr(FileName,1,length(FileName)-3) || "EVT"
'START CODEEVNT 'FileName

Chapter 8. Managing Projects 213

Share Your Work
If you are not the only programmer in your company, you probably need
your colleagues to share parts or components you have developed.
Additionally, you may need to maintain different versions of your
applications or group a VisualAge for RPG application (or component)
together with the AS/400 objects accessed by it.

Sharing Parts
If you were the programmer who created the DBLOGON component used in
“SQL Support” to get the logon information needed to connect to a DB2
database from the user. It uses an entry field called DONE to signal its
successful completion. If another programmer wants to use this component,
he or she will need to define a component reference part that monitors for
the CHANGE event of this entry field.

It would be handy to provide a user-defined part to your colleagues, where
the information about the component name, window name, part name, and
event name of the entry field part is already preset. If this user-defined part
could be added to the part catalog of the colleagues' workstations, they
would just have to drag and drop this part onto the GUI of their application
and code its NOTIFY event.

The question is how to transfer the user-defined parts from your workstation
to that of a colleague. VisualAge for RPG offers a packaging and install
utility for user-defined parts for this purpose. If you invoke the Packaging
utility, it shows you all user-defined parts of your workstation (see
Figure 132).

Select the parts you want to be packaged, specify the target diskette or
directory where the package should be placed, and press the OK push
button. For each of the selected parts, an ODF file is created and, together
with the ICO file, is copied into the specified directory. Additionally, a file
called VRPGUDPW.### is created which contains control information for the
package.

214 VisualAge for RPG

Figure 132. User-Defined Part Packaging Utility

You can now ask all colleagues who want to use the DBLOGON component
to install this package onto their workstation using the User-defined Part
Install utility (see Figure 133). To see the parts of the package, your
colleagues must specify the diskette or directory you saved it to and press
the Fill push button.

Figure 133. User-Defined Part Install Utility

Please note, it is not necessary to install the entire package. Instead, it is
possible to select only those parts that are of interest. The selected parts
are then added to the parts catalog as well as to the parts palette.

Chapter 8. Managing Projects 215

Sharing Components
Exchanging specialized parts for your graphical user interface is one thing.
But you may also want to share program logic and complete components.
One way to do that is to save your project in a directory on a drive shared
by all company (or department) programmers. If you also place the .IVG
files on a shared drive, the projects should be accessible from any
workstation.

If you do that, however, make sure that the shared drive containing the
source directories of the projects has the same drive letter assigned on
every workstation. This is necessary because the .IVG file refers directly to
the drive letter the project's files were saved on.

216 VisualAge for RPG

Chapter 9. Importing Display Files

In this chapter, we demonstrate how you can use the import display file
function of VisualAge for RPG. Because there are no data definition
specifications (DDS) on the workstation, the migration from a 5250 screen to
a GUI is usually not a 1:1 mapping of texts and entry fields. Also, you will
most likely change the appearance of the format. Some of your display files
may not be worth migrating; it would be faster to recreate them again from
scratch.

Screens and Windows
Applications that run on hosts such as AS/400 or S/390, with their green
screen 5250 or 3270 interface, function in a fundamentally different way from
workstation-based applications with GUIs. It's not only the appearance that
makes them different, or the fact that users trade function keys for mouse
clicks, it's also how a user navigates through the application.

In most cases, one GUI window contains more information and lets a user
do more different things than does a 5250 window. Consider the
omnipresent tool bar; by clicking on any of its icons, you can launch
additional applications, open new windows, run macros, print lists, and
much more using very little window real estate. Think about how much text
you would need to put on a screen to describe the same functions.

Before you start importing all display files from your AS/400 application and
converting them to VisualAge for RPG windows, step back and look at
branches of your application and search for ways to merge display formats.
You will gain a clearer interface and also save performance by omitting the
opening and closing of windows while you navigate through your
application. In the 5250 world, application users may consider it standard
practice that screens change entirely after certain keys are pressed. GUI
users usually stay in a few windows (sometimes only a single window) and
use pull-down and pop-up menus to invoke additional functions.

Redesigning Screens
If you are an AS/400 developer, you have no doubt created menu screens
and their corresponding menu programs. They may have looked like
Figure 134.

 Copyright IBM Corp. 1998 217

à ð
MENU The Bookmaster 18.09.97

07:44:04
Books Administration

1. Titles 21. Backup
2. Authors 22. List Books
3. Stock 23. List Authors
4. Orders 24. List Publishers
5. Returns 25. List Orders

26. List Back-Orders
9. Search

30. Shipping
15. Mailings 31. Distribution
16. Catalogs

Selection or command
==> __

F1=Help F3=Exit F12=Cancel
á ñ

Figure 134. Traditional AS/400 Menu

You select an item from the menu, enter the number and press Enter.
According to your selection, the entire screen changes. The original design
of the application probably entailed 20 different formats to accommodate all
possible menu selections and their application screens.

Using a GUI, your application design follows a different approach. After a
possible splash screen to welcome the user (and, more important, to
initialize the application in the background, such as opening the database or
connecting to a server), the main window opens. This is where users should
spend most—if not all—of their time. This window closes only when the user
exits the application.

It is the responsibility of the application designer to find the GUI items (such
as database records, containers with icons, or sets of radio buttons or check
boxes) that are the most important in the application scenario. These items
act as anchors for all subsequent actions from pull-down or pop-up menus.
Instead of navigating through a series of screen formats, from a starting
menu to, for example, a maintenance screen for books, the user should be
able to initiate the required action instantly.

The first thing to get rid of in the original application design is the menu
format. Instead of using a full screen with menu choices, the possible
selections should be grouped in pull-down menus (see Figure 135).

218 VisualAge for RPG

Figure 135. Example of a GUI Menu

Without using up more than a little screen real estate, we have already
accommodated all possible menu selections, and we didn't even mention
submenus and toggles as menu items.

Look at every single application screen and assess whether or not it
contains enough information to justify giving it its own window.

Sample Import
The 5250 screens that are good canidates for a GUI window are the record
maintenance formats that require static text and many entry fields. You
need not keep the original entry fields. Depending on the type of entry field
and its allowed values, you should consider GUI elements such as check
boxes (for binary values), radio buttons (for small selection groups),
drop-down list boxes (for selections with long texts), or spin buttons (for
numeric ranges).

Figure 136 is an example of a 5250 screen that we will import into VisualAge
for RPG. The format consists of static text, an output-only field (customer
number), various input fields, and date and time fields.

Chapter 9. Importing Display Files 219

à ð
CUSTFM1 Customer Maintenance 19.09.97

20:32:55

Customer Number 1234567

Company Name __

Rep Number _____
Contact ______________________________

Address __
City, ZIP _______________________________ ________
Country _______________________

Telephone ________________
Fax ________________

Zip Location _

F3 = Exit
á ñ

Figure 136. Display Format to be Imported

To import the format into VisualAge for RPG, use the Import Display File
option from the Server pull-down menu of the VisualAge for RPG main
window (Figure 137).

Figure 137. Import Display File Menu Option

The Import Display File window opens (Figure 138). From the File hierarchy
pane, select the AS/400 server of your choice and click on the + icon to
expand and show all libraries on that server. Notice that the File name entry
field is updated along with your selections in the pane below. The libraries

220 VisualAge for RPG

listed depend on your AS/400 job description that your VisualAge for RPG
job is running under. If your library list does not contain the library with the
display file to be imported, simply type the library name into the File name
entry field and press Enter.

In our example, the library GUIDES2 is not part of *LIBL, so it is not shown.
After typing in

<server >GUIDES2

the appropriate information is extracted from the AS/400 and the hierarchy
is expanded. Because this is the import function for display files, only
display files are listed under the library name, even though the library on
the AS/400 may contain many more objects.

Figure 138. Import Display File Window

To see all formats that are defined in the display file, double-click on the
display file name. After the information is again extracted from the AS/400
object, the record list is updated accordingly. Select the format you want to
import (in our case, only one format is defined) and click on the Import
button. A Process List Request window appears briefly, informing you that
the system is importing the record. After the process window disappears,
your imported format is added to the parts catalog. If you selected the

Chapter 9. Importing Display Files 221

Catalog and palette radio button in Figure 138, your format is also placed on
the palette. However, this is rarely necessary because the imported format
is mostly used only once.

Open the Parts Catalog window and locate the new format on the Imported
page (Figure 139). By default, the part name is the same as the format
name. You can override the default by changing the name during the import
process or by modifying the part in the catalog.

Figure 139. Parts Catalog Window with Imported Format

To create a window from the newly imported format, drag the new part to
the project window and drop it on a Window with Canvas part in the project
window. If you do not have an unused window with canvas, drag a new
window with canvas from the parts catalog's Frames page to the project
view first. The project view now contains a window with its canvas and, as
subparts, all GUI elements that were identified on the original display
format. The expanded view of the window may look like Figure 140.

222 VisualAge for RPG

Figure 140. Imported Format Parts

To see how the format actually looks in a window, double-click on the
window part to open it. Be ready for a surprise (Figure 141).

Figure 141. Imported Format as Window

“Al l I get is one button?” Don't worry. All entry fields and texts are there,
however, they may have fallen off the window. Resize or maximize the

Chapter 9. Importing Display Files 223

window so that all fields are visible and rearrange them. If you find only one
static text field, try moving it a little; you will notice that they overlap each
other. Expose all fields by dragging them to different locations and soon you
have a window that you can actually start designing (Figure 142).

Figure 142. Imported Format Adjusted to Fit

After aligning static texts and entry fields (try the grid), adjusting the colors,
and other cosmetic enhancements, your new window is ready to be used
(Figure 143). All entry fields on the window have the same definitions (such
as length) as in the imported display file, as you can verify on the Data page
of the properties window. However, the Reference page does not contain a
link to an AS/400 definition, so if you choose to change a field on the
AS/400, your VisualAge for RPG window is not notified unless you define a
reference after the import.

224 VisualAge for RPG

Figure 143. Finished Window from the Imported Format

Chapter 9. Importing Display Files 225

226 VisualAge for RPG

Part 2. Exercises

 Copyright IBM Corp. 1998 227

228 VisualAge for RPG

Exercise 1. Creating a Simple VisualAge for RPG Application

The exercises in Part 2 of this book are derived from an education class on
VisualAge for RPG.

Exploring the GUI Designer and Creating Action Subroutines
During this exercise, you learn more about the VisualAge for RPG GUI
Designer as we walk you through the following steps:

1. Exploring the VisualAge for RPG GUI Designer:

Starting the VisualAge for RPG GUI Designer

Getting to know the components of the VisualAge for RPG GUI
Designer

Using parts and GUI Designer components to create a graphical
user interface

Saving the GUI

2. Creating action subroutines:

Selecting events

Working with the LPEX Editor

Creating action subroutines to respond to events

Building the application

Running the application

Objective
As a result of this exercise, you can create the first window of your GUI
application. In doing so, you can:

Customize the VisualAge for RPG GUI Designer.

Create a window with parts.

Create action subroutines.

Save your application.

Build the application.

Run the application.

 Copyright IBM Corp. 1998 229

Introduction
You need a workstation with Windows 95 or Windows NT and VisualAge for
RPG installed with the minimum configuration described in the product
manuals.

If you are using this book in class, user IDs are given to you by the
instructor. However, in this exercise, you are not working on an AS/400
system, so you do not need a user ID.

Starting the VisualAge for RPG GUI Designer
To start the VisualAge for RPG GUI Designer for the first time:

1. Locate and double-click on the Application Development Toolset Client
Server/400 icon on the desktop. This opens up the Application
Development Toolset Client Server/400 folder and makes it the active
window.

2. Double-click on the VisualAge for RPG icon; the VisualAge for RPG
folder is shown.

3. Double-click on the GUI Designer icon in the VisualAge for RPG folder to
start the GUI Designer.

The VisualAge for RPG Product Information dialog is briefly shown, followed
by a status window (Figure 144) indicating progress in the initialization
process of the VisualAge for RPG GUI Designer.

Figure 144. VisualAge for RPG Status Indicator

The GUI Designer, including the Parts Palette and the first design window, is
shown in Figure 145.

230 VisualAge for RPG

Figure 145. VisualAge for RPG GUI Designer

If necessary, rearrange the windows so that all are visible. Also, if needed,
resize the Parts Palette so that all parts are visible.

Components of the VisualAge for RPG GUI Designer
The VisualAge for RPG GUI Designer consists of these major components:

Menu bar
Tool bar
Project view
Parts palette

Menu Bar
The menu bar is located below the title bar of the VisualAge for RPG
window. It provides a variety of tasks that you can use to create and modify
your GUI application, customize the VisualAge for RPG GUI Designer, and
get online help. To learn more about the menu bar:

1. Press F10 to highlight the leftmost menu bar choice. Then, press F1
while the menu-bar item is highlighted. A pull-down menu with menu
choices is opened.

2. Press the right arrow key to scroll through the choices of the pull-down
menu. While doing this, look at the bottom of the VisualAge for RPG

Exercise 1. Creating a Simple VisualAge for RPG Application 231

window. This is the information area; it briefly describes the action
performed when you select one of the menu choices or one of the items
contained in the pull-down menu of a menu bar choice.

The Up and Down arrow keys can be used to navigate the menu choices.
Detailed help for each choice is available by pressing F1 (see Figure 146).

To become familiar with the available menu choices:

1. Press F10 to highlight the Project menu bar choice.

2. Use the Up, Down, Left, and Right arrow keys to scroll through all the
menu choices. Look at the information area at the bottom of the
VisualAge for RPG window to see what action the choices perform.

Figure 146. Displaying Menu Help

Tool Bar
The tool bar is a menu of icons. It provides a fast-path access to some of
the menu items on the menu bar. Invoking the action from an icon on the
tool bar allows for quicker access to commonly used menu choices. To
learn more about it,

232 VisualAge for RPG

1. Move the mouse arrow cursor over the icons of the tool bar, one at a
time. A short description of each icon's function is displayed in the
information area.

2. Click on the Font Palette icon. This is one of the rightmost icons on the
tool bar. The Font Palette window is shown.

3. Double-click on the System icon (at the upper left corner of the Font
Palette window) to close it.

Project View
The project view is used to hold all of the parts you create during your
VisualAge for RPG GUI Designer session. The project view can be changed
to display the parts of a project in different views. This is demonstrated in a
later exercise.

Parts Palette
The Parts Palette contains parts that you use to create the screen layout for
your GUI application. These parts act as a template to create parts from.
To learn more about it,

1. Move the mouse pointer over the parts on the Parts Palette window one
at a time. The information area at the bottom of the Parts Palette
displays a short description of each part. To see a detailed description
of a part on the Parts Palette window, select a part with the left-hand
mouse button, and press F1.

2. Click on the icon in the upper right corner of the Parts Palette window.
The Parts Catalog window is shown. The Parts Catalog contains all the
parts of the VisualAge for RPG GUI Designer, categorized by function, as
indicated by the tabs. Click on the icon in the upper right corner of the
Parts Catalog to return to the Parts Palette window.

Creating a Graphical User Interface
During this exercise, you learn how to create a GUI by creating windows
and adding parts to windows. The GUI you are creating now is the first
window of a Customer Inquiry application. It is used to prompt for a
customer number.

When the GUI Designer is started for a new project, it creates the first
design window for you. Notice also that a Window part has been added to
the project view. We use this window as the first window in our Customer
Inquiry application. As with all parts, the initial part name is generated by
the GUI Designer, with the first few characters indicating the part type (for
example, FRA indicates a Frame Window part).

Exercise 1. Creating a Simple VisualAge for RPG Application 233

A Note About Notebooks
As mentioned earlier, the Parts Palette contains parts that act as templates.
Once the part has been created in the project view, its attributes, such as
the part name, can be changed. These changes are made by invoking the
Parts Properties properties notebook. A properties notebook consists of
pages as indicated by the labeled tabs. You go to a properties notebook
page by clicking on its tab with the left-hand mouse button. To close a
properties notebook, double-click on its System icon in the upper left corner
or click on the icon in the upper right corner.

Let's change some of the settings for the initial design window:

1. Double-click on the title bar of the design window. The Window Part
Properties notebook is shown.

Tip

A window with canvas is made up of two parts: the window, which
consists of the title bar and frame, and the canvas, which is the
white area enclosed by the window. Thus, if you double-click on the
white canvas, you get the properties notebook for the canvas part.

Figure 147. Changing the Window Part Name and Title

234 VisualAge for RPG

2. On the General page of the Window Part Properties window
(Figure 147), change the Part name setting to CUSTINQ and the Title to
Customer Inquiry.

Note

Although you can type the part name in upper or lower case, it is
always folded to upper case by the GUI Designer.

3. Click on the Style tab of the properties notebook. The Style page is
shown.

4. Deselect the Minimize button and Maximize button check boxes.

5. Select Thick for the style of the window border.

6. Double-click on the System icon of the Window Part Properties notebook
to close it.

Notice the changes to the window. The new window title is displayed, the
border style has changed, and Minimize and Maximize icons no longer
appear on the title bar.

Tip

To change the label and default text of parts, you can also press the
Alt+left-hand mouse button instead of using the properties notebook.
When you have made your change, click the left-hand mouse button
again. This is called direct editing.

The next step is to add a static text part to the window to prompt for the
customer number to be entered:

1. Find the static text part in the Parts Palette window.

Tip

As you move the cursor over the icons on the Parts Palette, a short
description of the part type is shown in the Parts Palette information
area.

2. Drag and drop a static text on to the Customer Inquiry design window by
clicking on it with the right-hand mouse button, dragging the part to
where you want it on the design window with the mouse, and releasing
the mouse button.

3. Invoke the properties notebook for this part by double-clicking on it.

4. Change the Text setting on the General page to Enter Customer Number .

Exercise 1. Creating a Simple VisualAge for RPG Application 235

5. Double-click on the System icon of the Static Text Parts Prperties
notebook to close it.

You may notice that not all of the changed text is displayed. This is
because of the default size setting of the static text part. To change the
size:

1. Click on the Static Text part with the left-hand mouse button to select it.
The borders of the part are marked by placing small squares, called
sizing handles, around it.

2. Move the mouse pointer to the middle of the rightmost three sizing
handles. The pointer changes to a double-arrow (pointing to the left and
right).

3. Click and hold the right-hand mouse button.

4. Move the mouse pointer to the right until the entire text of the static text
part is visible, then release the mouse button.

To add the entry field that receives the customer number:

1. Find the Entry Field part on the Parts Palette, drag it to the Customer
Inquiry window and drop it to the right of the Static Text part.

2. Invoke the properties notebook for this part by double-clicking on the
new entry field.

Tip

You can also open the properties notebook for a part by selecting
the Properties choice from the pop-up menu for the part, or by
selecting Selected and Properties from the GUI Designer menu bar
when the part is selected.

3. Change the Part name setting on the General page to CUSTNO. This is
the variable name by which the customer number can be accessed
later, within VisualAge for RPG code.

4. Click on the Data tab to get to the Data page.

5. Change the length to 7.

6. Go to the Validation page.

7. Select the Range radio button.

8. Enter 0000000 as the Minimum value and 9999999 as the Maximum value.

9. Double-click on the System icon of the Entry Field Part Properties
notebook (Figure 148) to close it.

236 VisualAge for RPG

Figure 148. Entry Field Part Properties Window

The static text and entry field parts are probably not aligned with one
another. To align them, do this:

1. Move the mouse pointer above and to the left of the static text part.

2. Click and hold the left-hand mouse button.

3. Drag the mouse down and to the right so that the two parts are covered
by a gray rectangle (Figure 149). This gray rectangle is referred to as a
selection rectangle.

Figure 149. Selection Rectangle

Exercise 1. Creating a Simple VisualAge for RPG Application 237

4. Release the left-hand mouse button. The two selected parts are
highlighted, with a dark border.

5. Move the mouse pointer to the static text part.

6. Click the right-hand mouse button. The pop-up menu for this part is
shown.

Tip

When more than one part is selected, invoking the pop-up menu for
one of the selected parts makes that part the anchor, meaning that
other items are aligned relative to that part.

7. Choose the Align... choice on the pop-up menu. A submenu is shown.

8. Choose the second alignment choice offered. As depicted by the
chosen icon, this aligns the two parts to an imaginary horizontal axis
running through the static text part (Figure 150).

Figure 150. Alignment Tools

238 VisualAge for RPG

To complete this window, we need to add two push buttons, an OK push
button to process the customer number and an Exit push button to end the
application. To add these push buttons:

1. Find the push button part on the Parts Palette.

2. Drag a push button part to the Customer Inquiry window and drop it
below the static text part.

3. Invoke the properties notebook for the push button.

4. Change the Part name setting on the General page to PSBOK and the
Text setting to OK.

5. Go to the Style page.

6. Select the check box for the Default option. This makes it the part that
gets selected when the Enter key is pressed.

7. Double-click on the System icon of the Push Button Part Properties
notebook to close it.

To create the second (Exit) push button, create a duplicate of the OK push
button:

1. Move the mouse pointer to the OK push button part and click the
right-hand mouse button to get the pop-up menu for this part.

2. Choose the Edit menu choice and the Duplicate submenu choice. A
second OK push button is created.

3. Move the mouse pointer to this new push button part.

4. Press and hold the right-hand mouse button and drag the push button
part below the entry field part.

5. Release the mouse button.

To change the text of the push button:

1. Press and hold the ALT key and select the push button part with the
left-hand mouse button. The text of the push button part becomes
editable (Figure 151).

2. Type in Exit .

3. Move the mouse pointer outside the push button and deselect the part
by pressing the left-hand mouse button.

Exercise 1. Creating a Simple VisualAge for RPG Application 239

Figure 151. Changing Push Button Label

Because this push button part has been created as a duplicate of another
push button, it adopted the same attributes with the exception of the part
name which is generated by the GUI Designer to avoid name conflicts in this
window. To change the name for the Exit push button part:

1. Invoke the properties notebook for the Exit push button part by
double-clicking on the button.

2. Change the Part name setting on the General page to PSBEXIT.

Note: The text is already changed to Exit.

3. Go to the Style page.

4. Deselect the check box for the Default option.

5. Double-click on the System icon of the properties notebook to close it.

Now, the two push button parts need to be aligned. The left border of the
OK push button must be aligned to the left border of the static text, while the
right border of the Exit push button needs to be aligned to the right border
of the entry field. To do the alignment:

1. Move the mouse pointer above and to the left of the static text part.

2. Press and hold the left-hand mouse button.

3. Drag the mouse so that the static text part and the OK push button part
are covered by the selection rectangle.

4. Release the mouse button. The two selected parts are highlighted.

5. Move the mouse pointer to the static text part, click the right-hand
mouse button to get the pop-up menu, and choose the Align... menu
choice from the pop-up menu.

240 VisualAge for RPG

6. Choose the fourth choice offered. This aligns the OK push button part to
the left border of the static text part.

To align the Exit push button with the entry field:

1. Move the mouse pointer above and to the left of the entry field part.

2. Press and hold the left-hand mouse button.

3. Drag the mouse so that the entry field part and the Exit push button are
covered by the selection rectangle.

4. Release the mouse button. The two selected parts are highlighted.

5. Move the mouse pointer to the entry field, click the right-hand mouse
button to get the pop-up menu, and choose the Align... menu choice
from the pop-up menu.

