
ibm.com/redbooks

IBM HTTP Server
(powered by Apache)ache)
An Integrated Solution for IBM Eserver iSeries Servers

Thomas Barlen
Wilfried Blankertz

Fully exploit the integrated power of
IBM i5/OS and Apache

Study the new administration GUI, SSL
proxy, security, and compression

Extend ASF Jakarta Tomcat
5.5, PHP, APR, and modules

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM HTTP Server (powered by Apache): An
Integrated Solution for IBM ~ iSeries Servers

January 2005

SG24-6716-02

© Copyright International Business Machines Corporation 2002, 2003, 2005. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Third Edition (January 2005)

This edition applies to V5R3 of the IBM HTTP Server for iSeries (5722-DG1) for use with V5R3 of IBM i5/OS
(5722-SS1).

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Notices” on page ix.

Contents

Contents . iii

Notices . ix
Trademarks .x

Foreword . xi

Preface . xiii
The team that wrote this redbook. xiv
Become a published author .xv
Comments welcome. .xv

Summary of changes . xvii
January 2005, Third Edition . xvii

Part 1. Zen and the art of the HTTP server . 1

Chapter 1. ‘Powered by Apache’ means OS/400 integration. 3
1.1 HTTP Server (powered by Apache) features . 4

1.1.1 HTTP Version 1.1 . 5
1.1.2 GUI configuration and administration . 5
1.1.3 Virtual hosts . 6
1.1.4 Authentication . 6
1.1.5 SSL and TLS. 7
1.1.6 Proxy caching . 7
1.1.7 Local memory cache. 8
1.1.8 Server-side includes . 9
1.1.9 CGI programming . 9
1.1.10 LDAP support . 9
1.1.11 Webserver Search Engine and Web Crawler . 10
1.1.12 Web-based Distributed Authoring and Versioning . 10
1.1.13 Access log reporting and Web usage mining . 10
1.1.14 Log rollover and maintenance. 11
1.1.15 Domino plug-in . 11
1.1.16 WebSphere Application Server plug-in . 11
1.1.17 Apache Software Foundation’s Jakarta Tomcat . 11
1.1.18 Apache Portable Runtime and modules . 12
1.1.19 Support for the TRCTCPAPP command. 12
1.1.20 Collection Services performance data . 12
1.1.21 Real-time server statistics . 13
1.1.22 Triggered Cache Manager . 13
1.1.23 Fast Response Cache Accelerator . 13
1.1.24 Compression . 13
1.1.25 Highly available HTTP server . 14
1.1.26 Support for IASPs . 14
1.1.27 Asynchronous I/O . 14
1.1.28 Denial of service . 14
1.1.29 Miscellaneous . 15

1.2 For more information. 15
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. iii

Chapter 2. From zero to powered by Apache . 17
2.1 Before you start . 18

2.1.1 Software . 18
2.1.2 User profile authorities . 22
2.1.3 Web browser . 22

2.2 Software installation . 23
2.2.1 Installing LPPs and OS/400 options . 23
2.2.2 Installing PTFs . 24
2.2.3 Installing the ITSO example Web application (optional) . 24

2.3 Testing the HTTP Server (powered by Apache) installation . 24
2.3.1 Your first HTTP Server (powered by Apache) via a wizard. 24

Chapter 3. The new GUI: IBM Web Administration for iSeries 33
3.1 Welcome page: iSeries Tasks page . 34
3.2 Header images to access information for help . 36
3.3 Tabbed pages for easy navigation . 36

3.3.1 Setup tab: Common tasks and wizards. 37
3.3.2 Manage tab . 37
3.3.3 Advanced tab . 51
3.3.4 Related links page . 57

Chapter 4. Quick guide to Apache contexts and request routing 59
4.1 In-context configuration. 60
4.2 Apache server request routing . 61
4.3 Request routing example . 62
4.4 Configuration recommendations . 63
4.5 Configuring directory listings . 63

Part 2. How to... 69

Chapter 5. Virtual hosts . 71
5.1 HTTP virtual host overview . 72

5.1.1 The way TCP/IP is configured. 72
5.1.2 The way the HTTP server will be configured . 72
5.1.3 The way the HTTP server will handle visitor requests . 74