6. Choose the sixth choice offered. This aligns the Exit push button part to
the right border of the entry field part.

Now, align the two push button parts to each other horizontally in the same
way you aligned the static text and entry field parts.

Finally, the size of the window has to be changed to contain the parts within
it:

1. Move the mouse pointer over the upper right corner of the window; the
pointer becomes a double arrow.

2. Press and hold the right-hand mouse button.

3. Drag the mouse to resize the window until all of the parts are in the
middle of the window.

Note: None of the parts created within the Customer Inquiry window are
moved when the window is resized. This is because parts remain relative
to the left and bottom edges of the window. You need to be aware of this
since some resizing operations move parts so they are no longer visible.

The resulting window should look like in Figure 152:

Exercise 1. Creating a Simple VisualAge for RPG Application 241

Figure 152. Completed Customer Inquiry Window

Saving Your Project
Now that you have finished your first graphical user interface, you need to
save your project:

1. Move the mouse pointer to the Save Project icon on the tool bar.

Tip

As you move the mouse pointer over the tool bar, the information
area is updated to indicate the function of each button.

2. Click on this icon and save your project. Since this is a new project,
and has not yet been named (the title bar on the GUI Designer says
Untitled), the Save as Application window is displayed. This window is
used to name your project, indicate in which folder it should be saved,
and where the project files should be saved.

Make the following entries on this window:

In the Application name entry field, type a title for your application
(for example, Customer Inquiry).

Leave the folders selection as Desktop.

In the Source file entry field, type GuiDes2 .

Replace the value of the Source directory entry field with x:\GUIDES2 .

Note

Replace x with a drive letter valid on your workstation.

Press the OK push button to save your project. Notice that after the
project has been saved, the GUI Designer title bar is updated to
show the project name.

242 VisualAge for RPG

This ends Part 1 of this exercise. You use this project in the next part of this
exercise, so please do not exit the GUI Designer at this time.

Action Subroutines
You use the window that you created in the previous portion of the exercise.
You are adding an action subroutine for the Press event of each push
button. Recall that an action subroutine is the VisualAge for RPG logic that
is invoked to handle an event on the graphical user interface.

Creating an Action Subroutine
Now that you have finished designing this window, you can add some code
to give it some function. In this part of the exercise, you create the action
subroutine for the Exit push button.

1. If the design window for CUSTINQ Customer Inquiry is not open, open it
by double-clicking on its icon in the GUI Designer Project View
(Figure 153).

Figure 153. Opening a Window in the Project View

2. Select the Exit push button using left-hand mouse button. Click the
right-hand mouse button to get the pop-up menu. Choose Events and
choose Press from the submenu (Figure 154).

3. This starts the LPEX Editor (Figure 155).

Exercise 1. Creating a Simple VisualAge for RPG Application 243

Figure 154. Selecting an Event

Figure 155. LPEX Editor for Exit Push Button Action Subroutine

When the LPEX Editor first appears, notice that the BEGACT and
ENDACT statements have already been inserted into the action
subroutine. A number of comment lines are also included to encourage

244 VisualAge for RPG

documentation. Change the comments to include any further
information you consider necessary.

Although the framework for the RPG code has been built, the application
logic is not there. It must be added. In this example, the code to
terminate the application must be added.

4. Position the mouse pointer anywhere on the line of the BEGACT
operation code and click the left-hand mouse button. This positions the
cursor.

5. Choose the Edit option from the LPEX Editor menu bar and choose Insert
with Prompt from the pull-down menu.

Tip

You can also perform an Insert with Prompt by pressing Shift+F4.

Figure 156. Example of an Insert with Prompt Window

6. A prompt window is displayed (Figure 156). Type in the VisualAge for
RPG statement as shown below, which causes the program to terminate
by setting the last record indicator, LR, to ON. Type the following:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7..
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi

*
C MOVE *ON *INLR

7. Extensive online help is available for the VisualAge for RPG language.
Before leaving the prompt window shown in Figure 156, position the
cursor back into the Operation and Extender field. Press F1 (HELP). A
Help window for the current value of the Operation code field is
displayed. In this case, help for the MOVE operation code is shown. To
close the Help window, click on the icon at the top right corner of the
window.

8. Press the OK push button to add this line of code to the source.

Exercise 1. Creating a Simple VisualAge for RPG Application 245

9. To end prompting, press the Cancel push button on the Prompt window.

Tip

Most dialogs that have a Cancel push button can also be closed by
pressing the Esc key.

Notice that the line of code you added appears directly below the
BEGACT statement on the editing window.

10. To save this change, choose the File option from the LPEX Editor menu
bar and choose Save.

11. Close the LPEX Editor by double-clicking on its system menu.

Let's go over what an action subroutine is.

In the event-driven method of creating applications, what happens in the
program is controlled by the events occurring on the GUI. An event can be
linked to an action subroutine. An action subroutine is easily found in the
code for the complete VisualAge for RPG source; it begins with a BEGACT
operation code and ends with an ENDACT operation code. The logic
between these two statements is the business logic that is executed when
the event is generated.

Now, you can create an action subroutine for the OK push button.

Creating an Action Subroutine for the OK Push Button
You can add an action subroutine that changes the color of this push button
when it is pressed. If the color of the push button is red, it is changed to
gray; otherwise, it is set to red.

This code may not seem highly useful, but it does give you the opportunity
to experiment with two of the new operation codes:

SETATR (Set attribute)

GETATR (Get attribute)

Later, you can add some more meaningful logic for the Press event of this
push button. Now, however, start with this set of steps:

1. Select the OK push button with the left-hand mouse button. Use the
right-hand mouse button to get the pop-up menu. Choose Events from
the pop-up menu and choose Press, which invokes the LPEX Editor.

2. You want to write logic to get the background color of this push button.
You do this by using the GETATR operation code. Your logic determines
the new color to set it to; use the SETATR operation code to change it.

246 VisualAge for RPG

3. This logic sets the background color to red if it is not currently red;
otherwise, it sets the background color to gray. Your logic should look
like the code in Figure 157.

Tip

VisualAge for RPG statements can be entered in upper, lower, or mixed
case including part names and attribute names.

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

*
C PSBOK BEGACT PRESS CUSTINQ
C 'PSBOK' Getatr 'BackColor' BCOLOR 2 0
C If BCOLOR <> *RED
C 'PSBOK' Setatr *RED 'BackColor'
C Else
C 'PSBOK' Setatr *PALEGRAY 'BackColor'
C EndIf
C ENDACT

Figure 157. Example of Code to Change the Color of the OK Push Button

Tip

These are some of the basic LPEX Editor commands:

ALT+L marks a line.
ALT+U unmarks a line.
ALT+D deletes a marked line.
ALT+C copies a marked line.
ALT+M moves a marked line.

Press Enter to insert a new line.

RPGIV: Base for VisualAge for RPG Language Definition
The VisualAge for RPG language is based on the RPGIV language syntax.
Both upper and lower case letters are allowed in the source code. This
greatly enhances the readability of the code, as well as the ease of coding.
The second RPGIV feature that is notable in VisualAge for RPG is the 10
character names. Not only does this make the code more legible and the
names more meaningful, it also means that the RPG names can be the
same as those used in other AS/400 languages as well as in DDS without
the need to rename them.

Exercise 1. Creating a Simple VisualAge for RPG Application 247

LPEX Editor
Now that you have added the second action subroutine, let's look at some of
the features of the LPEX Editor so you can learn your way around and use
them more easily.

LPEX Editor tool bar
This version of the LPEX Editor also has a tool bar to access the most
commonly used LPEX Editor functions. By default, the tool bar, is not
displayed. To use the tool bar:

1. If an LPEX Editor window is not currently open, open one. You can open
an LPEX Editor window by choosing Project and Edit source code from
the GUI Designer menu bar.

2. Choose View from the LPEX Editor menu bar and choose Tool bar.

3. The LPEX Editor tool bar is displayed. As you move the mouse pointer
over the tool bar icons one by one, the LPEX Editor information area is
updated to indicate the function of each item.

4. To remove the tool bar, choose View and choose Tool bar.

Sequence Numbers
If you prefer, the LPEX Editor can display a prefix area in the source view.
This prefix area is similar to the one in SEU. It contains the statement
number as well as supporting line commands. To enable the sequence
numbers:

1. If an LPEX Editor window is not currently open, open one.

2. From the LPEX Editor menu bar, choose View and Sequence numbers.

3. The sequence numbers are displayed in the prefix area.

4. To execute a prefix area command, type the command in the prefix area
and press ALT+Enter.

5. To remove the prefix area, choose View and Sequence numbers.

Token Highlighting
The LPEX Editor highlights the tokens (specification fields) of your VisualAge
for RPG program source, providing a separate color for each to improve
readability.

When you make changes to a line, the token colors are updated only after
you move your cursor off the line.

To see how token highlighting works:

248 VisualAge for RPG

1. Move the cursor to the first calculation specification in the VisualAge for
RPG source.

2. Position the cursor to Column 7 (right next to the 'C'). See Figure 158.

Figure 158. Positioning the Cursor to Column 7

3. Type an asterisk (*).

4. Move the cursor off the line and watch what happens. The line where
the * was typed has become a comment line and its color changes
accordingly.

5. Move the cursor back to Column 7 and remove the * . Move the cursor
off that line of code.

6. The token highlighting changes to reflect that this is a noncommented
"C" specification.

Displaying Types of Lines
Using the LPEX Editor, it is possible to have only particular types of source
lines displayed at one time. To do this:

1. Choose View from the LPEX Editor menu bar. The options available on
the pull-down menu lists the types of line selections that can be made.

Exercise 1. Creating a Simple VisualAge for RPG Application 249

2. Choose Comments. The LPEX Editor now shows only those VisualAge
for RPG statements that are comments (see Figure 159).

Figure 159. Only Comment Lines are Shown

3. Choose View from the LPEX Editor menu bar and choose Include all. All
statement types are displayed.

In addition, the choices in the View pull-down menu can be used to
include only control specifications, user subroutines, and action
subroutines. The Include choice allows the selection of only those lines
containing a particular character string. As the LPEX Editor is fully
programmable, it is possible to create macros to include or exclude all
types of source statements based on specific criteria.

Syntax Checking
Syntax checking is available for VisualAge for RPG code and, by default, is
active. The syntax of the VisualAge for RPG code is checked automatically
when a change is made to a line and the cursor is moved off the line.

When errors are found, they are displayed in the message area at the
bottom of the LPEX Editor.

250 VisualAge for RPG

To see how syntax checking works:

1. Move the cursor to the statement containing the MOVE operation code.

Figure 160. Edit Window for Syntax Checking Example

2. Make sure the LPEX Editor is in Replace mode. The mode indicator is
directly to the right of the row and column information in Figure 160.
Use the Insert key to change modes.

3. Create an error by removing the "E" from the MOVE operation code (see
Figure 161).

Exercise 1. Creating a Simple VisualAge for RPG Application 251

Figure 161. Creating a Syntax Error

4. Move the cursor off this statement. An error message is displayed in
the message area at the bottom of the LPEX Editor window showing the
syntax error (see Figure 161).

5. Correct the error by typing the character E back into the operation code
MOVE.

6. Move the cursor to the next line. The message area is cleared.

Using Format Lines
The format line is at the top of the LPEX Editor window, just below the menu
bar and status line. A format line is used to help keep track of the columns
in a particular specification line. The content of the format line can vary to
reflect the particular type of specification being keyed (for example: F
specs, C specs, D specs, and so on).

To display a format line:

1. Position the cursor to any uncommented calculation specification line by
clicking on the line with the left-hand mouse button, or by using the
arrow keys and clicking the left-hand mouse button.

2. Choose the View menu bar choice and choose Refresh format line.

3. The format line changes to reflect a VisualAge for RPG calculation
specification since the cursor was on a C-specification when the format
line was requested.

252 VisualAge for RPG

Tip

The format line can also be refreshed by pressing Ct r l+R with the
cursor on a statement.

4. You can move the cursor right or left with the arrow keys to go from
character to character, or with the Tab key to go from field to field. An
indicator on the format line moves with the cursor to show in which
column the cursor is positioned. Try moving the cursor and watching
the indicator on the format line.

5. Move the cursor to a comment line (an asterisk in Column 7).

6. Choose the View menu bar choice and choose Refresh format line (or
press Ctrl+R). A format line for comment specifications is shown since
the cursor was on that type of specification when you requested a
refresh.

7. To select a format line for any specification you want, choose the View
menu bar choice and choose Select format line. The VisualAge for RPG
Format Line Selection window is shown.

8. Select the C-Calculation radio button and press the OK push button.
The format line changes to reflect a calculation specification.

Figure 162. Format Line Selection

Now that you have created the push button logic and explored some of the
features of the LPEX Editor, save your work by choosing File and Save from
the LPEX Editor menu bar. Close the LPEX Editor by double-clicking on its
system menu.

The next step is to build your application.

First close the Customer Inquiry design window by positioning the mouse
pointer anywhere on its title bar and clicking with the right-hand mouse

Exercise 1. Creating a Simple VisualAge for RPG Application 253

button. From the pop-up menu, choose Close. The closure process is
shown in Figure 163.

Figure 163. Closing the Design Window

Building the Application
Before the application can be run, it must be built.

With VisualAge for RPG, you can build an application that runs under
Windows 95 and NT or under Windows 3.1. To indicate which program type
you are going to create, you need to select the appropriate options. Before
starting the build, let's have a look at the build options dialog that allows
you to specify the options used to build this project (Figure 164).

1. Choose Project and Build options from the GUI Designer menu bar.
Since we are building a Windows NT/95 application, choose Windows
NT/95 from the sub-menu.

2. The VisualAge for RPG Windows NT/95 Build Options dialog is shown

254 VisualAge for RPG

Figure 164. Build Options Dialog for the Customer Inquiry Example

3. Notice the check box at the bottom of this window, Show this window
before each build. If this check box is selected, the Build Options dialog
is displayed each time a project build is performed.

4. Go to the Application page of the Build Options dialog.

5. The icon shown on this page is the icon that represents the application
executable on the desktop if the build is successful. For this exercise,
we use the default icon.

6. Close the Build Options dialog.

Now, let's build the project:

1. Choose Project from the GUI Designer menu bar and choose Build.

2. The VisualAge for RPG - Save project window appears. Press the Save
push button to save your project.

3. A status window is now shown to indicate that the project is being built.
When the build is complete, another window is shown to indicate
whether or not the build is successful.

Exercise 1. Creating a Simple VisualAge for RPG Application 255

Running the Application
If the build is successful, you are now ready to run the application. There
are two ways to do this:

1. From the Project pull-down menu, choose Run.

2. Press the tool bar icon for Run the project.

The window you designed is displayed. Press the OK push button and
check whether your logic is correct and the background color of the push
button changes.

To terminate the program, press the Exit push button.

This concludes the first exercise. End the GUI Designer by double-clicking
on its system icon.

256 VisualAge for RPG

Exercise 2. Exploring the GUI Designer and Accessing AS/400
Databases

During this exercise, you work on the application that you created in
Exercise 1. The following tasks are covered:

Starting the VisualAge for RPG GUI Designer for an existing application

Customizing the VisualAge for RPG GUI Designer

Creating a user-defined part and adding it to the Parts Palette and Parts
Catalog

Creating an instance of a user-defined part

Referencing fields in a DB2/400 database

Performing more alignment, sizing, and spacing

As a result of this exercise, you create a window that is used to display
customer information using the input from the window you created in
Exercise 1.

Objective
As a result of this exercise, you should be able to customize the VisualAge
for RPG GUI Designer to suit your needs and access an AS/400 system to:

Use existing DB2/400 field definitions.

Use externally described AS/400 files in your VisualAge for RPG
program.

Read data from the AS/400 system.

Read and write data from or to a window.

Build a VisualAge for RPG application accessing AS/400 data.

Run a VisualAge for RPG application accessing AS/400 data.

Starting GUI Designer for an Existing Project
When a VisualAge for RPG project has been saved, an icon that represents
it is shown on the desktop with the text that was specified when the project
was first saved.

 Copyright IBM Corp. 1998 257

Note

The icon is shown on the desktop if that is the location you chose on the
Save as dialog, as is the case in Exercise 1. It is possible to save a
project in another folder, in which case the icon is not visible until you
open that folder.

There are two methods of opening a VisualAge for RPG project. The first
involves dragging and dropping the project on the VisualAge for RPG GUI
Designer icon. For this exercise, we use the second method, opening a
project from its pop-up menu:

1. Locate the your project icon on the desktop.

2. Invoke its pop-menu by clicking the right-hand mouse button.

3. From the pop-up menu, choose Edit.

4. The VisualAge for RPG initialization window is displayed while GUI
Designer opens the project.

Customizing Components in VisualAge for RPG GUI Designer
Many of the VisualAge for RPG GUI Designer components can be
customized to suit your personal preferences. In the following tasks, you
perform some customization.

Customizing the Project View
As mentioned, the project view shows you the parts that make up your
project. By default, the project view is in tree view. To change the view,
follow these steps:

1. Choose View from the GUI Designer menu bar.

2. Choose Icons. The project view changes to display all design windows
with their name. Now let's return to the tree view.

3. Choose View from the GUI Designer menu bar and Tree followed by
Icons and Text.

The project view is refreshed and plus signs (+) are displayed next to
the window parts. A plus sign in a tree view indicates more items, or in
the case of the GUI Designer, parts in the window.

4. To display the additional parts, click on the plus sign with the left-hand
mouse button to expand it. Another icon named CANxxxxx is shown.
This is the Canvas part of the window.

258 VisualAge for RPG

5. Click on the + sign beside the CANxxxxx icon. The Canvas part is
expanded to show all of the parts you have created so far on this
window.

Tip

You can also change the project view by clicking with the right-hand
mouse button on the project view. A pop-up menu is displayed from
which you can choose a particular view.

Figure 165. Tree View of the Customer Inquiry Project

Customizing the Tool Bar
The tool bar can be customized by adding and removing icons. To see how
you can customize the tool bar, you add a new icon to it. These are the
steps:

1. Choose Options from the GUI Designer menu bar and Tool bar followed
by Change.... The Customize Tool Bar dialog is shown.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 259

Figure 166. Customizing the Tool Bar

Figure 166 shows all available icons on the left and the icons currently
selected for the tool bar on the right.

2. Move the mouse pointer over the Define Reference Fields icon in the
left-hand box, and press and hold the right-hand mouse button.

3. Drag the icon to the right-hand box, place it below the Define Logon
Information button and release the mouse button.

4. To place a separator between two icons on the tool bar, choose the
Separator icon on the left and drag it to the right above the Define Logon
Information icon. A space is added between the Define Reference Field
icon and the Define Logon Information icon.

5. Press the OK push button to apply the changes to the tool bar.

6. Notice that the GUI Designer menu bar has been updated to reflect your
changes (Figure 167).

260 VisualAge for RPG

Figure 167. Moving a Tool Bar Push Button

Customizing the Parts Palette
You can customize the Parts Palette to contain only those parts that you use
most often.

1. Find the Group box part on the Parts Palette.

2. Invoke the Group box pop-up menu by clicking on the right-hand mouse
button while the mouse pointer is over it.

3. Choose Remove (Figure 168).

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 261

Figure 168. Customizing the Parts Palette by Removing a Part

The Group box part has been removed from the Part Palette. If you exit the
VisualAge for RPG GUI Designer at this point, the Parts Palette does not
contain the Group box part when the GUI Designer is invoked again.

The Group box part has been removed from the Parts Palette only, not from
the GUI Designer. To return the Group box part to the Parts Palette, follow
these steps:

1. Click on the left-most icon (showing a notebook) below the palette in the
Parts Palette window.

2. The Parts catalog is displayed.

3. Select the Frames tab. As you can see, the Group box part is still
present in the Parts catalog.

Note

As the Group box part is an IBM-supplied part, you cannot modify it
(for example, change its name or icon) or delete it from the Parts
catalog. You can perform those actions on user-defined parts and
imported parts only.

4. Invoke the pop-up menu for the Group box part.

5. Choose Add to palette.

6. Click on the icon in the top right corner of the Parts catalog window.

262 VisualAge for RPG

7. The Parts Palette is displayed with the Group box in place.

Creating a User-Defined Part
When you are designing windows for your application, you are using parts
supplied with VisualAge for RPG. In addition to these parts, you can create
your own parts and add them to the Parts catalog and Parts Palette. These
are called user-defined parts.

You are going to enlarge the Customer Inquiry window to accommodate
some new parts:

1. Double-click on the CUSTINQ icon on the Project View to open the
Customer Inquiry design window (if it is not currently open).

2. Move the mouse pointer over the upper border of the window so that it
changes to a double arrow.

3. Press and hold the right-hand mouse button and size the window to
double its vertical size so additional parts can be added.

In this case, we are adding a logo for a fictitious company. The logo
consists of an image part and a static text part.

1. Find the Image part on the Parts Palette window and position the mouse
pointer over it.

2. Press and hold the right-hand mouse button and drag and drop the
Image part above the Enter Customer Number: static text in the
Customer Inquiry window.

3. Release right-hand mouse button.

4. Invoke the properties notebook for this part by double-clicking on Image
Part.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 263

Figure 169. Setting the Image Part File Name

5. Go to the Style page of the properties notebook by selecting the Style
tab.

6. Type x:\ADTSWIN\SYSTEM\APPEXE.ICO as the file name. This is an icon that
is shipped in the VisualAge for RPG directory. Replace the x with the
correct drive letter.

7. Deselect the Magnification panel as well as the Scroll bars setting by
clicking on the appropriate check boxes.

8. Double-click on the System icon of the Image Part Properties notebook
to close it.

9. Move the mouse pointer to the lower-right sizing handle of the Image
part. The mouse pointer changes to a double arrow.

10. Press and hold the right-hand mouse button and size the Image part so
that the icon fits into it.

264 VisualAge for RPG

Figure 170. Sizing the Image Part

To add the company name:

1. Find the Static Text part on the Parts Palette window and position the
mouse pointer on it.

2. Press and hold the right-hand mouse button, then drag the Static Text
icon and drop it next to the Image part in the Customer Inquiry window.

3. Release right-hand mouse button.

4. Invoke the Static Text Properties notebook for this part by
double-clicking on the icon.

5. Change the text setting to Client Server Applications Inc. (or any name
you want to give your fictitious company).

6. Go to the Font page of the properties notebook.

7. Select the Select font radio button. The Change font... push button is
enabled.

8. Press the Change font push button. The VisualAge for RPG - Change
Fonts window is shown.

9. Click on the button on the right side of the Name drop-down combination
box. A list of available fonts is shown (Figure 171).

10. Scroll through the list and select the Times New Roman font by clicking
on it.

11. Change the font size to 14 in the same way.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 265

Figure 171. Change Fonts Window

12. Press the OK push button.

13. To change the part's color, go to the Color page of the properties
notebook.

14. Select the Apply to Foreground radio button.

15. Select the Predefined colors radio button. The combination box
containing all available colors is enabled.

16. Select Red from the combination box.

17. Go to the Style page.

18. From the Vertical alignment options, select Center.

19. Double-click on the System icon of the Static Text Part Properties
notebook to close it.

Because the company name does not fit in the default size of the Static Text
Part (Figure 172), you need to enlarge this part:

266 VisualAge for RPG

1. Click on the static text part holding the company name to make it the
active part. The borders of the part are marked by placing the sizing
handles around it.

2. Move the mouse pointer to the lower-right sizing handle so that the
mouse pointer becomes a double arrow.

3. Press and hold the right-hand mouse button and move the mouse
pointer to the right and down until the entire company name is visible.

4. Release the mouse button.

Figure 172. Before Aligning the New Parts

Now the image part and the company name should be aligned with each
other. Using the mouse is the easiest way to select them, but in this
exercise, you use the keyboard instead. It is important to know this method
since there may be times when using the mouse selects parts you do not
want to be aligned. For example, you may want to align two parts without
affecting an intervening part.

To align the image with the static text:

1. Select the Image part with the mouse pointer.

2. Press the right-arrow key until the Static Text part with the company
name is highlighted.

3. Press and hold the CTRL key and press the space bar. This selects the
Static Text part without deselecting the Image part.

4. Invoke the pop-up menu of the Image part by pressing the right-hand
mouse button while the mouse pointer is placed over the part.

5. Choose Align and the second alignment choice offered, to horizontally
align the company name to the company logo.

6. If necessary, resize the window so that all of the contained parts reside
in the middle of the window.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 267

The intent of this exercise is to use these two parts as a logo that will be
reused on other windows. To do this, you create a user-defined part from
these parts and add it to the Parts Palette and the Parts catalog. You can
then add your company's logo and name by just dragging the new
user-defined part onto any design window and dropping it on the canvas.

To create the user-defined part:

1. Move the mouse pointer to the left and above the Image part.

2. Press and hold the left-hand mouse button and select the Image Part
containing the company's logo and the Static Text Part part containing
the company's name by dragging the mouse so that both parts are
within the selection rectangle.

3. Release the mouse button.

4. Invoke the pop-up menu of either of the two parts.

Figure 173. Adding a User-Defined Part to the Parts Catalog

5. Choose Add to catalog. The Create User-Defined Part window is shown.

6. Change the Part name to Company.

7. Press the Find... push button to locate an icon to represent this
user-defined part. This icon is shown on the Parts Catalog and Parts
Palette. The Find an icon for the part dialog is shown.

8. Type x:\ADTSWIN\SYSTEM\APPEXE.ICO in the file name entry field and press
the Enter key. Replace the x with a valid drive letter. When you return
to the Create User Defined Part window, the selected icon is displayed
(Figure 174).

268 VisualAge for RPG

Figure 174. Create User Defined Part WiIndow

9. Press the OK push button to add the new part to the Parts Catalog and
the Parts Palette.

10. Size the Parts Palette so that you can see the new user-defined part.

Note: As you move the mouse pointer over the user-defined part on the
Parts Palette, its name appears in the information area.

Figure 175. Parts Palette with a User-Defined Part

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 269

Close the Customer Inquiry window:

1. Invoke its pop-up menu by moving the mouse pointer to the title bar and
pressing the right-hand mouse button.

2. Choose Close.

Adding a New Window to Your Project
During this part of the exercise, you create a new Window with Canvas,
change its attributes, and add parts to it. This window shows the customer
information for the customer whose number was typed in the CUSTINQ
window:

To create the new window:

1. Find the Window with Canvas part on the Parts Palette and position the
mouse pointer on it.

2. Press and hold the right-hand mouse button.

3. Move the mouse until the Window part is placed somewhere within the
Project View of the VisualAge for RPG window.

4. Release the mouse button. A new design window is shown and an icon
is placed in the Project View.

5. If necessary, move the window so that it fits on the desktop.

To change the settings for the new window:

1. Double-click on the Window's title bar to open its properties notebook.

2. Change the part name on the General page of the Window Part
Properties notebook to CUSTINFOand its title to Customer Information .

3. Select the Startup tab.

4. Deselect the Open immediately option of the Display style settings
(Figure 176). This allows your program to control when the window is
displayed.

270 VisualAge for RPG

Figure 176. Window Part Properties Notebook

5. Double-click on the System icon of the Window Part Properties notebook
to close the notebook.

Creating an Instance of a User-Defined Part
Now you add the company logo and name to this window as you did for the
Customer Inquiry window at the beginning of this exercise. This time,
however, use the user-defined part you previously created. These are the
steps;

1. Find the user-defined Company part on the Parts Palette.

2. Drag and drop this part on the Customer Information window below the
title bar.

Using an AS/400 File as a Field Reference File
During this part of the exercise, you learn how to add fields to the GUI using
an AS/400 file as a field reference file and the Define Reference Field
feature of VisualAge for RPG. You are using a file on the AS/400 system
that contains the fields required for the Customer Information window.

The following entry fields are added to this window:

Customer number
Customer name
Contact person

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 271

Phone number
Customer address consisting of address, ZIP code, and city
ZIP location

Creating Field Headings
First, you create the field headings for these entry fields by using the static
text part:

1. Find the static text part in the Parts Palette.

2. Drag it to and drop it at the left side of the window below the Company
part.

3. Press and hold the ALT key and select the Static Text part with the
left-hand mouse button. The text becomes editable.

4. Type Customer Number as the text of the static text part.

5. Apply this text to the static text part by clicking the left-hand mouse
button anywhere outside of the part.

6. Select the Static Text part and resize it with the right mouse button so
the entire text is displayed (Figure 177).

Figure 177. Resizing the Static Text Part

Repeat these steps for the other fields of the Customer Information window.
Do not worry about the alignment of the parts at this point; alignment comes
later. After you add the static text parts, the Customer Information window
should resemble the example in Figure 178

272 VisualAge for RPG

Figure 178. Design Window with Logo and Field Headings

Adding the Entry Fields
You now add the entry fields to the Customer Information window. This
time, however, rather than using the Parts Palette, you create the entry
fields using the Define Reference Fields feature of VisualAge for RPG. This
feature allows you to create entry fields by direct reference to fields in a
DB2/400 database file.

Defining the Server
Before you can use the Define Reference Fields feature, you have to tell the
GUI Designer which server or AS/400 system you want to use:

1. Choose Server from the GUI Designer menu bar.

2. Choose Define server logon....

3. Check for the AS/400 server name in your installation or define a new
AS/400 system. Figure 180 shows two defined systems in VisualAge for
RPG.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 273

Figure 179. Define Server Logon

4. You should also have a defined router to the AS/400. Figure 180 shows
a connected server system with three active conversations.

Figure 180. Midrange Workspace — NS/Router

The above system is defined in your system's environment. Make sure
you have a working connection to your AS/400 as shown in Figure 181.

For the field reference file, a file named CUSTOML3 is used. It is located in
library GuiDes2 on the AS/400 server you just specified. To obtain a list of
the fields in this file:

1. Choose the Server menu item from the GUI Designer menu bar.

274 VisualAge for RPG

2. Choose the Define reference fields... menu item. The Define Reference
Fields window is shown (Figure 182)

Figure 181. AS/400 Connections

Figure 182. Define Reference Fields Window, Server List

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 275

Note

This list is different on your workstation. Select the server you
specified earlier.

3. Expand the correct server name in your server tree by clicking on the
plus (+) sign next to its name in the file hierarchy list. Since this may
be the first time you are accessing this server, the VisualAge for
RPG—Logon dialog may be shown (Figure 183) asking you for your
AS/400 user ID and password.

4. Type a valid user ID and password in both fields to log on to the AS/400
(Figure 183).

Figure 183. Logon Window

5. Press the OK push button to log on to the AS/400 system. If the logon is
successful, the libraries of your initial library list are displayed (*LIBL).

6. Find the library GuiDes2 in this list and expand it by clicking on the +
sign. The logical and physical files in this library are displayed.

Note

If the library GuiDes2 does not appear in the list of libraries, it may
not be in your library list. In that case, type GuiDes2 in the entry field
at the top of this window next to the server name and press Enter.

7. Click on the + next to CUSTOML3. A list of the record formats for this
file is shown (Figure 184).

8. Double-click on the only available format name CUSTOM01. All fields in
this record format are shown in the Fields list.

276 VisualAge for RPG

Figure 184. Define Reference Fields—Field List

9. Double-click on the first field, CUSTNO. The VisualAge for
RPG—Database Field Description window is shown with detailed
information about the field.

10. Press the OK push button to close this window.

You can now create the necessary entry field parts for the Customer
Information window (Figure 185) using some of the fields of the CUSTOM01
record format as references:

1. Rearrange the Customer Information window and the VisualAge for
RPG—Define Reference Field window so that you can see them both.

2. Move the mouse pointer over the CUSTNO entry in the fields list.

3. Press and hold the right-hand mouse button and drag the mouse pointer
next to the Customer Number static text part on the Customer
Information window.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 277

Figure 185. Dragging a Reference Field

4. Release the mouse button. An entry field part is created.

5. Double-click on this new entry field part to invoke its properties
notebook (Figure 186).

6. Go to the Reference page of the Entry Field Part Properties notebook.
This page shows the AS/400 database file this field is taking its data
from.

278 VisualAge for RPG

Figure 186. Reference Field Page

7. Go to the Style page of the properties notebook and select the Read
only check box to prevent the customer number from being changed.

8. Go to the Data page of the properties notebook and verify that these
attributes have been adopted from the referenced field.

9. Double-click on the System icon of the properties notebook to close it.

Create the other entry field parts for the Customer Information window in the
same way, using the following AS/400 fields as a reference:

CUSTNA
CONTAC
CPHONE
CADDR
CZIP
CCITY
CZIPLO

An example of the completed window is shown in Figure 187.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 279

Figure 187. Window with Entry Fields

Note that the part created from the ZIP location field CZIPLO is not an entry
field part, but a combination box part. This is because the VALUES DDS
keyword is specified for this field. You can check this by looking at the
details for this field (double-click on CZIPLO in the Fields list of the Database
Reference Field window.

Close the Database Reference Field window by pressing the Close push
button.

More Alignment, Sizing, and Spacing
Note

Feel free to skip some of the alignment and spacing exercises suggested
here if you feel comfortable with using these tools.

Now that all the parts required to make up the Customer Information window
are created, they still need to be arranged within the window. First, you
align all static text parts containing the description of the information shown
in the Customer Information window to the same vertical axis:

1. Move the mouse pointer above the static text part Customer Number
and to the left of all of the static text parts.

280 VisualAge for RPG

2. Press and hold the left-hand mouse button and drag to create a
selection rectangle that covers all static text parts.

3. Release the mouse button. All static text parts become highlighted.

4. Get the pop-up menu of the Customer Number static text part by clicking
on the right-hand mouse button with the mouse pointer located
somewhere over this part.

5. Choose Align and the fourth alignment choice offered. All static text
parts are aligned to the left.

Tip

In case you selected the wrong alignment option and the selected parts
overlay each other, you can use the Undo function in the GUI Designer to
restore the parts to their original position. To undo the alignment,
choose Edit from the menu bar and choose Undo.

The next step is used to even out the spaces between the static text parts
Customer Name, Customer Contact, Phone Number and Address.

1. Select these static text parts in the same way you just did for vertical
alignment.

2. Invoke the pop-up menu of one of the parts.

3. Choose Space and the fourth menu item.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 281

Figure 188. Spacing Static Text Parts

This evens out the spaces between the selected parts.

Now you align each entry field part with its corresponding static text part:

1. Draw a selection rectangle around the Customer Number static text part
and the CUSTNO entry field part.

2. Invoke the pop-up menu for the Customer Number static text part.

3. Choose Align and the second alignment choice. The selected parts are
aligned to an imaginary horizontal line running through the center of the
Customer Number static text part.

4. Repeat these steps for the Customer Name static text part and the
CUSTNA entry field part as well as for the Address static text part and
the CADDR entry field.

5. For the ZIP Location static text part and the CZIPLO combination box
part, you have to select the first alignment choice offered to get them
aligned properly (Figure 189). This is because a combination box part
consists not only of an entry field, but also of the value list, which makes
it vertically larger than a static text part.

282 VisualAge for RPG

Note

You may need to drag the selection rectangle outside the Customer
Information window to get the combination box selected.

Figure 189. Alignment

To align the CONTAC entry field part as well as the CPHONE entry field part
to their corresponding static text parts, you can use the spacing tool again:

1. Draw a selection rectangle around the entry field parts CUSTNA,
CONTAC, CPHONE, and CADDR parts.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 283

2. Call the pop-up menu of any of the selected parts, choose Space, and
select the fourth choice offered (Figure 189). The spaces between the
entry field parts are evened out.

Now align all entry field parts except CCITY to one vertical axis:

1. Draw a selection rectangle around all of the entry field parts with the
exception of the CCITY part.

Figure 190. Left Align Entry Fields

2. Choose the fourth choice out of the Align menu item from the pop-up
menu of the CUSTNO entry field part (Figure 190).

3. If the CCITY entry field part became overlapped by the CZIP entry field
part, move the CCITY entry field part to the right of the CZIP entry field
part.

Change the horizontal spaces between the entry field part CZIP and the
combination box part CZIPLO on the one hand and the entry field part
CADDR on the other hand to be equal to the space between the entry field
parts CPHONE and CADDR. To do so,

1. Draw a selection rectangle around the entry field parts CPHONE,
CADDR, CZIP, and CZIPLO.

284 VisualAge for RPG

2. Bring up the pop-up memu of any of the selected parts and choose
Space and the fifth choice offered. This uses the space between the
entry field parts CPHONE and CADDR and applies it to the other
selected parts so they are evenly spaced.

Finally, the entry field part CCITY and the static text part ZIP Location need
to be horizontally aligned to the entry field parts CZIP and CZIPLO.

1. Draw a selection rectangle around the entry field parts CZIP and CCITY.

2. Invoke the pop-up menu of the CZIP entry field part.

3. Choose Align and the second alignment choice offered.

4. Repeat these steps to align the ZIP Location static text part to the
CZIPLO entry field part.

The aligned window is shown in Figure 191.

Figure 191. Customer Information Window After Alignment

Changing the Size of Some Fields
You may also want to change the size of some entry field parts that are
supposed to display strings but are too long to be displayed using the

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 285

default size of the entry field part on the window. You can do this now for
the entry field parts CUSTNA, CONTAC, and CADDR.

Even though you use the Define Field Reference feature that sizes the fields
according to their definition, you may want to go through this exercise to
become familiar with the sizing tools:

1. Click on the CUSTNA entry field part to make it the active part.

2. Drag the middle of the right-side sizing handles until the field size is
enlarged to the right border of the CCITY entry field part (Figure 192).

Figure 192. Sizing the CUSTNA Entry Field

3. Use the arrow keys to get to the CONTAC entry field part.

4. Press and hold the CTRL key and press the space bar to select the part.

5. Use the arrow keys to get to the CADDR entry field part.

6. Select this part also by using the CTRL key and the space bar.

7. Invoke the pop-up menu for the CUSTNA entry field part.

8. Choose Size and the first choice offered. The size of the entry field
parts CONTAC and CADDR are enlarged to the size of the CUSTNA
entry field part.

286 VisualAge for RPG

Figure 193. Resize Entry Fields CONTAC and CADDR

9. Deselect the Grid menu item of the Customer Information window's
pop-up menu.

Now you add a push button part to the Customer Information window that
allows the user to close this window and return to the Customer Inquiry
window:

1. Move the mouse pointer to the bottom border of the Customer
Information window so that it becomes a double arrow.

2. Press and hold the right-hand mouse button and drag the window
border so that it can hold the additional push button part (Figure 194).

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 287

Figure 194. Resize Customer Information Window

All parts contained in the Customer Information window have also been
moved to the bottom of the window. This happens because the focal
point for all parts in a window is the lower left corner of the window.

3. Draw a selection rectangle around all of the parts on the Customer
Information window.

4. Move the mouse pointer over the static text part that holds the company
name Client Server Applications Inc.

5. Press and hold the right-hand mouse button and drag the company
name static text part to just below the title bar of the Customer
Information window.

6. Release the mouse button. All of the selected parts have been moved.

7. Find the push button part on the Parts Palette.

8. Press and hold the right-hand mouse button and drag the push button
part below the ZIP Location static text part, then release the mouse
button.

288 VisualAge for RPG

9. To align the push button with the static text part above, select the ZIP
Location static text part and the push button.

10. Invoke the pop-up menu of the static text part.

11. Choose Align and the fourth alignment choice offered. The push button
part is vertically aligned to the static text parts of the window.

12. Double-click on the push button part to get the properties notebook for
this part.

13. Change the part name to INFOOK and the text to OK.

14. Go to the Style page of the properties notebook.

15. Select the Default check box. This causes the push button's Press event
action subroutine to be invoked when the Enter key is pressed.

16. Double-click on the System icon of the properties notebook to close it.

The window should resemble Figure 195.

Figure 195. Final Window Design

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 289

To save the changes to your project and exit the GUI Designer, click on the
Save Project icon on the tool bar (the third icon if you have not customized
it) and your project is saved.

Adding More Logic to Your Project
The objective of this part of the exercise is to add the necessary logic to use
the Customer Information window you have just designed with customer
data.

There are several steps to follow:

1. Add a file definition to your program.

2. Change the code for the OK push button's Press event on the Customer
Inquiry window to display the Customer Information window.

3. Create the code for the OK push button's Press event to close the
Customer Information window.

4. Build the application.

5. Run the application.

The first step is to define the DB2/400 file in your program:

1. Choose the Project option from the GUI Designer menu bar and choose
Edit source code.

2. Scroll to the H specification.

3. Position the mouse cursor on the H specification.

4. Choose Edit from the LPEX Editor menu bar and choose Insert Prompt.

5. Press the Select push button and select the F specification radio button.
Press the OK push button and you see the prompt window for an F
specification.

6. Fill in the following values:

File name: CUSTOML3
File type: I
File designation: F
File Format: E
Record address type: K
Device: DISK
Keywords: REMOTE

290 VisualAge for RPG

Note

With the exception of the REMOTE keyword, all entries are the same
as RPGIV on the AS/400 system.

7. To save this input, choose File from the LPEX Editor menu bar and
choose Save.

8. Close the LPEX Editor by double-clicking with the left-hand mouse button
on its system menu.

Changing the OK Button Action Subroutine
You now add the logic for the Press event of the OK push button on the
Customer Inquiry design window.

Note

Before you go ahead and code the real logic for this action subroutine,
you may want to remove the three lines of code from Exercise 1. That
code was created only to demonstrate events and action subroutines. If
you prefer the push button to change color, leave the code in.

The RPG logic you are coding now should perform the following functions:

1. Get the customer number from the entry field on the Customer Inquiry
window.

2. Retrieve customer detail from the AS/400 database file.

3. Display the second window (Customer Information).

4. Put data from the database file onto the second window.

Let's get started:

1. Using the pop-up menu from the OK push button, bring up the action
subroutine for the Press event. If you did not remove it, you should see
the code you created in Exercise 1 that changed the color of the push
button.

2. The first step is to get the customer number entered in the CUSTNO
entry field.

3. There are two methods for getting this value, but code only one in your
action subroutine:

a. Using the READ operation code:

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 291

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++
C READ 'CUSTINQ'

b. Using the GETATR operation code:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++
C 'CUSTNO' GETATR 'TEXT' CUSTNO

4. With the value of the field CUSTNO, you now have to chain to the
database file CUSTOML3.

Add the CHAIN statement with an indicator in the HI value column
("record not found").

You may want to use F4 for prompting to get the right column for this
indicator, or try out the syntax checker in the LPEX Editor.

Your CHAIN statement should look like this:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C CUSTNO CHAIN CUSTOML3 50

5. Add the following statement, which is true if the CHAIN was successful:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C If *IN50 = *OFF

6. Now you have to code a SHOWWIN operation code to get your second
window displayed:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C SHOWWIN 'CUSTINFO'

7. You also have to get the data from the RPG program storage to this
Customer Information window, which is similar to a WRITE to a record
format in an AS/400 display file. So code this:

292 VisualAge for RPG

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C WRITE 'CUSTINFO'

8. Now code the following to complete the IF condition:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C ENDIF

Your completed code should look like the following:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq
C PSBOK BEGACT PRESS CUSTINQ
C Read 'CUSTINQ'
C CustNo CHAIN CUSTOML3 50
C If *IN50 = *OFF
C ShowWin 'CustInfo'
C Write 'CustInfo'
C EndIf
C ENDACT

This completes this action subroutine for now. You can add some more
function after we look at the runtime behavior. To save your changes,
choose File from the LPEX Editor menu bar and choose Save. Close the
LPEX Editor by double-clicking with left-hand mouse button on its system
menu.

Adding an Action Subroutine to the Customer Information Window
In this part of the exercise, you add some code to make the Customer
Information window invisible because the window should disappear when
the OK button is pressed.

The instructions in the following tasks are not as detailed because you are
now familiar with the VisualAge for RPG GUI Designer development
environment.

Perform the following steps:

1. Create an action subroutine for the Press event of the OK push button
on the Customer Information window.

2. Add a statement to set the Visible attribute for the window to OFF.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 293

3. Save this action subroutine.

You can close the design windows at this point. To close a design window,
position the mouse pointer on the window's title bar and click the right-hand
mouse button. From the pop-up menu, choose Close.

Building the Application
Before you build the application, you have to specify where the compiler can
find the AS/400 information it needs at compile time. In this case, you have
to define on which server (AS/400 system) the file your program is using is
located and which file you are using.

To enter this information, choose Server and Define AS/400 information...
from the GUI Designer menu bar. The Define AS/400 Information notebook
is displayed. This notebook has several pages on which you define
information about your server and files (Figure 196).

Figure 196. Define AS/400 Information Window

For this task, you need to define a server and a file:

1. On the Servers page, press the Add... push button. The Add Server
Alias Name dialog is shown. Type an alias name in the Server alias
entry field. From the drop-down combination box, select the same
server you used when using the Define Reference Fields function.

294 VisualAge for RPG

2. Press the OK push button to add this server alias to the list on the
Servers page.

3. Go to the Files page.

4. Press the Add... push button to add a new file definition. The Add File
Alias Name dialog is shown.

5. In the File Alias entry field, type the name of the file you specified on the
File specification in your program (CUSTOML3).

6. In the Remote File entry field, type the actual file name
(GUIDES2/CUSTOML3).

7. From the Server Alias drop-down combination box, select the server
alias name you defined in a previous step.

8. Press the OK push button to add this file definition.

9. Close the Define AS/400 Information dialog by double-clicking on its
system menu.

With this information set, you can now build the project.

1. To build (compile) the project, choose Project from the GUI Designer
menu bar and choose Build.

2. If you made changes to any of the design windows, a message window
is displayed prompting you to decide if the project should be saved first.
Answer "Yes" to this message.

3. A status window is displayed indicating that the build is in progress.

4. Once the build is complete, a completion window is displayed, indicating
whether the build was successful or not.

Viewing the Compile Listing
Recall that the VisualAge for RPG compiler is resident on the workstation.
Therefore, the compile listing is also resident on the workstation. At any
time, it is possible to view the files that make up your project, including the
compile listing.

To display the compile listing for this latest build:

1. Choose Windows on the GUI Designer menu bar.

2. From the pull-down, choose Project Organizer (Figure 197).

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 295

Figure 197. Displaying the Project Files

3. Figure 197 shows an icon view of the files that make up a project. Find
the one that has a .LST file extension and select it with the left-hand
mouse button. Click with the right-hand mouse button to get a pop-up
menu for the actions allowed for this file. Choose Browse.

Figure 198. Icon View of the Project

4. The compile listing is now displayed in Figure 198. Note the similarities
between the VisualAge for RPG compile listing and the compiler output
of the AS/400 RPG compilers.

296 VisualAge for RPG

Testing Your Application
1. If the compile is successful, you can run your program. There are two

ways to do this:

a. Choose Project from the GUI Designer menu bar and choose Run.

b. Click on the Run icon on the tool bar (the running man).

2. The first window should be displayed. Type 0010100 as the customer
number. Notice that you have to move your cursor to the field before
typing in the number. In the next exercise, you will improve this.

3. Press the OK push button. This brings up the second window with the
customer information filled in.

4. If you type in a wrong customer number, nothing happens since you did
not code any error handling.

5. Go to the second window again and use the OK button; the window is
invisible.

6. Now try to get to the second window again with a valid customer
number.

7. You receive a runtime error because the SHOWWIN operation code is
trying to create a window that has already been created.

8. The next exercise shows why this is happening and how to handle it.

9. Now press the Exit button to terminate the application.

Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases 297

298 VisualAge for RPG

Exercise 3. Error Handling, Action Links, and Messages

In this exercise, you learn to handle error conditions and deal with the
runtime behavior of the VisualAge for RPG environment. You also learn
about action links and VisualAge for RPG messages. You do this by:

1. Removing the runtime error when using SHOWWIN twice

2. Positioning the cursor on an entry field

3. Linking two events to one action subroutine

4. Creating messages and displaying message boxes

5. Debugging your application

6. Building the application

7. Running the application

Objective
As a result of this exercise, you can:

Handle runtime errors in your application.

Understand how to position the cursor.

Link multiple events to one action subroutine.

Use messages and message boxes.

Use the VisualAge for RPG debugger.

Enhancing Runtime Behavior
In this exercise, you are enhancing the application that you built during the
previous exercises. The runtime error and cursor positioning problems are
fixed.

Handling a Runtime Error
When you ran your application, a runtime error was displayed when you
clicked on the OK button in the Customer Inquiry window the second time.
This is because the SHOWWIN operation code is executed again that
attempts to create the Customer Information window again. Since it has
already been created, the runtime error occurs. The runtime error is
displayed because you have not coded any error handling in the application.

As is typical in RPG, you use an error indicator on the operation code to
deal with the error, and have a conditional statement to handle the error

 Copyright IBM Corp. 1998 299

depending on the state of the error indicator. The logic inside the IF
condition uses the SETATR operation code to make the Customer
Information window visible if the SHOWWIN operation fails. Remember that
clicking on the OK push button on the Customer Information window made
this window invisible.

Let's update the logic to handle the runtime error:

1. Edit the Press action subroutine for the OK button in the Customer
Inquiry window.

2. Add an error indicator to the SHOWWIN operation code statement. This
traps the runtime error. You now have to make the window visible
without having to create it again.

3. Add a conditional statement for checking the error indicator. If the
indicator is on, you want to make the window visible and bring it to the
front by giving it the focus.

4. Add code to set the Visible attribute for the Customer Information
window to 1.

5. Now you need to add a line of code to give the window focus (that is,
make it the top window), by setting its Focus attribute to 1, as shown in
Figure 199.

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

*
C PSBOK BEGACT PRESS CUSTINQ
C Read 'CustInq'
C CustNo Chain CustomLF 50
C If *IN50 = *OFF
C ShowWin 'CustInfo' 51
C If *IN51 = *ON
C Eval %Setatr('CustInfo':'CustInfo':'Visible')=1
C Eval %Setatr('CustInfo':'CustInfo':'Focus')=1
C EndIf
C Write 'CustInfo'
C EndIf
C ENDACT

*

Figure 199. Example of Error Handling Code

6. Do not forget to add the ENDIF operation code to complete the IF
condition.

300 VisualAge for RPG

7. Save your changes.

Now you add code to position the cursor in the CUSTNO entry field
(Figure 200). For this task, you use the Activate event to move the cursor to
the entry field. This event occurs when the user clicks on a window with the
mouse. The steps are these:

1. Create an action subroutine for the Customer Inquiry window Activate
event.

2. Add a statement that uses the SETATR operation code to set the Focus
attribute of the CUSTNO entry field to 1.

Figure 200. Code to Position Cursor

3. Save your changes and build the project.

Running the Improved Application
To see the improvement, do the following:

1. After successfully building your application, run it again.

2. Enter the customer number 0010200 and click on OK to display the
second window with the customer information.

3. Now click on the OK button on the Customer Information window; this
brings you back to Customer Inquiry but the cursor is not positioned on
the entry field.

Exercise 3. Error Handling, Action Links, and Messages 301

4. Click on the OK button on the Customer Inquiry window again. The
runtime error message that you got before does not appear, so your
error-handling code is working.

Working with Action Links
We still have the problem of the cursor not going to the customer number
entry field when the first Customer Inquiry window is first displayed. The
Activate event for the window already has the logic to move the cursor.
Rather than rewriting this logic, use the Action Link feature of VisualAge for
RPG. This feature allows more than one event to invoke the same action
subroutine.

You use this feature to have the Customer Inquiry windows Create event call
the action subroutine already defined for the Activate event.

First, let's look at the Action Link window. If an LPEX Editor window is not
already opened, open one by choosing Project and Edit source code from
the GUI Designer menu bar.

From the LPEX Editor menu bar, choose Edit and Action subroutines.... The
VisualAge for RPG - Action subroutines : Events View window is displayed.
Enlarge this window so you can see all of the information. Then,

1. From the Windows list box, select CUSTINQ by clicking on it with the
left-hand mouse button.

2. This fills the Parts list box with all of the parts on that window.

Since you are interested in the events for the Customer Inquiry window,
select CUSTINQ from the Parts list box.

3. You now see the Events list box filled with all valid events for a window.

Choose the Create event in the Events list box and select
CUSTINQ+ACTIVATE+CUSTINQ in the Action subroutines list box
(Figure 201).

The Create link push button is now enabled.

302 VisualAge for RPG

Figure 201. Creating an Action Link

4. Click on the Create link push button. This links the Create event to the
Activate event action subroutine.

5. Close this window by clicking on the Close push button.

6. Build your application and test it by noting that the cursor is positioned
in the CUSTNO field when the window is first displayed.

Using Message Boxes
As the application is now, if the user enters a customer number that is not
in the database, no action is performed and no message is displayed. In
the next exercise task, you add logic that causes a message box to be
displayed to inform the user that the customer number is invalid.

There are two methods of defining the message text for messages in
VisualAge for RPG:

1. Define the message text and message box style with D specifications in
your VisualAge for RPG source.

2. Define a message in the GUI Designer.

In either case, the DSPLY operation code is used to display the message in
a message box.

In this exercise task, you define the message in the GUI Designer and add a
DSPLY opcode to your VisualAge for RPG logic to display a message if the
customer number is not found in the database.

Exercise 3. Error Handling, Action Links, and Messages 303

Let's start by defining the message:

1. Choose Project from the GUI Designer menu bar and choose Define
messages....

2. In the Define Messages window, click on the Create... push button. The
window in Figure 202 is displayed, which allows you to define a new
message.

Figure 202. Creating a Message

3. Scroll through the different types of messages available and select any
one. The message type determines which icon is displayed on the
message box.

4. Type some message text in the Message entry box. This is the text that
is shown on the message box.

5. You may also type some additional message text in the Message Help
entry box. This text is shown when the Help push button on the
message box is clicked.

6. Select the Movable check box. If this is not checked, the user cannot
move the message box.

304 VisualAge for RPG

7. Select the push buttons to appear on the message box from the Buttons
drop-down combination box. For this exercise, choose just the OK
button.

8. Click on Save to save your message definition.

9. MSG0001 now is shown in the Define Messages window.

Note

VisualAge for RPG assigns message numbers. Message numbers
cannot be changed by the user.

10. Click on the OK push button on the Define Messages window.

Now, you need to add the code to your action subroutine to display the
message you have just created.

1. Open the Customer Inquiry window if it is not already opened and
choose the PRESS event for the OK push button to edit its action
subroutine.

2. Add the following statements after the CHAIN statement to display the
message if the record is not found:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7..
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C ELSE
C *MSG0001 DSPLY REPLY 9 0

3. Now add a statement to change the background color of the entry field
to red using the SETATR operation code.

Tip

The part name goes in Factor 1, the attribute value in Factor 2, and
the attribute name in the Result field. Do not forget the quotes.

All of the online manuals including the Parts Reference are also
available from the LPEX Editor Help menu.

To see a list of attributes that are allowed for a specific part type,
select the part on the Parts Palette by selecting it with the left-hand
mouse button and press F1. Help is displayed for the part along with
hyperlinks to that part's attributes.

Exercise 3. Error Handling, Action Links, and Messages 305

4. Build and run the application. Enter an invalid customer number, such
as 9999999 . A message box should be displayed with the message text
you defined earlier.

Notice that a Help push button has been added to the message box.
This is because you specified second-level message text. Click on the
Help push button to see the second-level help you typed when you
created the message.

This is an example of how messages are created in VisualAge for RPG and
how they can be displayed with the DSPLY operation code. Messages are
used elsewhere in VisualAge for RPG, including the Message Subfile part
and label substitution. Those areas are not covered in this exercise.

Optional Exercise: More Message Box Handling
The first part illustrated how to display a message using the DSPLY
operation code and specifying the message number in Factor 1. There are
other ways of displaying a message or a text with the DSPLY operation
code.

The next method is similar to the one in the previous exercise task.
However, instead of specifying a message number in Factor 1, you define
the message on a Definition specification. The following steps demonstrate
how to do this:

Tip

D specifications must follow any File (F) specifications and come before
any Calculation (C) specifications.

Enter the following specifications in your program:

(Notice that the Definition type is M. This is unique for VisualAge for
RPG, and indicates this definition specification is defining a message.)

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++

*
DInfoBox M STYLE(*INFO)
D BUTTON(*RETRY: *ABORT: *ENTER)

*
DMSG1 M MSGNBR(*MSG0001)

Replace your current DSPLY operation code with the following code:

306 VisualAge for RPG

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C MSG1 DSPLY InfoBox Reply 9 0

Build your application and run it. When the message box is displayed,
notice that the push buttons and the icon are different from the ones you
specified when you created the message. By using this method of
displaying a message, you can override the attributes defined when the
message was created.

Using Message Substitution
VisualAge for RPG messages also support message substitution. Using
message substitution, the value of a program variable can be displayed in
the message text.

For this exercise task, you create a new message that shows the invalid
customer number in the message box.

Create a new message as you did for the first message. This time, for
the message text, use message substitution. Type the following
information as the message text:

Customer number %1 is not valid. Please enter a valid
customer number.

Note the difference. The message substitution variable %1 has been
added. This variable is replaced at runtime with the value of a variable
in your program.

Add the following D specifications to your program. The keyword
MSGDATA is used to define which program variable should be used as
the message substitution text. In this case, you are using the customer
number entered by the user. Enter this:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++

*
DMSG2 M MSGNBR(*MSG0002)
D MSGDATA(CUSTNO)

*

Replace the current DSPLY operation code with the following code:

Exercise 3. Error Handling, Action Links, and Messages 307

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C MSG2 DSPLY Reply 9 0

Build your application and run it. Now, when the message box is displayed,
the customer number should be displayed in the message box when you
enter an invalid number.

Defining Message Text in the Program
An additional variation for displaying a message is to define the text of the
message in your VisualAge for RPG program. This is done as follows:

Add the following D specifications to your program. The TEXT field
defines the message text to be displayed. Enter this:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++

*
DWarnBox M STYLE(*WARN)
D BUTTON(*YESBUTTON:*NOBUTTON)

*
DTEXT M MSGTEXT('Number NOT found')

*

Replace the current DSPLY operation code with the following code:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C TEXT DSPLY WarnBox Reply 9 0

Build your application and run it. Observe the message text on the
message box.

Using Action Links to Navigate Your Logic
The Action link window can also provide you with some help in navigating
through your application logic. This window is accessed from the LPEX
Editor:

1. If an LPEX Editor window is not currently open, choose Project and Edit
source code from the GUI Designer menu bar. The LPEX Editor window
is shown.

2. From the LPEX Editor menu bar, choose Edit and Action subroutines....
The Action subroutines : Events View window is shown.

308 VisualAge for RPG

3. Click on the View subroutines push button. This gives you a different
view of all the action links in your program (Figure 203). Click on the
CUSTINQ+ACTIVATE+CUSTINQ action subroutine and the second list
box shows all of the action links for this action subroutine.

Figure 203. Navigate with Action Link Window

4. To view the logic for an action subroutine, double-click on an action
subroutine name. The LPEX Editor positions the source to that action
subroutine.

Debugging a VisualAge for RPG Application
VisualAge for RPG includes a powerful debugger to help in locating logic
errors in your program. This short exercise task illustrates some of the
basic debugger features.

The debugger can be started by clicking on the debug tool bar icon or from
the GUI Designer menu bar by choosing Project and Debug.

1. The debugger Debug Session Control dialog is displayed, followed by
another window with the source view of your program.

2. In the source view (Figure 204), scroll to the Activate action subroutine.

Exercise 3. Error Handling, Action Links, and Messages 309

Figure 204. Debug Source View

3. Set a breakpoint on the statement that sets the focus attribute by
double-clicking on the statement number.

4. Run your application by clicking on the Run icon on the source view tool
bar. The Run icon is the one with the green circle and running person.

Tip

As you move the mouse pointer over the Debugger tool bar icons
one by one, a short description of each icon is displayed.

5. When the break point is reached, the statement is highlighted.

6. To examine the contents of a program variable, scroll to any statement
that contains a variable.

Note

This technique does not work on the EVAL operation code.

7. Double-click on the variable name. The Program Monitor window is
shown with the variable contents.

8. Allow the program to run by clicking on the Run icon on the Debugger
tool bar.

310 VisualAge for RPG

9. Click on the Exit button on the Customer Inquiry window to end the
debug session and your program.

This concludes this exercise. In the next exercise, you make more
enhancements to your application by adding a Subfile part and some
Application Help.

End the GUI Designer by double-clicking on its system menu.

Exercise 3. Error Handling, Action Links, and Messages 311

312 VisualAge for RPG

Exercise 4. Creating a Component with Subfile and Application Help

In this exercise, you enhance an existing application by creating a new
component with a Subfile part. In addition, you add some help to your
application. You are also making changes to your current application.
Currently, the Customer Inquiry window has two push buttons:

DETAIL

EXIT

You'll by adding a LIST push button that starts the new subfile component
that you are about to create in this exercise.

During this exercise, you:

1. Create a new component in a project.

2. Create a subfile and add fields.

3. Write the VisualAge for RPG logic to write records to the subfile part.

4. Write the VisualAge for RPG logic to get data from a subfile part.

5. Add application help to your application.

6. Build the application.

7. Run the application.

Objective
As a result of this exercise, you will know how to write applications
containing multiple components, subfile parts, and application help by:

Adding a new component to an existing project.

Creating subfiles with multiple fields.

Writing VisualAge for RPG logic to display data in a subfile part.

Writing VisualAge for RPG logic to respond to subfile events.

Writing application help using the IPF tag language.

Creating a Subfile
In this exercise, you are enhancing an application that was created earlier.
As the application is now, the user must know ahead of time what a valid
customer number is.

 Copyright IBM Corp. 1998 313

The enhancement you make is to add to the first window, Customer Inquiry,
a push button that starts a new component to show another window. That
window contains a subfile part that lists all of the customers in the
database. When the user selects a customer from the list, the customer
number is placed in the CUSTNO entry field on the Customer Inquiry
window.

In this exercise, you create only the subfile; later you will have an
opportunity to use a component reference part to fill the customer number
in the Customer Inquiry window.

Note

The instructions in this exercise are not as detailed as in the earlier labs
since you are expected to have had some experience using the
VisualAge for RPG GUI Designer. Remember that online help is always
available from the Help menu item on the GUI Designer.

First, you create a new component called COMPLIST. These steps guide
you through the process of creating a new component in an existing
application:

1. Open the GUI Designer, click on the Project menu bar choice and select
New from the menu pull-down.

You now have to tell it that you want to create a component and also
identify the component name. Select the Save Project icon on the tool
bar. You see a window that allows you to specify the component name
COMPLIST.

2. Type the name COMPLIST.

3. Select the radio button New Component.

4. Select the Customer Inquiry project from the Folders and Projects
Combination box.

5. Make sure the source file has COMPLIST as an entry.

6. Click on the OK push button.

You have now set up the component for the subfile window and can go
ahead with creating a subfile.

You now create a subfile that is used to display records from a logical file
on the AS/400 system. This file is named CUSTOML1 and is in library
GUIDES2. The record format name is CUSTOM01. The subfile you create
shows data from the following database fields:

314 VisualAge for RPG

CUSTNO
CUSTNA

Perform the following steps to create the new window with the subfile part:

1. Change the title of the design window to Select Customer (or something
equivalent).

2. Name the design window CUSTLIST.

3. Locate the subfile part on the Parts Palette, drag it and drop it on the
design window. Position and size the subfile as required.

4. Double-click on the subfile part to bring up its properties notebook.

5. On the General page, change the name of the subfile by changing the
value in the Part Name entry field to SFL1.

6. Close the properties notebook.

7. Now you add fields to the subfile. There are two ways to add fields to a
subfile part:

a. By opening the Subfile parts properties notebook and going to the
Field list page.

b. By dragging and dropping fields from a database Reference File.

For this exercise, we use the database reference method.

Defining Reference Fields
Before you can use the Define Reference Fields feature, you have to define
the AS/400 systems. This was already handled in an earlier exercise.

1. Use Define reference fields from the GUI Designer menu bar to display
the field list for file CUSTOML1 in library GUIDES2.

2. Drag and drop the following fields on the subfile part:

CUSTNO
CUSTNA

Note

If you add the wrong fields, or want to change the order of the fields
in the subfile, open the properties notebook for the subfile and go to
the Fields page.

Once you have completed these two steps, you should have a design
window that looks similar to Figure 205.

Exercise 4. Creating a Component with Subfile and Application Help 315

Figure 205. Completed Window with Subfile

Now you need to add code to fill the subfile. In this example, you are going
to fill the subfile when the window is created. Therefore, you need to create
an action subroutine for the window's Create event.

To create the action subroutine, use the right-hand mouse button to invoke
the pop-up menu for the window. Choose Events and choose CREATE.

When the skeleton action subroutine is displayed, add the VisualAge for
RPG statements shown in Figure 206 between the BEGACT and ENDACT
statements to fill the subfile. Then, save your code.

316 VisualAge for RPG

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

*
C FRA00014 BEGACT CREATE FRA00014

*
* Read a record from database

C read customna 99
*
* Do until end of file

C *in99 doweq *off
*
* Add a record to the subfile

C write SFL1
*
* Read a record from database

C read customna 99
C enddo

*
C ENDACT

*

Figure 206. Code to Fill the Subfile from the Database

Now you must add a file specification to your program to fill the subfile.

Adding the File Specification
Take these steps:

1. If an LPEX Editor window is not already open, choose Project and Edit
source code from the GUI Designer menu bar.

2. Enter the following file specification for the customer physical file:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
FCustomer IF E K DISK REMOTE
F Rename(CUSTOM01:CUSTOMNA)

Tip

File specifications must follow any H specifications and come before any
D specifications.

Exercise 4. Creating a Component with Subfile and Application Help 317

The following values were used to define this F specification:

Customer - The file name used by the program.
I - File is input only.
F - File is being processed as full procedural.
E - The file is externally described.
K - The file is being processed by key.
DISK - This is a disk file.
REMOTE - The file resides on the AS/400 system.
RENAME - Rename the record format since it is already used in file
CUSTOMLF.

Tip

You may want to add the file keyword BLOCK(*YES) in applications that
use SETTLL or CHAIN. This allows the RPG compiler to define blocking
even if these operation codes are used to access the file.

Selecting a Record from the Subfile
Now you need to add the logic that reads the record selected by the user
when the user double-clicks on a subfile record. When the user
double-clicks on the subfile part, an Enter event is signalled. Therefore, you
need to create an action subroutine for the subfile's Enter event. The steps
are these:

1. From the Subfiles pop-up menu, create an action subroutine for the
Enter event.

2. In this action subroutine, use the READS operation code to get the
selected record from the subfile. READS moves the value for the
customer number into the RPG variable CUSTNO. The READS operation
code requires the subfile part name in Factor 2 (without the quotes).

3. You must move the customer number to the CUSTNO field on the
Customer Inquiry window in application Customer Inquiry. Since this
field resides in a different component, you must use a component
reference part to exchange information. (You can skip this step now and
add this function later.)

4. Finally, you want this subfile window to disappear when a selection has
been made. Add the logic required to make this window not visible.

This is all of the logic needed for this action subroutine. Save your code
changes by choosing File and Save from the LPEX Editor menu bar.

318 VisualAge for RPG

Defining AS/400 Information
Before you can build the application, you must indicate which file on the
AS/400 system is being used, and on which AS/400 system or server the file
resides. Do this by entering information in the Define AS/400 information
notebook. The server is still the same as the one used before, so no
changes are required here.

Defining the AS/400 File
Now you must define the file that is being used to fill the subfile. Display
the Define AS/400 information window by choosing Project and Define
AS/400 information from the GUI Designer menu bar. Go to the File page
and click the Add push button to add the file CUSTOMER.

The override value is the name we called the file in our program (in this
case, CUSTOMER).

The remote-name value is the qualified name of the file on the AS/400
system. For this example, the remote file name is GUIDES2/CUSTOML1.

The server alias name is the alias of the server that was defined on the
Server page.

Building the Subfile Component
Now you can build the component. Since the build environment has been
changed, you may want to have a look at the build options.

Under the project menu, select Build options; this brings up the new Build
options dialog. Specify any changes you want to make in here; you are not
prompted at build time for changing the options.

You should note that if you attempt to run this component, it will fail. This is
because you have created a VisualAge for RPG component, not an
application. VisualAge for RPG components can be invoked only by starting
them from another VisualAge for RPG component or application. In the
following section, you return to the Customer Inquiry application to add logic
that starts this subfile component.

Adding Logic to the Customer Inquiry Component
Since you want to show the subfile for selecting a customer when the user
does not know the customer number, you have to add some capability to the
Customer Inquiry window in application Customer Inquiry to do this. Adding
a Find push button and an action subroutine with some logic to start the
component COMPLIST gets you there.

Exercise 4. Creating a Component with Subfile and Application Help 319

Select the Open a Project icon on the tool bar.

In the open dialog window, select Customer Inquiry and click on the Open
push button.

You are now editing the Customer Inquiry application.

1. Open the Customer Inquiry design window and add a push button part.

2. Change the label of the push button to Find....

3. Change the name to PSBFIND.

4. Create an action subroutine for the Press event of this push button to
START component COMPLIST:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

*
C START 'COMPLIST'

Save your code changes by choosing File and Save from the LPEX Editor
menu bar, and then build this project.

Running the Enhanced Application
Run the Customer Inquiry application. You now have an additional push
button that lists customers from the database. Try it out. When the
Customer Inquiry window is displayed, press the Find... push button to
display the list of customers. In a later exercise, you see how to retrieve
the selected customer number.

Creating Help for Your Application
In this exercise, you create online help for your application. Help in
VisualAge for RPG is written for each part. In this example, you create the
help that describes the function of the CUSTNO entry field on the Customer
Inquiry window.

To begin, invoke the pop-up menu for the CUSTNO field by clicking on it with
the right mouse button.

1. On the pop-up menu, choose Help text.

2. The LPEX Editor is shown with statements similar to the following:

:h1 res=171.EF00001A
:p.Help

320 VisualAge for RPG

The information up to the period on the first statement is used by
VisualAge for RPG when invoking help, so this information should not be
changed. The string following the period, EF00001A, is the heading that
is shown in the Help window. Change it to something similar to the
following:

:h1 res=191.Help for Customer Number Field

3. The text on the following line is the body of the help text, and begins
with the paragraph tag, (:p.). Change this text to something similar to
the following:

:p.Enter a customer number in this field and click on OK.
If the customer number is found, the
:hp9.Customer Info:ehp9.
window is displayed.
To find a valid customer number, press the
:hp9.Find...:ehp9. pushbutton.

The :hp9. and :ehp9. tags are called highlight phrase tags and cause the
text between them to be displayed in a different color.

Tip

A description of all IPF tags can be found in the IPF online reference
manual in the VisualAge for RPG folder. You can view this manual
by choosing Help from the GUI Designer menu bar.

4. Save your help and close the LPEX Editor window.

5. In the GUI Designer menu bar, choose Project and Build to build this
project.

To test your help, invoke the program by selecting the Run icon on the tool
bar. When the Customer Inquiry window (CUSTINQ) is shown, move the
cursor to the customer number field by clicking on it with the mouse and
press the F1 key. The help you created is shown in a separate window.

This short example illustrates how easy it is to add online help to your
VisualAge for RPG applications. There are many other IPF tags you can use
to enhance your help, including adding bitmap images.

Exercise Summary
This exercise guided you through:

1. Creating a component

2. Creating a subfile

3. Creating online help

Exercise 4. Creating a Component with Subfile and Application Help 321

322 VisualAge for RPG

Exercise 5. Using the Component Reference Part

Component reference parts are used to monitor for events in other
components and to get and set attribute values from parts in other
components.

In this exercise, you enhance your application using a component reference
part to pass the value of the selected customer number from the subfile
component COMPLIST back to the component Customer Inquiry.

You are making the following changes:

For component COMPLIST:

− Add an entry field part that contains the selected customer number.
It is this part that the component reference part is referencing.

For component Customer Inquiry:

− Add a component reference part.

− Change the settings for this part so it monitors for the Change event
of the entry field added to component COMPLIST.

− Change the settings for this part so it can retrieve the Text attribute
for the entry field.

− Add logic for the Notify event of the component reference part to get
the changed data.

During this exercise, you:

1. Create a hidden field containing the selected customer number.

2. Create a component reference part.

3. Use the component reference part to react to an event and get an
attribute value from another component.

4. Write the VisualAge for RPG logic to fill the hidden field with the subfile
selection.

5. Write logic to get the customer number value from a different
component.

6. Build the application.

7. Run and test the application.

8. Improve it.

9. Test it.

 Copyright IBM Corp. 1998 323

Objective
In this exercise, you learn about the behavior of components by writing
applications containing multiple components that use component reference
parts to communicate with each other. In doing this, you will be

Creating and using component reference parts.

Writing VisualAge for RPG logic to monitor for events across
components.

Writing VisualAge for RPG logic to get attribute values from other
components.

Creating the Hidden Field
In this exercise, you add function to the subfile application that you started
in Exercise 4.

The enhancement you make first is to add a hidden entry field to the
CUSTLIST window of component COMPLIST. The Text attribute of this is set
to the customer number value when the user double-clicks on a record in
the subfile. The hidden field, in turn, triggers a Change event.

The following steps guide you through the process of creating the hidden
field in the existing component COMPLIST:

1. Double-click on the Customer Inquiry project on your desktop.

2. You see all of the parts belonging to the Customer Inquiry in the project
window, including the component COMPLIST.

3. Double-click on the COMPLIST icon, which brings up the project window
for this component.

4. Locate the EDIT icon on the tool bar and select it. This brings up the
GUI Designer.

5. You can now double-click on the CUSTLIST window icon to bring up this
window.

6. Select an entry field from the Parts Palette and put it on the CUSTLIST
window. Since it is hidden, its position is not important.

7. Change the field name to EF2.

8. Deselect the visible check box so it does not appear at runtime.

9. Invoke the pop-up for EF2 and choose EVENTS. From the Events list,
choose CHANGE. When the editor window opens, you can just close it.

324 VisualAge for RPG

The component reference part requires that an action subroutine exist
even though it contains no logic.

10. Invoke the pop up menu for the subfile part SFL1.

11. Select Events and Enter.

12. In the editor for the Enter action subroutine, set the Text attribute of the
hidden field EF2 to CUSTNO. This is the customer number from the
selected subfile record.

Save your code and build the component. After the component is built
successfully, you can now open project Customer Inquiry and make changes
to it.

Creating and Using the Component Reference Part
Click on the OPEN icon on the tool bar and select project Customer Inquiry.

Now add a component reference part to the Customer Inquiry window.

1. Open the Customer Inquiry window.

2. Drag a component reference part from the Parts Palette and drop it on
this window.

Open the properties notebook for the component reference part and rename
it to MONCHG. Now go to the Style page. The information you need to give
a component reference part is twofold:

1. The upper section defines the part attribute being referenced.

2. The lower section defines the part event to monitor.

On the Style page, specify the component name that you want to reference
(in this case, COMPLIST).

Since you are interested in getting the Value attribute and monitoring for the
change event, you must fill out both sections:

1. Specify the reference window name CUSTLIST.

2. Specify the reference part name EF2.

3. Specify the reference attribute name TEST. This concludes the definition
for the upper part of the Style page for this component reference part.

4. Now do the lower part to define the event you want to monitor. In this
case, you want to monitor part EF2 for the Change event.

5. Use the same preceding information for window name and part name.

6. Then specify CHANGEfor the event to be monitored.

Exercise 5. Using the Component Reference Part 325

The next step involves writing an action subroutine that is invoked when
component reference part MONCHG gets notified by a Change event
from entry field EF2. In the VisualAge for RPG component reference
part, this is called a Notify event.

7. Write an action subroutine for the MONCHG Notify event that gets the
attribute value (ATTRVALUE) from the MONCHG part and puts it into the
variable CUSTNO:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7..
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C 'MONCHG' Getatr 'AttrValue' CustNo

8. Copy this value to the CUSTNO field in the Customer Inquiry window
with a SETATR statement:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C 'CustNo' Setatr CustNo 'Text'

9. Save everything you have done.

10. Build the application.

11. Run and test the application. When you double-click on a subfile record,
the corresponding customer number should appear in the CUSTNO entry
field.

Visibility and Focus
You notice that when the CUSTLIST window is displayed, it does not have
focus—that is, does not appear in front of other windows.

To give this window focus, we use another component reference part in
component Customer Inquiry to set the Visible and Focus attributes for
window CUSTLIST.

Open the GUI Designer for project Customer Inquiry and open the Customer
Inquiry window. Create another component reference part on this window
and name it CRP1. Open the properties notebook, go to the Style page and
set:

1. Component to COMPLIST.

2. Reference window name to CUSTLIST.

3. Reference part name to CUSTLIST.

326 VisualAge for RPG

This completes the definition of the component reference part. Now let's
add the necessary logic.

First, we add an indicator that tells the application Customer Inquiry that the
component COMPLIST is already started and the only thing left to do is to
make visible the window CUSTLIST in component COMPLIST and give it
focus.

You have to add some code to the action subroutine that is linked to the
Find push button on the Customer Inquiry in component Customer Inquiry:

1. Use the LPEX Editor and locate the Press event action subroutine for the
Find push button.

2. Add code to turn indicator 60 on when component COMPLIST is started
to indicate that component COMPLIST is started.

3. Add code to skip starting component COMPLIST if *IN60 is on.

4. Add the following code to set window CUSTLIST in component
COMPLIST visible:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C 'CRP1' SETATR 'VISIBLE' 'REFATTR'
C 'CRP1' SETATR '1' 'ATTRVALUE'

5. To give the window focus, add the following two statements:

RPG

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C 'CRP1' SETATR 'FOCUS' 'REFATTR'
C 'CRP1' SETATR '1' 'ATTRVALUE'

6. Finally, build and test your application. When the Find push button is
pressed, the Subfile window should be visible and have focus.

Exercise Summary
This exercise guided you through:

1. Creating and using a component reference part.

2. Using the two different functions of a component reference part.

3. Writing VisualAge for RPG logic for a component reference part.

Exercise 5. Using the Component Reference Part 327

328 VisualAge for RPG

Exercise 6. Pop-Up Menus and Notebooks

In this exercise, you enhance the subfile component with a pop-up menu.
The pop-up menu is shown when the user clicks the right-hand mouse
button on the subfile.

To show details of a selected customer, you also add a notebook part.

During this exercise, you:

1. Create a pop-up menu.

2. Create a notebook containing customer information.

3. Write the VisualAge for RPG logic to handle pop-up menus.

4. Write the VisualAge for RPG logic to fill a notebook page.

5. Run the application.

Objective
As a result of this exercise, you can write applications containing pop-up
menus and notebooks by:

Adding a pop-up menu to a VisualAge for RPG application.

Creating a notebook in a noncanvas window.

Writing VisualAge for RPG logic to react to the pop-up event.

Writing VisualAge for RPG logic to respond to menu select events.

Writing VisualAge for RPG logic for notebook parts.

Creating a Pop-up Menu
You are enhancing your subfile component with a pop-up menu and a
notebook. The user can click with the right-hand mouse button on a
selected subfile record and your VisualAge for RPG application shows a
pop-up menu. The pop-up menu gives you the choice of viewing the details
of the selected customer or deleting the selected customer record.

The additional enhancement you make pertains to the presentation of the
user data. If the user chooses the Detail item in the pop-up menu, you show
the customer data in a notebook.

 Copyright IBM Corp. 1998 329

Working with Pop-up Menus
These steps guide you through the process of creating the pop-up menu:

1. Double-click on the COMPLIST component in your GUIDES2 project
window.

2. You see all of the parts belonging to the component COMPLIST in the
project window.

3. Click on the EDIT button on the tool bar to bring up the GUI Designer for
this project.

4. Locate the pop-up icon in the Parts Palette and drag it onto your design
window. Where you drop it on the window does not matter. At runtime,
the pop-up menu shows where the mouse cursor is located when the
right mouse button was clicked.

5. In the GUI Designer, open the properties notebook for the pop-up menu
and name the menu POPUP1.

6. Name the pop-up menu item POPDETAIL.

7. Now you have to add one more menu item to this pop-up part. Select a
menu item from the parts palette and drop it onto the POPDETAIL menu
item. Selecting this menu item shows a Notebook with customer
information.

8. Name this menu item POPDELETE.

Adding Logic to Support Pop-up Menus
1. Select the Popup event on subfile SFL1.

2. Add the following code to the action subroutine for the Popup event:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7..
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+Hi
C 'POPUP1' SETATR 1 'VISIBLE'

This piece of code tells the runtime to make the pop-up part visible.
Pop-up menus are always displayed at the mouse cursor position.

3. Close this window.

Creating the Notebook
You create a notebook with two pages to show the customer data of the
selected customer record in the subfile. One page contains name and
address information; the other page contains contact information.

330 VisualAge for RPG

To introduce the notion of a window without canvas, you are creating a
notebook that fills the entire window:

1. Go to the Parts Catalog and locate the Window part. It is in the Frames
page.

2. Drag it to the Project View of the GUI window.

3. Name this window WINNOTE.

4. Change the title to Customer Detail Notebook .

5. Drag a notebook icon onto the WINNOTE window and drop it.

Using a window without canvas causes the notebook to fill the entire
window frame.

6. Name this notebook NBKCUST and deselect VISIBLE.

7. Drag two Notebook pages with canvas parts onto the notebook and drop
them.

Tip

You can reorder notebook pages by opening the properties notebook
for the notebook part and going to the Page List page.

8. Change the tab text on each of the pages to:

Address
Contact

9. Now use the database reference function to create the following fields
on the Address page:

Customer number
Address
City
Phone

10. Get the CUSTNO and Contact field, drag them to the Contact notebook
page, and drop them.

Note: The CUSTNO field on the second page gets a new name. Only
one unique name per window per part is allowed, so VisualAge for RPG
renamed this field when it was placed on the window.

11. Save your project.

Adding Logic to Update the Notebook Pages
It takes little effort to write the logic for this piece of the application:

Exercise 6. Pop-Up Menus and Notebooks 331

1. Write an action subroutine that reacts to the MenuSelect event of the
POPDetail menu part.

2. Get the selected record from the subfile (READS operation code).

3. Use the CUSTNO field to chain to the AS/400 file.

4. Write to window WINNOTE.

5. Make window WINNOTE visible and set focus.

Tip

Do not forget to set the text attribute for the customer number on the
Contact page. Check the manuals to determine whether to use
setatr or %setatr.

If you have time, you may want to implement the delete function for a
customer record by creating an action subroutine for the MenuSelect
event of the POPDELETE menu item and deleting the selected subfile
record.

You may also want to add some code to make the WINNOTE window
invisible if the Close event code is received.

Tip

You can specify on Factor 2 of the ENDACT operation code whether
default processing should take place or not. By setting this value to
*NODEFAULT, you can prevent the window from actually closing.

This is useful if the end user double-clicks on the system icon of a
window and you want to prevent the window from being closed.

6. Save and build your application.

7. Run and test your application.

Exercise Summary
This exercise guided you through:

1. Creating a pop-up menu.

2. Creating a notebook with notebook pages.

3. Writing logic to deal with these parts.

332 VisualAge for RPG

Exercise 7. Using the Container Part

In this exercise, you create an application that uses the container part. The
application also reads records from a local file to add records to the
container. During this exercise, you:

1. Create a container part and add columns.

2. Write the VisualAge for RPG logic to read records from a local file.

3. Write the VisualAge for RPG logic to add records to the container part.

4. Write the VisualAge for RPG logic to change the container view.

5. Build the application.

6. Run the application.

Objective
As a result of this exercise, you can write applications that use program
described files to access local files and also use the container part by:

Creating containers with multiple columns.

Writing VisualAge for RPG logic to add records to a container.

Writing VisualAge for RPG logic to change a container view.

Writing VisualAge for RPG logic to read records from a local file.

Container Overview
The container part allows you to display records in three different views:

Tree view
Icon view
Details view

In addition, records are added in a hierarchical manner (that is, a record
can have one or more subrecords). A record that has subrecords is called
the Parent record. Records added to this record are referred to as Child
records.

Application Description
In this exercise, you use a container part that displays records stored in a
database on the workstation. The database is a list of employee records
and has the following record layout:

 Copyright IBM Corp. 1998 333

1 - 3 Department number
5 - 5 Employee type
7 - 29 Name

30 - 42 Phone

If Column 1 contains an asterisk (*), it is considered a comment record and
should be ignored.

If the field Employee type is an M, the record is considered a manager
record and, therefore, has a ParentID value of 0. An Employee type of E
indicates this employee works for a manager and should be added as a
child record to the appropriate manager record using the department
number as the ParentID.

Creating the Graphical User Interface
If the GUI Designer is currently active, choose Project and New to create a
new application.

Perform the following steps to create the container part:

1. Use direct editing or the window properties notebook to change the title
of the window to something appropriate, such as Departments.

2. Open the properties notebook for the window, go to the Style page, and
select Sizable as the border style.

3. Close the windows properties notebook.

4. For this exercise, we want the container part to always fill the window
part. Therefore, we need to delete the canvas part from the initial
design window. Invoke the pop-up menu for the Canvas part and
choose Cut to delete the Canvas part.

5. Locate the Container part, drag it onto the design window, and drop it.
Notice that the container completely fills the window frame.

6. Open the properties notebook for the Container part by double-clicking
on it.

7. Set the name to CT1.

8. Select the Style tab to go to the Style page. On the Style page, select
Details as the view. Also, deselect the Visible check box for the title.

9. Now you define the columns for the container. Select the Columns tab
to go to the Columns page and click on the Add after... push button.

10. On the Add column window, select Object Icon Column as the type.

11. Change the width value to 64 pixels and select Center for Horizontal
alignment.

334 VisualAge for RPG

12. Click on the OK push button to add this column and return to the
Columns page.

13. Click on the Add after... push button to add a second column to the
container.

14. On the Add column window, select Object Text Column as the column
type. Change the width value to 200 pixels.

15. In the Heading definition section, type Nameas the Text value.

16. Click on the OK push button to add this column to the container and
return to the Columns page.

17. Click on the Add after... push button to add a third column to the
container. This column contains the phone number.

18. On the Add column window, select Text column as the column type and
change the width value to 200 pixels.

19. Click on the OK push button to add this column to the container and
return to the Columns page.

20. Add the code for the pop-up event.

21. Close the properties notebook for the container part.

Defining the Local File
Since the database to be read is on the workstation, you must define a
program described file in your program. Open an Editor session by
choosing Project, Edit source code from the GUI Designer menu bar, and
add the following file specification:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
FContacts IF F 256 DISK USROPN EXTFILE(file)
F RCDLEN(Field1)
DField1 S 5 0 INZ(256)

*

The USROPN keyword indicates that this file is opened at program
execution. The EXTFILE keyword specifies that the field named file contains
the actual file name to be processed.

Exercise 7. Using the Container Part 335

Defining the Input Specifications
Now you must define the record layout for the employee record department
file using Input specifications. The first record definition is for comment
records and the second is for employee records.

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..............................
IContacts NS 02 1 C*

*
IContacts NS 01
I 1 3 DeptA
I 1 3 0DeptN
I 5 5 Type
I 7 29 Name
I 30 42 Phone

Defining Program Variables
Add the D specifications shown in Figure 207 to your program. These
specifications define variables and constants that are used by the program.

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++

*
* Define constants used by the program

DManager C 'M'
DEmployee C 'E'
DMgrIcon C '.\\MANAGER.BMP'
DEmpIcon C '.\\EMPLOYEE.BMP'

*
* Define variables used by the program

DFile S 256 inz('.\\CONTACTS.TXT')
DRecordID S 6 0
DParent S 6
DRecord S 64
DIconFile S 64

Figure 207. Defining Definition Specifications

The two bitmap files and the CONTACTS.TXT file need to be in your
RT_WIN32 directory. They are included in the CONTEXMP.ZIP file from the
ITSO FTP server at ftp.almaden.ibm.com/redbooks/sg242222.

336 VisualAge for RPG

Adding Records to the Container
To read records from the workstation database to add to the container, use
the Create event for the window part. Create an action subroutine for the
window's Create event by invoking the pop-up menu for the window part
and choose Events and CREATE.

Type the logic shown in Figure 208 for the Create event:

RPG

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq

*
C FRA0000B BEGACT CREATE FRA0000B

* Open employee file and get the first record
C Open Contacts
C Read Contacts 99

* Process all records in the employee file
C DoW *IN99 = *OFF

* Ignore comment records
C If *in01 = *on

* Handle Manager records
C If Type = Manager
C Eval RecordIDC = DeptA
C Eval IconFile = MgrIcon
C Eval Parent = '0'
C Eval Name = %Trim(Name) + '(' + DeptA + ')'

* Handle Employee records
C Else
C 'CT1' GetAtr 'GetNewID' RecordID
C Eval Parent = DeptA
C Move RecordID RecordIDC 6
C Eval IconFile = EmpIcon
C EndIf

Figure 208 (Part 1 of 2). Logic to Add Records to the Container

Exercise 7. Using the Container Part 337

RPG (continued)

* Since AddRcd uses spaces as a delimiter, change spaces
* to underscores

C ' ':'_' Xlate Name Name
C Eval Record = RecordID C + ' ' +
C %Trim(Name) + ' ' +
C %Trim(IconFile) + ' ' +
C %Trim(Parent) + ' ' +
C Phone
C 'CT1' Setatr Record 'AddRcd'
C EndIf
C Setoff 0102
C Read Contacts 99
C EndDo

*
C Close Contacts
C Seton LR

*
C ENDACT

*

Figure 208 (Part 2 of 2). Logic to Add Records to the Container

Changing the Container View
To allow the user to change the container view, add a pop-up menu part to
the design window. This pop-up menu is displayed when the user presses
the right-hand mouse button when the mouse pointer is over the container.

To create the pop-up menu:

1. Locate the pop-up menu part on the Parts Palette and drag and drop it
on the design window. This also creates the initial menu item.

2. Drag two more menu items from the Parts Palette and drop them onto
the first menu item.

3. Use the properties notebook for the menu items, or use direct editing to
change the text of the menu items to one of the following views:

Tree View
Icon View
Details View

4. For each menu item, create an action subroutine to change the view of
the container by setting the View attribute of the container. Refer to the
Parts Reference manual, which is online and can be invoked from the

338 VisualAge for RPG

LPEX Editor or GUI Designer menu bar, to see what values the View
attribute must be set to for each view.

Testing the Container Application
Compile and run the container application. Change the container view by
using the pop-up menu and notice the difference in the views. Notice that
the Details view is the only view that displays all of the records.

Also notice that, in the Icon view, the record icon is not always visible. To
fix this, you need to add a statement in the Icon View action subroutine to
change the container's Arrange attribute. Again, refer to the Parts
Reference manual to see how this is done. Make this change to your
program, recompile, and build to test your changes.

This completes the Container exercise.

Exercise 7. Using the Container Part 339

340 VisualAge for RPG

Appendix A. File Descriptions

The following sections contain the description of files used during the
exercises.

Customer File DDS
The DDS example in Figure 209 is for the file CUSTOMER/CUSTOM01 in
library GUIDES2.

DDS

...A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+ ...7
************** Beginning of data *************************************

A* CELDIAL CUSTOMER FILE
A R CUSTOM01
A CUSTNO 7 COLHDG('Customer')
A CUSTNA 40 COLHDG('Company name')
A REPNO 5 COLHDG('Rep identifier')
A CONTAC 30 COLHDG('Name')
A CPHONE 17 COLHDG('Telephone')
A CFAX 17 COLHDG('Fax')
A CADDR 40 COLHDG('Address')
A CCITY 30 COLHDG('City')
A CCOUNT 20 COLHDG('Country'
A CZIP 10 COLHDG('Postal Code')
A CZIPLO 1 COLHDG('PC location')
A VALUES('1' '2' '3')

Figure 209. DDS for Customer File

The following DDS example is for the file CUSTOMLF/CUSTOM01 in library
GUIDES2:

DDS

...A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+ ...7
************** Beginning of data *************************************

A R CUSTOM01 PFILE(GUIDES2/CUSTOMER)
A K CUSTNO

The following DDS example is for the file CUSTOML3/CUSTOM01 in library
GUIDES2.

 Copyright IBM Corp. 1998 341

DDS

...A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+ ...7
************** Beginning of data *************************************

A R CUSTOM01 PFILE(GUIDES2/CUSTOMER)
A K CUSTNO

Customer File on AS/400 System
The example shown in Figure 210 is a partial sample of fields and data from
file CUSTOML3/CUSTOM01 in library GUIDES2. The instructor can use the
data files from the diskette, create the files and enter sample data from the
following example, or come up with unique data. The file on the diskette
contains 72 records.

File

CustomerCompany Name Telephone Address Postal City
number name Code
0010100 Meridien Electr Alfredo Bayonne 206-865-4027 10423 S.E. 30th 98007 Bellevue, WA
0010200 Royal Hardware Arnie Podell 905-619-2045 Maple View Plaz L8D 4S6 Ajax, Ontario
0010300 Webster Applian Bob Wolfstadt 619-549-5212 7350 Miramar Ro 92121 San Diego, CA
0010400 ProLine Buildin Bud Dobbs 905-403-4055 73 Marchwood Ro D8G 3V6 Burlington, Ontario
0010500 Donnamora Const Byron Goeds 905-805-2295 Woodbridge Plaz F7V 5S7 Woodbridge, Ontario
0010700 Universal Commu Dave Franken 415-545-5055 720 Harrison St 94107 San Francisco, CA
0010800 Baker Electroni Dave Matthison 818-715-2045 17150 Koll Cent 94566 Pasadena, CA
0010900 Village Telepho Dayle Swigger 707-367-4530 2752 Betsy Ross 95054 Santa Clara, CA
0011000 Bayview Direct Claus Weiss 416-448-3987 201 Bloor Stree M8B 7F5 Toronto, Ontario
0011100 BelAir Communic Doreen Coin 914-765-8021 302 Washington 71530 White Plains, NY
0011300 Burnham Trading Efrem Helassie 613-225-0753 91 Baseline Roa C6B 9S3 Trenton, Ontario
0011400 Calderone Impor Elsie Pons 407-392-7077 702 S.W. 15th S 33486 Boca Raton, FL
0011500 The Communicati Esther Varrick 904-599-0377 3011 E. Georgia 33830 Jacksonville, FL
0011600 Sudbury Radio a Garry Morehouse 705-522-5044 8 North Road P7G 5A3 Sudbury, Ontario
0011700 Christies Elect George Baccxrat 818-707-6767 70223 Agoura Ro 91354 Westlake Village, CA
0011900 Conroy Communic Guy Lewis 918-825-4545 701 S. Adair St 74361 Pryor, OK

Figure 210. Data in CUSTOML3 File

342 VisualAge for RPG

Contacts.TXT File
The example shown in Figure 211 contains the layout of the CONTACTS.TXT
file used in Exercise 7.

File

* Department 817
817 M Eli Javier (416)448-9999
817 E Larry Schweyer (416)448-3344
817 E Hans Koert (416)448-3411
817 E Phil Coulthard (416)448-2199
*
* Department 814
814 M Enoch Ng (416)448-9944
814 E Alan Chao (416)448-7733
814 E Larry Keeling (416)448-8831
814 E Bobby Siu (416)448-9900
814 E Paul Kao (416)448-3388
*
* Department 059
059 M Mark Changfoot (416)448-0311
059 E Brian Farn (416)448-9931
059 E Andrew Kerr (416)448-9911
059 E Derek Lewsey (416)448-2711
059 E Vincent Suen (416)448-3992
*
* Department 546
546 M George Farr (416)448-9221
546 E Dave Cheng (416)448-9211
546 E Sarah Ettritch (416)448-8211
546 E John Fellner (416)448-8222
546 E Scott Ripley (416)448-2234

Figure 211. Data in Contacts.TXT File

Appendix A. File Descriptions 343

344 VisualAge for RPG

Appendix B. VisualAge for RPG Source

This appendix contains listings for the final VisualAge for RPG application
from Exercise 1 through Exercise 6.

Source for GUIDES2
The following code represents the GUIDES2 program.

* Program I D . . : *
* *
* Description . : Sample VisualAge for RPG program to demonstrate *
* the Component Reference Part. *
* *
* When the Find push button is pressed on this *
* component, a second component, COMPLIST is *
* invoked which displays a subfile containing all *
* customer records. When the user double-clicks *
* on a customer record, the customer number is *
* set into the CUSTNO entry field in this component*
* *
* Functio n . . . : *
* Message s . . . : *
* Files : *
* Input : *
* Outpu t : *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

*

H
Fcustomlf if E k disk remote
Dinfobox m style(*info)
D button(*retry: *abort: *enter)

*
Dmsg1 m msgnbr(*msg001)

*
Dmsg2 m msgnbr(*msg002)
D msgdata(custno)

*

Figure 212 (Part 1 of 4). GUIDES2 Source

 Copyright IBM Corp. 1998 345

Dwarnbox m style(*warn)
D button(*yesbutton: *nobutton)

*
Dtext m msgtext('Number Not Found')

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

*

C PSBEXIT BEGACT PRESS CUSTINQ
C move *on *inlr

*
C ENDACT

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

C PSBOK BEGACT PRESS CUSTINQ
C 'psbok' getatr 'Backcolor' bcolor 2 0
C if bcolor <> *RED
C 'psbok' setatr *RED 'backcolor'
C else
C 'psbok' setatr *PALEGRAY 'Backcolor'
C end
C 'custno' getatr 'text' custno

* read the customer file, if no customer found

Figure 212 (Part 2 of 4). GUIDES2 Source

346 VisualAge for RPG

C custno chain customlf 50
C if *in50 = *off
C showwin 'custinfo' 51
C if *in51 = *on
C eval %setatr('custinfo':'custinfo':'visible')=1
C eval %setatr('custinfo':'custinfo':'focus')=1
C endif
C write 'custinfo'
C else
C msg1 DSPLY infobox reply 9 0
C 'custno' setatr *red 'backcolor'
C endif

*
C ENDACT

* *
* Windo w : *
* Part : *
* Event : *
* Description . : *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

C INFOOK BEGACT PRESS CUSTINFO
*

C 'CUSTINFO' setatr 0 'visible'
C ENDACT

* *
* Windo w : *
* Part : *
* Event : *
* Description . : *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

Figure 212 (Part 3 of 4). GUIDES2 Source

Appendix B. VisualAge for RPG Source 347

*
C CUSTINQ BEGACT ACTIVATE CUSTINQ
C 'CUSTINq' setatr 1 'focus'
C 'CUSTno' setatr 1 'focus'

*
C ENDACT

* *
* Windo w : *
* Part : *
* Event : *
* Description . : *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

C PSBFIND BEGACT PRESS CUSTINQ
* put up the customer list window, if the window is all ready up
* just set focus to it.

C start 'complist' 65
C if *in65 = *on
C eval %setatr('custinq':'custinq':'focus')=0
C endif
C ENDACT

* *
* Windo w : CUSTINQ *
* Part : *
* Event : NOTIFY *
* Description . : *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *
* *

*

C MONCHG BEGACT NOTIFY CUSTINQ
C 'MONCHG' GETATR 'attrvalue' CUSTNO
C 'CUSTNO' SETATR CUSTNO 'TEXT'
C ENDACT

Figure 212 (Part 4 of 4). GUIDES2 Source

348 VisualAge for RPG

Source for COMPLIST
The following is the source code for the customer list component.

FCustomer IF F 186 DISK usropn extfile(file)
*

DFile S 15 Inz('.\\CUSTOMER.DAT')
*

ICustomer NS 01
I 1 7 CustNo
I 8 47 CustNa
I 53 82 Contac
I 83 99 CPhone
I 117 156 CAddr
I 157 186 CAddr2

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* *

*

C CUSTLIST BEGACT CREATE CUSTLIST
*

C Open Customer
C Read Customer 99

*
C *in99 DowEq *off
C Write SFL1
C Read Customer 99
C EndDo

*
C Close Customer

*
C EndAct

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* *

Figure 213 (Part 1 of 3). COMPLIST Source

Appendix B. VisualAge for RPG Source 349

C SFL1 BEGACT ENTER CUSTLIST
*

C ReadS SFL1 91
C 'EF2' Setatr CustNo 'Text'
C* 'CustList' Setatr 0 'Visible'

*
C EndAct

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* *

*

C EF2 BEGACT CHANGE CUSTLIST
*
*

C EndAct

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* *
* Change activity: *
* *
* Who Date Flag Description *
* --- ------ ---- -- *

*

C SFL1 BEGACT POPUP CUSTLIST
*

C 'POPUP1' Setatr 1 'Visible'
*

C ENDACT

Figure 213 (Part 2 of 3). COMPLIST Source

350 VisualAge for RPG

*

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* *

*

C PU_DETAIL BEGACT MENUSELECT CUSTLIST
*

C Reads SFL1 98
C Movel CustNo Tmp 7
C Open Customer
C Read Customer 99
C DoW CUSTNO <> Tmp
C Read Customer 99
C EndDo
C ShowWin 'Detail'
C Write 'Detail'
C Close Customer

*
C ENDACT

* *
* Windo w . . : *
* Part . . . : *
* Event . . : *
* Description: *
* *

C CUSTLIST BEGACT CLOSE CUSTLIST
*

C Move *on *inlr
*

C ENDACT

* *
* *
* *

*

Figure 213 (Part 3 of 3). COMPLIST Source

Appendix B. VisualAge for RPG Source 351

Source for Container Example
The following is the source code for the container application for Exercise 7.

* *
* Program I D . . : CONTAIN *
* *
* Description . : VisualAge for RPG Container example *
* *

*
* Define the employee record file

FContacts IF F 256 DISK usropn extfile(file) Employee file
F RCDLEN(Field1)
DField1 S 5 0 INZ(256)

*
* Define constants used by the program

DManager C 'M' Manager record
DEmployee C 'E' Employee record
DMgrIcon C '.\\MANAGER.ICO' Manager icon file
DEmpIcon C '.\\EMPLOYEE.ICO' Employee icon file

*
* Define variables used by the program

DFile S 12 inz('CONTACTS.TXT') File to open
DRecordID S 6 0 Container record ID
DParent S 6 Parent ID
DRecord S 64 Container record
DIconFile S 64 Icon file name

*
*

IContacts NS 02 1 C* Comment record
*
* Record layout for employee file

IContacts NS 01
I 1 3 DeptA Department - char
I 1 3 0DeptN Department - num
I 5 5 Type Employee type
I 7 29 Name Name
I 30 42 Phone Phone number

*

* *
* Windo w . . : FRA0000B *
* *
* Part . . . : FRA0000B *
* *
* Event . . : Create *
* *
* Description: Add records from the employee database to the *
* Container part when the window is created. *
* *

Figure 214 (Part 1 of 3). Container Example Source

352 VisualAge for RPG

C FRA0000B BEGACT CREATE FRA0000B
*
* Open employee file and get the first record

C Eval File = %Trim(File)
C Open Contacts Open file
C Read Contacts 99 Read first record

*
* Process all records in the employee file

C DoW *IN99 = *OFF Do until EOF
*
* Ignore comment records

C If *in01 = *on If not comment
*
* Handle Manager records

C If Type = Manager Manager record?
C Eval RecordIDC = DeptA Use Dept as ID
C Eval IconFile = MgrIcon Set icon file name
C Eval Parent = '0' Parent record
C Eval Name = %Trim(Name) + '(' + DeptA + ')'

*
* Handle Employee records

C Else Employee record
C 'CT1' GetAtr 'GetNewID' RecordID Get a new ID
C Eval Parent = DeptA Set parent ID
C Move RecordID RecordIDC 6 Make it character
C Eval IconFile = EmpIcon Set icon file name
C EndIf

*
* Since AddRcd uses spaces as a delimiter, change spaces
* to underscores

C ' ':'_' Xlate Name Name Convert spaces
C Eval Record = RecordID C + ' ' + Construct new record
C %Trim(Name) + ' ' +
C %Trim(IconFile) + ' ' +
C %Trim(Parent) + ' ' +
C Phone
C 'CT1' Setatr Record 'AddRcd' Add the record
C EndIf End-not comment

*
C Setoff 0102
C Read Contacts 99 Get next record
C EndDo End-Not EOF

*
C Close Contacts Close file

*
C ENDACT

* *
* Windo w . . : FRA0000B *
* *
* Part . . . : MI_TREE *
* *
* Event . . : MenuSelect *
* *
* Description: Change the Container view to Tree view *
* *

*

C MI_TREE BEGACT MENUSELECT FRA0000B
*

C 'CT1' Setatr 2 'View' Set to Tree view
*

C ENDACT

Figure 214 (Part 2 of 3). Container Example Source

Appendix B. VisualAge for RPG Source 353

* *
* Windo w . . : FRA0000B *
* *
* Part . . . : MI_ICON *
* *
* Event . . : MenuSelect *
* *
* Description: Change the Container view to Icon view *
* *

*

C MI_ICON BEGACT MENUSELECT FRA0000B
*

C 'CT1' Setatr 1 'View' Set to Icon view
C 'CT1' Setatr 1 'Arrange' Arrange icons

*
C ENDACT

* *
* Windo w . . : FRA0000B *
* *
* Part . . . : MI_DETAIL *
* *
* Event . . : MenuSelect *
* *
* Description: Change the Container view to Details view *
* *

C MI_DETAIL BEGACT MENUSELECT FRA0000B
*

c 'ct1' setatr 3 'view' Set to Details view
*

C ENDACT

* *
* Windo w . . : FRA0000B *
* *
* Part . . . : CT1 *
* *
* Event . . : PopUp *
* *
* Description: Display the popup menu for the container part *
* *

*

C CT1 BEGACT POPUP FRA0000B
*

C 'PMN00010' Setatr 1 'Visible' Make popup visible
*

C ENDACT

Figure 214 (Part 3 of 3). Container Example Source

354 VisualAge for RPG

Appendix C. Sample Code

You can download the sample code developed in this book from the ITSO
FTP server at ftp://ftp.almaden.ibm.com/redbooks/sg242222. In particular,
you find there the following files:

UPSAVF.ZIP
This ZIP archive contains multiple files in the UPSAVF directory.
The UPSAVF VisualAge for RPG application allows you to create
the AS/400 environment for the exercises in Part 2 of this book:

UPLOAD project files

CUSTOMER physical file

QDDSSRC source for customer file (physical and logical)

SAMPLES.ZIP
This ZIP archive contains the various components that are
developed throughout Part 1 of this book. You will find sample
projects about:

Containers

Clipboards

National Language Support

Data queues and data areas

Remote command execution

Printing

REXX procedure invocation

Mathematical functions

Message handling

Online help

Record I/O

SQL support

CONTEXMP.ZIP
This ZIP archive contains the project files, the exectuables, and
the following local PC files and bitmaps used in Exercise 7.

Contacts.TXT

Manager.BMP

Employee.BMP

 Copyright IBM Corp. 1998 355

AS/400 Upload Program
The program UPSAVF uploads the DDS and data files required for the
VisualAge for RPG exercises. It creates the following files in the library that
has already been created on the AS/400 system.

QDDSSRC
Contains DDS source for creating the physical and logical files.

CUSTOMER
This physical file contains customer records.

Note

Before the UPSAVF program is executed, the .RST file must be
modified to reference the correct AS/400 system. To do this, use the
following steps:

Go to the project's run-time directory RT_WIN32.

Use an editor to edit the .RST file.

Change the value of the REMOTE_LOCATION_NAME to reflect
the name of the AS/400 system.

Save the .RST file.

To upload the exercise files, do the following:

On the AS/400 system, create a library to receive the files. For the
VisualAge for RPG exercises, this library should be named GUIDES2.

Run the UPSAVF program (click with the right mouse button on project
UPSAVF and select RUN from the pop-up menu).

In the window that is shown, type library name GUIDES2 in the Library
field if it is not already GUIDES2.

Click on the Upload push button to begin the upload. Do not select any
of the check boxes. They are used as status indicators.

As each step completes, the corresponding check box is checked.

When the upload is complete as indicated by the Done check box, go to
the AS/400 system and compile the two logical files.

356 VisualAge for RPG

Source for AS/400 Upload Program
The following example contains a sample of VisualAge for RPG source code
that can be used to upload the AS/400 files for the exercises.

* *
* Program I D . . : *
* *
* Description . : This program will upload the DDS and data *
* file required for the VisualAge exercises. It *
* will put up a window for the user to the enter *
* the AS/400 library which has been created *
* to contain the lab files. GUIDES2 is the *
* library which should be created. *
* Files QDDSSRC - contains DDS source *
* CUSTOMER- This physical file contains *
* customer records *

*

FDDSIN IF F 128 Disk EXTFILE(PCFILE) usropn rcdlen(Recln1)
FPCCUST IF F 217 Disk EXTFILE(cust) usropn rcdlen(Recln2)
FQDDSSRC O E Disk Remote usropn Rename(QDDSSRC:FMT01)
FCUSTOMER O E Disk Remote usropn Rename(CUSTOM01:FMT02)

*
DRcdln1 S 5 0 INZ(128)
DRcdln2 S 5 0 INZ(217)
DSaveFile S 14A
DCMD S 128A
DMEMBER S 10A
DCUSTFILE S 21A INZ('TESTLIB/CUSTOMER')
DTOFILE S 21A INZ('TESTLIB/QDDSSRC')
DPCFILE S 15A
DCUST S 15A INZ('.\\CUSTOMER.DAT')
DQCMDDDM S 7A INZ('QCMDDDM') LINKAGE(*SERVER)
DCMDLEN S 15P 5 INZ(%SIZE(CMD))
DLC S 26 INZ('abcdefghijklmnopqrstuvwxyz')
DUC S 26 INZ('ABCDEFGHIJKLMNOPQRSTUVWXYZ')

*
IDDSIN NS 01
I 1 80 SRCDTA

Figure 215 (Part 1 of 6). Source for AS/400 Upload Program

Appendix C. Sample Code 357

IPCCust NS 01
I 1 7 CustNo
I 8 47 CustNa
I 48 52 RepNo
I 53 82 Contac
I 83 99 CPhone
I 100 116 CFax
I 117 156 CAddr
I 157 186 CCity
I 187 206 CCount
I 207 216 CZip
I 217 217 CRegion

* *
* Windo w : *
* Part : *
* Event : *
* Description . : *
* *

*

C UPLOAD BEGACT PRESS MAIN
*

C 'LIBRARY' Getatr 'Text' LIBRARY
C If Library = *Blanks
C *MSG0001 Dsply rc 9 0

*
C Else
c LC:UC Xlate library library
C Eval tofile = %Trim(library) + '/QDDSSRC'
C Eval custfile = %Trim(library) + '/CUSTOMER'

*
C Eval CMD = 'CRTSRCPF ' + tofile
C Exsr IssCmd

*
C Eval CMD = 'ADDPFM ' + tofil e + ' ' + 'CUSTOMER' +
C ' SRCTYPE(PF)'
C Exsr ISSCMD

*
C Eval CMD = 'ADDPFM ' + tofil e + ' ' + 'CUST OMLF' +
C ' SRCTYPE(LF)'
C Exsr ISSCMD

*
C Eval CMD = 'ADDPFM ' + tofil e + ' ' + 'CUSTOML3' +
C ' SRCTYPE(LF)'
C Exsr ISSCMD

Figure 215 (Part 2 of 6). Source for AS/400 Upload Program

358 VisualAge for RPG

C 'CRTDDS' Setatr 1 'Checked'
C Eval CMD = 'OVRDBF QDDSSRC ' + tofile +
C MEMBER + ' ' +
C 'OVRSCOPE(*JOB)'
C Exsr ISSCMD

*
C Eval member = 'CUSTOMER'
C Exsr CPYDDS
C 'CUSTOMER' Setatr 1 'Checked'
C Eval CMD = 'CRTPF ' + CUSTFIL E + ' ' + tofi le
C Exsr IssCmd
C 'CRTPF' Setatr 1 'Checked'

*
C Exsr CpyDta
C Eval member = 'CUSTOMLF'
C Exsr CPYDDS
C 'CUSTOMLF' Setatr 1 'Checked'

*
C Eval member = 'CUSTOML3'
C Exsr CPYDDS

*
C 'CUSTOML3' Setatr 1 'Checked'

*
C 'DONE' Setatr 1 'Checked'

*
C EndIf

*
C ENDACT

* *
* Subroutin e . . : *
* Description . : *
* *

*

C *INZSR BEGSR
*

C Z-Add 10 SRCSEQ
*

C ENDSR

* *
* Subroutin e . . : *
* Description . : *
* *

Figure 215 (Part 3 of 6). Source for AS/400 Upload Program

Appendix C. Sample Code 359

C CPYDDS BEGSR
*

C Eval CMD = 'OVRDBF QDDSSRC ' + tofile +
C MEMBER + ' ' +
C 'OVRSCOPE(*JOB) OPNSCOPE(*JOB)'
C Exsr ISSCMD

*
C Eval PCFile = '.\\' + %Trim(member) + '.DDS'
C Open DDSIN
C Open QDDSSRC
C Read DDSIN 99
C Eval SRCSEQ = 10

*
C Dow *in99 = *off
C Write FMT01
C Eval SRCSEQ = SRCSEQ + 10
C Read DDSIN 99
C EndDo

*
C Close DDSIN
C Close QDDSSRC

*
C ENDSR

* *
* Subroutin e . . : *
* Description . : *
* *

*

C ISSCMD BEGSR
*

C CALL QCMDDDM 8 0
C PARM CMD
C PARM CMDLEN

*
C ENDSR

* *
* Subroutin e . . : *
* Description . : *
* *

Figure 215 (Part 4 of 6). Source for AS/400 Upload Program

360 VisualAge for RPG

C CPYDTA BEGSR
*

C Eval CMD = 'OVRDBF CUSTOMER ' + custfile +
C ' CUSTOMER OVRSCOPE(*JOB) +
C OPNSCOPE(*JOB)'
C Exsr ISSCMD
C Open Customer
C Open PCCust
C Read PCCust 99

*
C DoW *in99 = *off
C Write FMT02
C Read PCCust 99
C EndDo

*
C 'Data' Setatr 1 'Checked'
C Close Customer
C Close PCCust

*
C Endsr

* *
* Windo w : *
* Part : *
* Event : *
* Description . : *
* *

*

C CLOSE BEGACT PRESS MAIN
*

C Move *on *inlr
*

C ENDACT

* *
* Windo w : *
* Part : *
* Event : *
* Description . : *
* *

Figure 215 (Part 5 of 6). Source for AS/400 Upload Program

Appendix C. Sample Code 361

*

C MAIN BEGACT CREATE MAIN
*

C 'Library' Setatr 1 'Focus'
*

C ENDACT

Figure 215 (Part 6 of 6). Source for AS/400 Upload Program

362 VisualAge for RPG

Appendix D. Special Notices

This publication is intended to help AS/400 RPG programmers to learn how
to use VisualAge for RPG to develop AS/400 client/server applications. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge for RPG. See the
PUBLICATIONS section of the IBM Programming Announcement for
VisualAge for RPG for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers

 Copyright IBM Corp. 1998 363

attempting to adapt these techniques to their own environments do so at
their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely
coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

AnyNet Application System/400
AS/400 Client Access
Client Access/400 CUA
DATABASE 2 OS/400 DB2
DB2/400 IBM
Integrated Language Environment OS/2
OS/400 Personal System/2
RPG/400 SQL/400
VisualAge VRPG CLIENT
400

364 VisualAge for RPG

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other trademarks are trademarks of their respective companies.

Appendix D. Special Notices 365

366 VisualAge for RPG

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks.”

Inside AS/400 Client Access for Windows 95/NT, SG24-4748

Inside Client Access/400 for Windows 3.1, SG24-4429

AS/400 Applications: A Fast an Easy Way to Install, Set Up and Work with
VRPG and CODE/400, SG24-4841

Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

Other Publications
These publications are also relevant as further information sources:

Getting Started with VisualAge for RPG, SC09-2448

Programming with VisualAge for RPG, SC09-2449

VisualAge for RPG Parts Reference, SC09-2450

VisualAge for RPG Language Reference, SC09-2451

 Copyright IBM Corp. 1998 367

368 VisualAge for RPG

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at http://www.redbooks.ibm.com/ .

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

PUBORDER — to order hardcopies in United States

GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks/

IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

REDBOOKS category on INEWS

Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1998 369

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

Online Orders — send orders to:

Telephone orders

Mail Orders — send orders to:

Fax — send orders to:

1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

Direct Services - send note to softwareshop@vnet.ibm.com

On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com/
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

370 VisualAge for RPG

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Z Invoice to customer number

Z Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 371

372 VisualAge for RPG

Glossary

This glossary includes terms and definitions
from:

The American National Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York, 10018. Definitions are
defined by the symbol (A) after the
definition.

The Information Technology Vocabulary,
developed by Subcommittee 1, Joint
Technical Committee 1, of the International
Organization for Standardization and the
International Electrotechnical Committee
(ISO/IEC JTC1/SC1). Definitions of published
parts of this vocabulary are identified by the
symbol (|) after the definition; definitions
taken from draft international standards,
committee drafts, and working papers being
developed by ISO/IEC JTC1/SC1 are
identified by the symbol (T) after the
definition indicating that the final agreement
has not yet been reached among
participating National Bodies of SC1.

IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

Object-Oriented Interface Design IBM
Common User Interface Guidelines,
SC34-4399-00, Carmel, IN: Que Corporation,
1992.

If the definitions in this glossary differ from
those in the &bigsys. &b4006., &b4006n., use
the ones in this glossary.

A
action . (1) Synonym for action subroutine.
(2) An executable program or command file
used to manipulate a project’s parts or
participate in a build.

action subroutine . Logic that you write to
respond to a specific event.

active window . The window with which a user is
currently interacting. This is the window that
receives keyboard input.

anchor . Any part that you use as a reference
point for aligning, sizing, and spacing other
parts.

application . A collection of software
components used to perform specific user tasks
on a computer.

ASCII (American National Standard Code for
Information Interchange) . The standard code,
using a coded character set consisting of 7-bit
coded characters (8 bits including parity check),
that is used for information interchange among
data processing systems, data communication
systems, and associated equipment. The ASCII
set consists of control characters and graphic
characters. (A)

audio part . A part that gives a program the
ability to process wave files (.WAV) and MIDI
files (.MID).

B
BMP . The file extension of a bitmap file.

build . The process by which the various pieces
of source code that make up components of a
VisualAge for RPG application are compiled and
linked to produce an executable version of the
application.

 Copyright IBM Corp. 1998 373

button . (1) A mechanism on a pointing device,
such as a mouse, used to request or start an
action. (2) A graphical mechanism in a window
that, when selected, results in an action. An
example of a button is an OK push button that,
when selected, initiates an action.

C
canvas part . A part onto which you can drag
and drop various other parts, position them, and
organize them to produce a graphical user
interface. A canvas part occupies the client
area of either a window part or a notebook page
part. See also notebook page with canvas part
and window with canvas part.

check box part . A square box with associated
text that represents a choice. When a user
selects a choice, an indicator appears in the
check box to indicate that the choice is selected.
The user can clear the check box by selecting
the choice again. In VisualAge for RPG, you
drag a check box part from the parts palette or
parts catalog and drop it onto a design window.

click . To press and release a mouse button
without moving the pointer off of the choice or
object. See also double-click.

client . (1) A system that is dependent on a
server to provide it with data. (2) The PWS on
which the VisualAge for RPG and VisualAge for
RPG applications run. See also DDE client.

client area . The portion of the window that is
the user’s workspace, where a user types
information and selects choices from selection
fields. In primary windows, the area where an
application programmer presents the objects
that a user works on.

client/server . The model of interaction in
distributed data processing in which a program
at one site sends a request to a program at
another site and awaits a response. The
requesting program is called a client; the
answering program is called a server. See also
client, server, DDE client, DDE server.

clipboard . An area of storage provided by the
system to hold data temporarily. Data in the
clipboard is available to other applications.

cold-link conversation . In DDE, an explicit
request made from a client program to a server
program. The server program responds to the
request. Contrast with hot-link conversation.

color palette . A set of colors that can be used
to change the color of any part in your
application’s GUI.

combination box . A control that combines the
functions of an entry field and a list box. A
combination box contains a list of objects that a
user can scroll through and select from to
complete the entry field. Alternatively, a user
can type text directly into the entry field. In
VisualAge for RPG, you can drag a combination
box part from the parts palette or parts catalog
and drop it onto a design window.

Common User Access architecture (CUA
architecture). Guidelines for the dialog between
a human and a workstation or terminal.

compile . To translate a source program into an
executable program (an object program).

component . A functional grouping of related
files within a project. A component is created
when the NOMAIN and EXE keywords are not
present on the control specifications.

component reference part . A part that enables
one component to communicate with another
component in a VisualAge for RPG application.

*component part . A part that is the “part
representation” of the component. One
*component part is created for each component
automatically, and it is invisible.

CONFIG.SYS. The configuration file, located in
the root directory of the boot drive, for the DOS,
OS/2, or Windows operating systems. It
contains information required to install and run
hardware and software.

374 VisualAge for RPG

configuration . The manner in which the
hardware and software of an information
processing system are organized and
interconnected (T).

container part . A part that stores related
records and displays them in a details, icon, or
tree view.

CUA architecture . Common User Access
architecture.

cursor . The visible indication of the position
where user interaction with the keyboard will
appear.

D
database . (1) A collection of data with a given
structure for accepting, storing, and providing,
on demand, data for multiple users. (T) (2) All
the data files stored in the system.

data object . An object that conveys
information, such as text, graphics, audio, or
video.

DBCS . Double-byte character set.

DDE. Dynamic data exchange.

DDE client . An application that initiates a DDE
conversation. Contrast with DDE server. See
also DDE client part, DDE conversation.

DDE client part . A part used to exchange data
with other applications, such as spreadsheet
applications, that support the dynamic data
exchange (DDE) protocol.

DDE conversation . The exchange of data
between a DDE client and a DDE server. See
also cold-link conversation and hot-link
conversation.

DDE server . An application that provides data
to another DDE-enabled application. Contrast
with DDE client. See also DDE conversation.

default . A value that is automatically supplied
or assumed by the system or program when no

value is specified by the user. The default value
can be assigned to a push button or graphic
push button.

default action . An action that will be performed
when some action is taken, such a pressing the
Enter key.

dereferencing . The action of removing the
association between a part and an AS/400
database field.

design window . The window in the GUI
designer on which parts are placed to create a
user interface.

details view . A standard contents view in which
a small icon is combined with text to provide
descriptive information about an object.

dimmed . Pertaining to the reduced contrast
indicating that a part can not be selected or
directly manipulated by the user.

direct editing . The use of techniques that allow
a user to work with an object by dragging it with
a mouse or interacting with its pop-up menu.

DLL . Dynamic link library.

double-byte character set (DBCS) . A set of
characters in which each character is
represented by 2 bytes. Languages such as
Japanese, Chinese, and Korean, which contain
more symbols than can be represented by 256
code points, require double-byte character sets.
Because each character requires 2 bytes, the
typing, displaying, and printing of DBCS
characters requires hardware and programs that
support DBCS. Four double-byte character sets
are supported by the system: Japanese,
Korean, Simplified Chinese, and Traditional
Chinese. Contrast with single-byte character set
(SBCS).

double-click . To quickly press a mouse button
twice.

drag . To use a mouse to move or to copy an
object. For example, a user can drag a window
border to make it larger by holding a button

Glossary 375

while moving the mouse. See also drag and
drop.

drag and drop . To directly manipulate an object
by moving it and placing it somewhere else
using a mouse.

drop-down combination box . A variation of a
combination box in which a list box is hidden
until a user takes explicit acts to make it visible.

drop-down list . A single selection field in which
only the current choice is visible. Other choices
are hidden until the user explicitly acts to
display the list box that contains the other
choices.

dynamic data exchange (DDE) . The exchange of
data between programs or between a program
and a datafile object. Any change made to
information in one program or session is applied
to the identical data created by the other
program. See also DDE conversation, DDE
client, DDE server.

Dynamic link library (DLL) . A file containing
executable code and data bound to a program at
load time or run time, rather than during linking.
The code and data in a dynamic link library can
be shared by several applications
simultaneously.

E
EBCDIC . Extended binary-coded decimal
interchange code. A coded character set of 256
8-bit characters.

emphasis . Highlighting, color change, or other
visible indication of conditions relative to an
object or choice that affects a user’s ability to
interact with that object or choice. Emphasis
can also give a user additional information
about the state of a choice or an object.

entry field part . An area on a display where a
user can enter information, unless the field is
read-only. The boundaries of an entry field are
usually indicated. In VisualAge for RPG, you

drag an entry field part from the parts palette or
parts catalog and drop it onto a design window.

event . A signal generated as a result of a
change to the state of a part. For example,
pressing a button generates a Press event.

exception . (1) In programming languages, an
abnormal situation that may arise during
execution, that may cause a deviation from the
normal execution sequence, and for which
facilities exist in a programming language to
define, raise, recognize, ignore, and handle it.
(I) (2) In VisualAge for RPG, an event or
situation that prevents, or could prevent, an
action requested by a user from being
completed in a manner that the user would
expect. Exceptions occur when a product is
unable to interpret a user’s input.

EXE. The extension of an executable file.

EXE module . An EXE module consists of a main
procedure and subprocedures. It is created
when the EXE keyword is present on the control
specification. All subroutines (BEGSR) must be
local to a procedure. The EXE must contain a
procedure whose name matches the name of
the source file. This will be the main entry point
for the EXE, that is, the main procedure.

export . A function that converts an internal file
to some standard file format for use outside of
an application. Contrast with import.

F
field . (1) An identifiable area in a window, such
as an entry field where a user types text. (2) A
group of related bytes, such as a name or
amount, that is treated as a unit in a record.

file . A collection of related data that is stored
and retrieved by an assigned name. A file can
include information that starts a program
(program-file object), contains text or graphics
(data-file object), or processes a series of
commands (batch file).

focus . Synonym for input focus.

376 VisualAge for RPG

font palette . A set of fonts that can be used to
change the font of a part in your application’s
GUI.

G
graphical user interface (GUI). A type of user
interface that takes advantage of high-resolution
graphics. A graphical user interface includes a
combination of graphics, the object-action
paradigm, the use of pointing devices, menu
bars and other menus, overlapping windows,
and icons.

graphic push button part . A push button,
labeled with a graphic, that represents an action
that will be initiated when a user selects it.
Contrast with push button part.

group box part . A rectangular frame around a
group of controls to indicate that they are
related and to provide an optional label for the
group. In VisualAge for RPG, you drag a group
box part from the parts palette or parts catalog
and drop it onto a design window.

group marker . A mark that identifies a part as
being the first one in a group. When a user
moves the cursor through a group of parts and
reaches the last part, the cursor returns to the
first part in the group.

GUI designer . A suite of tools used to create
interfaces by dragging and dropping parts from
the parts palette to the design window.

H
hide button . A button on a title bar that a user
clicks on to remove a window from the
workplace without closing the window. When
the window is hidden, the state of the window,
as represented in the window list, changes.
Contrast with maximize button and minimize
button.

hot-link conversation . In DDE, an automatic
update of a client program by a server program

when data changes on the server. Contrast with
cold-link conversation.

I
ICO. The file extension of an icon file.

icon . A graphical representation of an object,
consisting of an image, image background, and
a label.

icon view . A standard contents view in which
each object contained in a container is displayed
as an icon.

image part . A part used to display a picture,
from a BMP or ICO file, on a window.

import . A function that converts AS/400 display
file objects to the appropriate VisualAge for RPG
part. Contrast with export.

inactive window . A window that can not receive
keyboard input at a given moment.

index . The identifier of an entry in VisualAge
for RPG parts such as list boxes or combination
boxes.

information area . A part of a window in which
information about the object or choice that the
cursor is on is displayed. The information area
can also contain a message about the normal
completion of a process. See also status bar.

Information Presentation Facility (IPF) . A tool
used to create online help on a programmable
workstation.

Information Presentation Facility (IPF) file . A file
in which the application’s help source is stored.

INI. The file extension for a file in the OS/2 or
Windows operating system containing
application-specific information that needs to be
preserved from one call of an application to
another.

input focus . The area of a window where user
interaction is possible from either the keyboard
or the mouse.

Glossary 377

input/output (I/O). Data provided to the
computer or data resulting from computer
processing.

IPF. Information Presentation Facility

item . In dynamic data exchange, a unit of data.
For example, the top left cell position in a
spreadsheet is row 1, column 1. This cell
position may be referred to as item R1C1.

L
link event . An event that a target part receives
whenever the state of a source part changes.

list box part . A control that contains scrollable
choices that a user can select. In VisualAge for
RPG, you can drag the list box part from the
parts palette or parts catalog and drop it onto a
design window.

M
main procedure . A main procedure is a
subprocedure that can be specified as the
program entry procedure and receives control
when it is first called. A main procedure is only
produced when creating an EXE. See EXE
module.

main source section . In a VisualAge for RPG
program, the main source section contains all
the global definitions for a module. For a
component, this section also includes the action
and user subroutines.

main window . See primary window.

manipulation button . See mouse button 2.

maximize button . A button on the rightmost
part of a title bar that a user clicks on to enlarge
the window to its largest possible size. Contrast
with minimize button, hide button.

media panel part . A part used to give the user
control over other parts. For example, a media

panel part can be used to control the volume of
an audio part.

menu . A list of choices that can be applied to
an object. A menu can contain choices that are
not available for selection in certain contexts.
Those choices are dimmed.

menu bar part . The area near the top of a
window, below the title bar and above the rest
of the window, that contains choices that
provide access to other menus. In VisualAge for
RPG, you can drag a menu bar part from the
parts palette or parts catalog and drop it onto a
design window.

menu item part . A part that is a graphical or
textual item on a menu. A user selects a menu
item to work with an object in some way.

message . (1) Information not requested by a
user but displayed by a product in response to
an unexpected event or when something
undesirable could occur. (2) A communication
sent from a person or program to another
person or program.

message file . A file containing application
messages. The file is created from the message
source file during the build process. See also
build.

message subfile part . A part that can display
predefined messages or text supplied in
program logic.

migrate . (1) To move to a changed operating
environment, usually to a new release or
version of a system. (2) To move data from one
hierarchy of storage to another.

MID. The file extension of a MIDI file.

MIDI file . Musical Instrument Digital Interface
file.

minimize button . A button, located next to the
rightmost button in a title bar, that reduces the
window to its smallest possible size. Contrast
with maximize button and hide button.

378 VisualAge for RPG

mnemonic . A single character, within the text
of a choice, identified by an underscore beneath
the character. See also mnemonic selection.

mnemonic selection . A selection technique
whereby a user selects a choice by typing the
mnemonic for that choice.

mouse . A device with one or more push
buttons used to position a pointer on the display
without using the keyboard. Used to select a
choice or function to be performed or to perform
operations on the display, such as dragging or
drawing lines from one position to another.

mouse button . A mechanism on a mouse used
to select choices, initiate actions, or manipulate
objects with the pointer. See also mouse button
1 and mouse button 2.

mouse button 1 . By default, the left button on a
mouse used for selection.

mouse button 2 . By default, the right button on
a mouse used for manipulation.

mouse pointer . Synonym for cursor.

multiline edit (MLE) part . A part representing
an entry field that allows the user to enter
multiple lines of text.

N
NOMAIN module . A module that contains only
subprocedures. There are no action or
standalone user subroutines in it. A NOMAIN
module is created when the NOMAIN keyword is
present on the control specification.

notebook part . A graphical representation of a
notebook. You can add notebook pages to the
notebook part and then group the pages into
sections separated by tabbed dividers. In
Windows 95 or Windows NT, a notebook is
sometimes referred to as a Windows 95 or
Windows NT tab control. See also notebook
page part, notebook page with canvas part.

notebook page part . A part used to add pages
to a notebook part. See also notebook.

notebook page with canvas part . A combination
of a notebook page part and a canvas page part.
See also notebook, canvas part.

O
object . (1) A named storage space that
consists of a set of characteristics that describe
itself and, in some situations, data. An object is
anything that exists in and occupies space in
storage and on which operations can be
performed. Some examples of objects are
programs, files, libraries, and folders. (2) A
visual component of a user interface that a user
can work with to perform a task. An object can
appear as text or an icon.

object-action paradigm . A pattern for
interaction in which a user selects an object and
then selects an action to apply to that object.

object-oriented programming . A method for
structuring programs as hierarchically organized
classes describing the data and operations of
objects that may interact with other objects. (T)

object program . A target program suitable for
execution. An object program may or may not
require linking. (T)

operating system . A collection of system
programs that control the overall operation of a
computer system.

outline box part . A part that is a rectangular
box positioned around a group of parts to
indicate that all the parts are related.

P
package . A function used to collect all the parts
of a VisualAge for RPG application together for
distribution.

parts . Objects that make up the GUI of a
VisualAge for RPG application.

Glossary 379

parts catalog . A storage space for all of the
parts used to create graphical user interfaces
for VisualAge for RPG applications.

parts palette . A collection of parts that are
most appropriate for building the current
graphical user interface for an application.
When you finish one GUI, you can wipe the
palette clean and add parts from the parts
catalog that you require for the next application.

pop-up menu . A menu that, when requested,
appears next to the object with which it is
associated. It contains choices appropriate for
the object in its current context.

pop-up menu part . A part that, when added to
an object on your interface, appears next to the
object with which it is associated when
requested. You can drag a pop-up menu part
from the parts palette or parts catalog and drop
it onto a design window.

pop-up window . A movable window, fixed in
size, in which a user provides information
required by an application so that it can
continue to process a user request.
Synonymous with secondary window.

primary window . The window in which the main
interaction between the user and the application
takes place. Synonymous with main window.

procedure . A procedure is any piece of code
that can be called with the CALLP operation
code.

procedure interface definition . A procedure
interface definition is a repetition of the
prototype information within the definition of a
procedure. It is used to declare the entry
parameters for the procedure and to ensure that
the internal definition of the procedure is
consistent with the external definition (the
prototype).

programmable workstation (PWS) . A
workstation that has some degree of processing

capability and that allows a user to change its
functions.

progress indicator . One or more controls used
to inform a user about the progress of a
process.

project . The complete set of data and actions
needed to build a single target, such as dynamic
link library (DLL) or an executable file (EXE).

prompt . (1) A visual or audible message sent
by a program to request the user’s response. (T)
(2) A displayed symbol or message that
requests input from the user or gives
operational information. The user must respond
to the prompt in order to proceed.

properties notebook . A graphical
representation that resembles a bound notebook
containing pages separated into sections by
tabbed divider pages. Select the tabs of a
notebook to move from one section to another.

prototype . A prototype is a definition of the call
interface. It includes information such as:
whether the call is bound (procedure) or
dynamic (program); the external name; the
number and nature of the parameters; which
parameters must be passed; the data type of
any return value (for a procedure).

pull-down menu . A menu that extends from a
selected choice on a menu bar or from a
system-menu symbol. The choices in a
pull-down menu are related to one another in
some manner.

push button part . A button labeled with text
that represents an action that starts when a
user selects the push button. You can drag a
push button part from the parts palette or parts
catalog and drop it onto a design window. See
also graphic push button part.

PWS. Programmable workstation.

380 VisualAge for RPG

R
radio button part . A circle with text beside it.
Radio buttons are combined to show a user a
fixed set of choices from which only one can be
selected. The circle is partially filled when a
choice is selected. You can drag a radio button
part from the parts palette or parts catalog and
drop it onto a design window.

reference field . An AS/400 database field from
which an entry field part can inherit its
characteristics.

restore button . A button that appears in the
rightmost corner of the title bar after a window
has been maximized. When the restore button
is selected, the window returns to the size and
position it was in before it was maximized. See
also maximize button.

S
SBCS . Single-byte character set.

scroll bar . A part that shows a user that more
information is available in a particular direction
and can be moved into view by using a mouse
or the page keys.

secondary window . A window that contains
information that is dependent on information in
a primary window, and is used to supplement
the interaction in the primary window. See also
primary window. Synonym for pop-up window.

selection border . The visual border that
appears around a VisualAge for RPG part or a
custom-made part, allowing the part to be
moved with the mouse or keyboard.

selection button . See mouse button 1.

server . A system in a network that handles the
requests of another system, called a client.

server alias . A name you define that can be
used instead of the server name.

shared component . A component that can be
accessed by more than one project.

single-byte character set (SBCS) . A character
set in which each character is represented by a
one-byte code. Contrast with double-byte
character set (DBCS).

sizing border . The border or frame around a
part (or set of parts) that you select to resize
the part (or set of parts) using the mouse or the
keyboard.

slider part . A visual component of a user
interface that represents a quantity and its
relationship to the range of possible values for
that quantity. A user can also change the value
of the quantity. You can drag a slider part from
the parts palette or parts catalog and drop it
onto a design window.

slider arm . The visual indicator in the slider
that a user can move to change the numerical
value.

source directory . The directory in which all
source files for a VisualAge for RPG application
are stored.

source part . A part that can notify target parts
whenever the state of the source part changes.
A source part can have multiple targets.

spin button part . A type of entry field that
shows a ring of related but mutually exclusive
choices through which a user can scroll and
select one choice. A user can also type a valid
choice in the entry field. You can drag a spin
button part from the parts palette or parts
catalog and drop it onto a design window.

static text part . A part used as a label for other
parts, such as a prompt for an entry field part.

status bar . A part of a window that displays
information indicating the state of the current
view or object. See also information area.

subfile field . A field used to define fields in a
subfile part. See also subfile part.

Glossary 381

subfile part . A part used to display a list of
records, each consisting of a number of fields.
This part is similar to an AS/400 subfile. See
also subfile field.

submenu . A menu that appears from, and
contains choices related to, a cascading choice
in another menu. Submenus are used to reduce
the length of a pull-down menu or a pop-up
menu. See also submenu part.

submenu part . A part used to start a submenu
from a menu item or existing menu, or to start a
pull-down menu from a menu item on a menu
bar. See also submenu and menu item part.

subprocedure . A subprocedure is a procedure
specified after the main source section. It must
have a corresponding prototype in the definition
specifications of the main source section.

T
tab stop . An attribute used to set a tab stop for
a part so that users can focus on it when they
use the Tab key to move through the interface.

target part . A part that receives a link event
from a source part whenever the state of the
source part changes.

target directory . The directory in which the
compiled VisualAge for RPG application is
stored after a build. Contrast with target folder.

target folder . The object in which the icon
representing a VisualAge for RPG application is
placed.

target program . The object to be built by the
project, such as a dynamic link library (DLL).

thread . The smallest unit of operation to be
performed within a process.

timer part . A part used to track the interval of
time between two events and trigger the second
event when the interval has passed.

title bar . The area at the top of each window
that contains the system-menu symbol.

tool bar . A menu that contains one or more
graphical choices representing actions a user
can perform using a mouse.

topic . In dynamic data exchange (DDE), the set
of data that is the subject of a DDE
conversation.

tree view . A way of displaying the contents of
an object in a hierarchical fashion.

U
user-defined part . A part, consisting of one or
more parts you have customized, that you save
to the parts palette or parts catalog for reuse.
When in the palette or catalog, you can drag and
drop this part onto the design window as you
would any other VisualAge for RPG part.

utility DLL . See NOMAIN module.

W
WAV . The file extension of a wave file.

wave file . A file used for audio sounds on a
waveform device.

window part . An area with visible boundaries
that represents a view of an object or with which
a user conducts a dialog with a computer
system. You can drag a window part from the
parts palette or parts catalog and drop it onto
the project window.

window with canvas part . A combination of the
window part and the canvas part. See also
window part and canvas part.

work area . An area used to organize objects
according to a user’s tasks. When a user closes
a work area, all windows opened from objects
contained in the work area are removed from
the workplace.

workstation . A device that allows a user to do
work. See also programmable workstation.

382 VisualAge for RPG

List of Abbreviations

CCSID coded character set
identifier

CL command language

CODE cooperative
development
environment

DDL dynamic link library

DDM distributed data
management

DDS data description
specifications

EXE executable

GUI graphical user interface

IBM International Business
Machines Corporation

ILE integrated language
environment

IPF information presentation
facility

ITSO International Technical
Support Organization

LPEX live parsing editor

NLS national language
support

ODP open data path

PWS programmable
workstation

RPG report program
generator

SFL subfile

SQL structured query
language

 Copyright IBM Corp. 1998 383

384 VisualAge for RPG

Index

A
abbreviations 383
accessing AS/400 objects 11
acronyms 383
action

project 4
quick access 8

action link 302
action subroutine

adding code 243
creating 229
event 244
sharing ODP 47

activation group, default 41
alignment, parts 280
ambiguous cursor 90
application

abnormal termination 41
bar 204
binding procedure 128
building 254
client/server 3
commitment control 57
components 49
dead-lock 50
debugging 309
development environment 4
event-driven method 246
help 320
local file 65
local programs 108
lock wait 49
message subfile 146
modal message 141
multilanguage 188
NLS 171
organizing 4
packaging 201
project structure 193
record blocking 59
rollback 57
running 256

application (continued)
testing 297
utility DLL 122

AS/400
accessing objects 11
active debug server 15
client/server 3
commands 104
database files 33
debugger port 17
default server 34
defining file 319
defining server 273
exception 105
executing remote commands 44
field reference file 271
file operation codes 37
host name 15
logon 273
multiple servers 35
remote file 34
server logon 273
specifying host name 15

ASCII conversion 39, 64
asynchronous call 100
attribute, setting 246
authority, debugger 14
avoiding compile errors 11

B
backup 201
bibliography 367
breakpoint

conditional 30
deleting 25
from/to/every clause 30
line 26
list 25
optimized code 19
restoring 21
setting 12, 26, 310
watch 26

 Copyright IBM Corp. 1998 385

build
application 254
nonvisual component 210
options 40, 85, 196, 255

C
cache

refreshing 40
using 40

call stack 12, 24, 25, 30
CCSID 39, 46
changing record format 36
character

array 29
pointers 29

client/server
building applications 3
description 3

code
generating 3
language independent 175
optimized 19
prompting 10
readability 10
testing 4

column headings 180
command

DSPDBGWCE 28
ENDDBG 14
ENDDBGSVR 15
ENDSRVJOB 14
IDEBUGAS 19
LPEX 247
OPNDBF 41
OPNQRYF 46
OVRDBF 41, 44
RCLRSC 41
STRCMTCTL 56
STRDBG 14
STRDBGSVR 15
STRSRVJOB 14
submitting 104

commitment control
description 55
disabling 37
switch 58

compiler
avoiding errors 11
description 11
function naming 131
ILE 18
listing 295
OPM 19
prototype 113
reducing time 40
refreshing cache 40

component
attribute values 323
customizing 258
file lock 49
monitoring event 323
nonvisual 209
packaging 202
project structure 193
reference part 323
sharing 216

condition, watch 27
conditional breakpoint 30
configuration, parts palette 9
confirmation message 138
connecting to database 74
constant

*START 39
*STOP 39
NLS 174
procedure prototype 117

container
adding record 337
changing view 338
column headings 180
views 333

context-sensitive help 153
cooperative debugger 13
cursor

ambiguous 90
declaring 78
isolation level 90
positioning 299
read-only 89
stability 89

386 VisualAge for RPG

D
data area

data structure 93
defining 91
reading and writing 92
releasing lock 92

data queue, using 101
data representation, default 29
data structure 93
database

accessing 33
binding 87
commitment control 55
connecting 74
cursor 78
DDM 40
exception handling 60
file, renaming 34
journal 55
keyed file 38
ODP 41
operation codes 37
overriding file 44
read-only cursor 89
record I/O 33
record lock duration 51
record locking 49
SQL 70

DDM
commitment control 56
job log 41
runtime 40
sharing ODP 43

dead-lock 50
debug server

port 15
router 15
starting 13, 15

debugger
application 309
AS/400 port 17
breakpoint 25
call stack 24
client 14
cooperative 13
description 12

debugger (continued)
directory path 22
ending session 22
environment variables 13, 16
evaluating stop conditions 30
from/to/every clause 30
languages 17
limits 30
module 18, 23
module naming 29
monitor 25
multiple statements 28
optimized code 19
performance 29
port 13
preparing 13
program exception 24
required authorities 14
restoring windows 21
running program 24
search paths 17
service table 14
session control 25, 309
source view 309
starting 19
step 24
supported code 28
TCP sockets 14
tool buttons 24

debugging
C + + constructors 22
job 20

declaring cursor 80
Dedicated Service Tool 28
default activation group 41
default data representation 29
default exception handler 60
defining message 139
direct editing 235
disabling commitment control 37
display file, importing 217
Distributed Data Management

See DDM
DLL

binding 128
directory 132
target program 4

Index 387

DLL (continued)
utility 122

dynamic link library
See DDL

dynamic SQL 83

E
EBCDIC conversion 39
embedded SQL 71
end-of-file indicator 38
ending debug 14
environment variable 15
error logging 11
event

action subroutine 244
component reference part 323
linking 246
redirecting 159

exception
handling 60, 98, 105, 299
resuming 62
SQL 80

executable file 4
expression

changed 26
evaluations 29
monitoring 29

external
description 33
procedure 122

F
field

changing size 285
headings 272
hidden 324
reference file 271

figurative constants 39
file

/COPY 126
closing 37
commit 38
DDM 40
dead-lock 50
defining 33

file (continued)
description specifications 33
display 217
exception handling 37, 60
executable 4
external description 33
field reference 271
full-procedural 33
help 188
keyed 38
library list 34
local 64
lock wait 49
locking 49
locking conflicts 49
multiple AS/400 servers 35
multiple views 11
name 65
nonshared open 42
ODP 41
open for update 50
operation codes 37
organizing 4
overriding 44
overriding member 35
positioning 42
project 194
random retrieval 37
read without locking 53
record blocking 59
record lock 50
relative record number 66
REMOTE keyword 34
rereading record 54
RST 36
runtime 195
sequential 64
sharing ODP 42
sorting records 82
switching off commitment control 58
user open 45

finding source code 22
fonts 266
format, import 221
from/to/every clause 30

388 VisualAge for RPG

full-procedural 33
function

C + + 133
foreign DLLs 131
naming consideration 131
prototyping 131

G
generating RPG code 3
glossary 373
GUI

building 233
events 3

GUI designer
components 231
description 5
preferences 258
starting 230

H
help

building file 188
context-sensitive 153
embedded image 163
highlighting 156
hypertext link 161
IPF 153
language-sensitive 11
project organizer 5
push button 159
second-level 166
symbols 161
table of contents 164
text 186

hexadecimal pointers 29
hidden field 324
host name, AS/400 15
host variables 71
hover-help 8
hypertext link 161

I
ICCASDEBUGHOST 15

identifying shared ODP 42
ILE 18
importing display file 217
INFDS 37
INFSR 37, 49, 61
Internet

ITSO xix
IPF

default header 154
help 153

isolation level 89
ITSO

FTP server xx
Internet xix
redbooks home page xix
World Wide Web xix

J
job

debugging 20
file lock 49
log 41

journaling 55

K
keyed database file 38
keyword, REMOTE 34

L
label

changing 235
NLS 171
substitution 172

language-sensitive help 11
line

breakpoint 26
types 249

literal, NLS 174
local

file 64
programs 108
variables 25

locating source code 22

Index 389

lock
commitment control 57
conflicts 49
data area 92
duration 51
exclusive-read 92
level 57
read for update 51
rereading record for update 54
state 49, 50
wait 49

logging, errors 11
LPEX

command 247
context-sensitive help 154
description 10
format lines 252
sequence numbers 248
token highlighting 248

M
managing projects 193
mapping network services 14
member, overriding default 35
menu bar, description 7, 231
menu, pop-up 329
message

adding 146
application modal 141
as label 150
buttons 137
confirmation 138
defining 139
definition name 142
displaying 141
handling 306
ID 142
in source 137
inquiry 145
multiple 145
NLS 175
replacement variable 142
return code 138
second-level help 166
style 137
subfile 145

message (continued)
substitution 307
text substitution 143
versions 177

migration, GUI 217
module

compiliing 18
debugger 23
naming 29

monitoring
debugger 25
enabled windows 29
expression 29
variables 12
windows 29

multilanguage application 188
multiple statements on line 28
multiple watch conditions 27

N
national language support

See NLS
network services, mapping 14
NLS

column headings 180
constant 174
developing for 171
help text 186
label 171
label substitution 172
literal 174
messages 139
messages as labels 150
multilanguage application 188
subfile 180
using messages 175

nonvisual component 209
notebook

creating 330
properties 234

null-terminated string 133

O
ODP

dead-lock 50

390 VisualAge for RPG

ODP (continued)
description 41
lock state 50
read for update 51
scope 41
sharing 42

open data path
See ODP

open query file 46
OPM 19
optimization level 19
optimized code, debugger 19
organizer, project 4
organizing applications 4
organizing files 4
override scope 45
overriding

database file 44
default member 35

P
packaging utility 214
palette, customizing 261
parameter

list 97
null-terminated string 133
passing 97
procedure 115

part
aligning 267
alignment 280
component reference 323
container 333
packaging 214
properties 234
removing window 209
resource identifier 158
restoring position 281
sharing 214
sizing 280
spacing 280
template 233
user-defined 214

parts catalog 5, 9, 214
parts palette 5, 8, 9, 233

passing parameter 97
performance

character array 29
conditional breakpoint 30
debugger 29
default data representation 29
expression complexity 29
file placement 30
hexadecimal pointers 29
monitor windows 29
number of watches 30
optimization level 19
PC files 30
record blocking 59
representing structures 29
searching strings 30
source member 30
step 29
string 29

pointer
performance 29
procedure 132

pop-up menu, creating 329
procedure

binding 128
call stack 24
constant reference 117
external 122
finding 30
interface 126
invocation 126
invoked within expression 121
parameter 115
pointer 132
prototyping 113
return value 119
stepping over 24, 28
variable 114

production file, updating 17
profile information 20
program

asynchronous call 100
calling 95
current position 25
dead-lock 50
debugger exception 24
defining message text 308

Index 391

program (continued)
dynamic specification 108
extension 108
ILE 18
local 108
locating 97
monitor 25
monitoring exceptions 99
passing parameter 97
profile information 20
prototype 108
renaming database file 34
running 25
sharing ODP 43
stepping through 28
synchronous call 108
variable 336
watch 25

project
actions 4
adding component 313
adding logic 290
adding new window 270
building 255
changing type 206
creating 193
customizing view 258
hierarchies 4
IVG file 195
managing 193
organizer 4
organizer help 5
resource identifier 158
RST file 36
runtime 195
saving 242
source files 194
structure 193
utilities 197
view 6, 233
window 5

prompting 10
properties notebook 234
prototype defining 108
prototyping, function 131

prototyping, procedure 113
PTF, shared ODP 43

Q
QCMDDDM 44
QCMDEXC 69, 104

R
read-only cursor 89
reclaim resources 41
record

adding to container 337
blocking 59, 89
changing format name 36
CRLF 64
database 33
dead-lock 50
deleting 38
fixed length 64
format 36
length 64
length, source files 31
lock duration 51
locking 42, 49, 50
random retrieval 66
read for update 51
read into subfile 39
read without locking 53
reading 38
rereading 54
selecting from subfile 318
sorting 82

redirecting event 159
reducing compile time 40
reference field, defining 315
reference file 271
refreshing cache 40
register 12
REMOTE keyword 34
removing default window 209
repeatable read 90
replacement variable 142
resource identifier 158
resuming exception 62

392 VisualAge for RPG

return code, message 138
return value 119
REXX, calling 112
rollback 57
RPG code generating 3
RPG file operations 11
RPGIV language 247
RST file 36, 97
runtime

error 299
files 195

S
samples xx
screen layout, creating 8
second-level help 166
sequence numbers 248
service job 14, 39
service table, debugger 14
session control 25
setting breakpoints 12
shared ODP 42
sharing part 214
sockets programming services 15
sorting records 82
source

embedding SQL 71
file record length 31
language independent 175
line types 249
locating 22
member, performance 30
message 137
project 194

source code
C + + 22
OPM languages 23

SQL
connecting to database 74
cursor 78
data type 72
dynamic 83
embedding 71
exceptions 80
host variables 71
package 87

SQL (continued)
record blocking 89
sorting records 82
support 70
type mapping 72

starting debug 14
starting debug server 15
status bar 8
step performance 29
stepping over procedure 24, 28
stepping through program 28
storage location, watched 26
string

largest 30
null-terminated 133
search performance 30

subfile
column headings 180
component 319
creating 313
filling 316
hidden field 324
message 145
selecting record 318

subroutine, action 229
symbols 160
synchronous call 108
syntax checking 11, 250

T
target program 4
testing code 4
text substitution 143
timer 103
token highlighting 10, 248
tool bar

changing position 8
description 8, 232

tool buttons, debugger 24

U
uncommitted-read 89
updating production file 17
user-defined part 214

creating 263

Index 393

using cache 40
utility DLL 122

V
variable

changed 26
changing 19, 28
changing representation 25
deleting 25
displaying 28
host 71
monitoring 12, 25
replacement 142
scope 114

VisualAge for RPG
compiler 11
platforms 3
Windows 95/NT 3

VisualAge, Internet xxi

W
watch

breakpoints 26
bytes 27
condition 27
Dedicated Service Tool 28
dialog 27
maximum 28
maximum bytes 31
multiple conditions 27
performance 30
thread 27

window
focus 326
removing default 209

394 VisualAge for RPG

ITSO Redbook Evaluation

AS/400 Programming with VisualAge for RPG
SG24-2222-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

Use the online evaluation form found at http://www.redbooks.ibm.com
Fax this form to: USA International Access Code + 1 914 432 8264
Send your comments in an Internet note to redbook@us.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 395

S
G

2
4

-2
2

2
2

-0
0

P
rin

te
d

in
th

e
U

.S
.A

.
AS/400 Programming with VisualAge for RPG SG24-2222-00

	Contents
	Part 1. Programming with VisualAge for RPG
	Part 2. Exercises

	Figures
	Tables
	Preface
	ITSO on the Internet
	VisualAge for RPG on the Internet
	About the Authors
	Acknowledgments
	Comments Welcome

	Part 1. Programming with VisualAge for RPG
	Chapter 1. Introduction to VisualAge for RPG
	What Is VisualAge for RPG
	What Is Client/ Server
	Building Client/ Server GUI Applications
	The Application Development Environment
	Project Organizer Help
	The GUI Designer
	The Project Window
	The Parts Palette
	The Parts Catalog
	The Editor
	The Compiler
	The Debugger

	Chapter 2. Debugging
	Preparing for Debugging
	Authorities Required for Using the Debugger
	Setting Debugger Ports
	Starting the Debug Server
	Ending the Debug Server
	Specifying an AS/ 400 Host Name
	Setting Environment Variables for Debugging
	Compiling a Program with Debug Data
	Compiling ILE C + + Programs
	Compiling ILE C, ILE RPG, ILE COBOL, or ILE CL Programs
	Compiling OPM RPG, OPM COBOL, or OPM CL Programs
	Debugging Optimized Code
	Starting a Debugging Session
	Ending the Debugging Session
	Locating Source Code
	Frequently Used Features of the Debugger
	Using the Tool Buttons
	Running a Program
	Setting Breakpoints
	Stepping Through a Program
	Displaying and Changing Variables
	Writing Code That the Debugger Supports
	Debugger Performance Considerations
	Debug Limits of the Cooperative Debugger

	Chapter 3. Data Access
	AS/ 400 Files and Record I/ O
	An Easy Approach
	Open Data Paths and Overrides
	Open Query File
	File Locking
	Record Locking
	Commitment Control
	Record Blocking
	Exception Handling
	Local Files
	File Definition
	File Name
	SQL Support
	Embedding SQL
	Host Variables
	Connecting to the Database
	Sample SQL Application
	Build Process and Options
	Data Area
	Defining a Data Area
	Reading and Writing Data Areas
	Data Area Data Structure

	Chapter 4. Programs, Procedures, and Functions
	AS/ 400 Programs and Commands
	The CALL Opcode
	Parameters
	Exceptions
	Asynchronous Call
	AS/ 400 Commands
	Local Programs
	CALLP Operation
	START Operation
	Examples
	Procedures
	Prototyping and Invocation
	Implementation
	Parameters
	Return Values
	External Procedures
	Functions from Foreign DLLs
	Prototyping
	Null- Terminated Strings

	Chapter 5. Messages
	Messages in Your Source
	Message Style
	Define Messages Dialog
	Message Definition
	Displaying Messages
	Replacement Variables
	Message Subfile
	Multiple Messages
	Adding Messages
	Messages as Labels

	Chapter 6. Defining Help
	Context- Sensitive Help
	LPEX Editor
	Highlighting
	Resource Identifier
	The Help Push Button
	Redirecting Events
	Symbols
	Hypertext Links
	Embedded Images
	Displaying Table of Contents
	Second- Level Help for Messages

	Chapter 7. National Language Support
	Labels in GUI Parts
	Label Substitution
	Label Names
	RPG Constants and Literals
	Using Messages
	Constants
	Message Versions
	Column Headings
	Help Text
	Building the Help File
	Multilanguage Application

	Chapter 8. Managing Projects
	Project Structure
	Creating a Project
	Source Files
	Runtime Files
	Project File
	Utilities and Actions
	Utility Description
	Using Utilities
	Nonvisual Components
	Share Your Work
	Sharing Parts
	Sharing Components

	Chapter 9. Importing Display Files
	Screens and Windows
	Redesigning Screens
	Sample Import

	Part 2. Exercises
	Exercise 1. Creating a Simple VisualAge for RPG Application
	Exploring the GUI Designer and Creating Action Subroutines
	Objective
	Introduction
	Starting the VisualAge for RPG GUI Designer
	Components of the VisualAge for RPG GUI Designer
	Menu Bar
	Tool Bar
	Project View
	Parts Palette
	Creating a Graphical User Interface
	A Note About Notebooks
	Saving Your Project
	Action Subroutines
	Creating an Action Subroutine
	Creating an Action Subroutine for the OK Push Button
	RPGIV: Base for VisualAge for RPG Language Definition
	LPEX Editor
	LPEX Editor tool bar
	Sequence Numbers
	Token Highlighting
	Displaying Types of Lines
	Syntax Checking
	Using Format Lines
	Building the Application
	Running the Application

	Exercise 2. Exploring the GUI Designer and Accessing AS/400 Databases
	Objective
	Starting GUI Designer for an Existing Project
	Customizing Components in VisualAge for RPG GUI Designer
	Customizing the Project View
	Customizing the Tool Bar
	Customizing the Parts Palette
	Creating a User- Defined Part
	Adding a New Window to Your Project
	Creating an Instance of a User- Defined Part
	Using an AS/ 400 File as a Field Reference File
	Creating Field Headings
	Adding the Entry Fields
	Defining the Server
	More Alignment, Sizing, and Spacing
	Changing the Size of Some Fields
	Adding More Logic to Your Project
	Changing the OK Button Action Subroutine
	Adding an Action Subroutine to the Customer Information Window
	Building the Application
	Viewing the Compile Listing
	Testing Your Application

	Exercise 3. Error Handling, Action Links, and Messages
	Objective
	Enhancing Runtime Behavior
	Handling a Runtime Error
	Running the Improved Application
	Working with Action Links
	Using Message Boxes
	Optional Exercise: More Message Box Handling
	Using Message Substitution
	Defining Message Text in the Program
	Using Action Links to Navigate Your Logic
	Debugging a VisualAge for RPG Application

	Exercise 4. Creating a Component with Subfile and Application Help
	Objective
	Creating a Subfile
	Defining Reference Fields
	Adding the File Specification
	Selecting a Record from the Subfile
	Defining AS/ 400 Information
	Defining the AS/ 400 File
	Building the Subfile Component
	Adding Logic to the Customer Inquiry Component
	Running the Enhanced Application
	Creating Help for Your Application
	Exercise Summary

	Exercise 5. Using the Component Reference Part
	Objective
	Creating the Hidden Field
	Creating and Using the Component Reference Part
	Visibility and Focus
	Exercise Summary

	Exercise 6. Pop-Up Menus and Notebooks
	Objective
	Creating a Pop- up Menu
	Working with Pop- up Menus
	Adding Logic to Support Pop- up Menus
	Creating the Notebook
	Adding Logic to Update the Notebook Pages
	Exercise Summary

	Exercise 7. Using the Container Part
	Objective
	Container Overview
	Application Description
	Creating the Graphical User Interface
	Defining the Local File
	Defining the Input Specifications
	Defining Program Variables
	Adding Records to the Container
	Changing the Container View
	Testing the Container Application

	Appendix A. File Descriptions
	Customer File DDS
	Customer File on AS/ 400 System
	Contacts. TXT File

	Appendix B. VisualAge for RPG Source
	Source for GUIDES2
	Source for COMPLIST
	Source for Container Example

	Appendix C. Sample Code
	AS/ 400 Upload Program
	Source for AS/ 400 Upload Program

	Appendix D. Special Notices
	Appendix E. Related Publications
	International Technical Support Organization Publications
	Redbooks on CD- ROMs
	Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