5.2 HTTP Server (powered by Apache) virtual host overview. 75
5.2.1 Additional resources . 77

5.3 Virtual hosts: IP-based implementation. 77
5.3.1 IP-based virtual host: Problem scenario . 78
5.3.2 IP-based virtual host: Solution overview . 79
5.3.3 IP-based virtual host: Step-by-step implementation . 80

5.4 Virtual hosts: Name-based implementation . 89
5.4.1 Name-based virtual hosts: Problem overview. 90
5.4.2 Name-based virtual host: Solution overview. 91
5.4.3 Name virtual host: Step-by-step implementation . 92

5.5 Virtual hosts: Mass dynamic implementation . 94
5.5.1 Mass dynamic virtual host: Problem scenario. 95
5.5.2 Mass dynamic virtual host: Solution overview. 96
5.5.3 Mass dynamic virtual host: Step-by-step implementation 98

Chapter 6. Defending the IFS . 101
6.1 Access control . 102
6.2 Basic authentication . 103

6.2.1 Authentication by OS/400 user profiles. 105
iv IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6.2.2 Authentication by a validation list . 108
6.2.3 Authentication by LDAP entries . 113

6.3 Authenticating users via Kerberos . 120
6.3.1 Getting ready for Kerberos authentication . 122
6.3.2 Implementing Kerberos Web authentication . 122

6.4 Encrypting your data with SSL and TLS . 127
6.4.1 Enabling SSL . 127
6.4.2 TLS upgrade . 136
6.4.3 Enabling SSL for the ADMIN instance . 137
6.4.4 SSL handshaking . 137
6.4.5 Client-side digital certificates. 139

6.5 Proxy server: Protecting direct access . 142
6.5.1 Forward proxy . 143
6.5.2 Reverse proxy. 145
6.5.3 SSL proxy . 149
6.5.4 Proxy chaining . 154

6.6 For more information. 155

Chapter 7. Serving dynamic data. 157
7.1 Server-side includes . 158
7.2 Everything dynamic with CGI support . 160
7.3 Net.Data: A ready-made scripting tool . 161

7.3.1 Implementation: Setting up the Net.Data environment . 161
7.3.2 Configuring your HTTP Server (powered by Apache) for CGI 164
7.3.3 Testing your HTTP Server (powered by Apache) and Net.Data macro 169

7.4 For more information. 169

Part 3. Building a Web application . 171

Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 173
8.1 A look at HTTP Server (original) and (powered by Apache) . 174

8.1.1 Directives and services not supported . 175
8.1.2 Equivalent directives . 176
8.1.3 Functional differences. 176
8.1.4 New HTTP Server (powered by Apache) directives . 176

8.2 An example migration . 177
8.2.1 Initial situation: HTTP Server (original) configuration . 178
8.2.2 Migration steps . 178
8.2.3 Result: HTTP Server (powered by Apache) configuration 186

8.3 Testing your migration. 188

Chapter 9. Web application serving . 191
9.1 Web application servers for the iSeries server . 193

9.1.1 Comparing WebSphere Application Server and ASF Jakarta Tomcat 194
9.1.2 When to use WebSphere Application Server versus ASF Jakarta Tomcat 195

9.2 Apache Software Foundation’s Jakarta Tomcat on iSeries . 197
9.2.1 ASF Jakarta Tomcat directory structure . 198
9.2.2 ASF Jakarta Tomcat directives . 199
9.2.3 ASF Jakarta Tomcat authorities . 201
9.2.4 ASF Jakarta Tomcat log files . 202

9.3 In-process implementation with ASF Jakarta Tomcat . 202
9.3.1 Creating HTTP Server (powered by Apache) . 202
9.3.2 In-process Tomcat configuration. 203

9.4 Out-of-process implementation with ASF Jakarta Tomcat . 208
 Contents v

9.4.1 Creating the ASF Tomcat server. 209
9.4.2 Creating the link between the HTTP and ASF Tomcat servers 216
9.4.3 Testing the out-of-process ASF Tomcat server . 220

Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 223
10.1 iSeries Web server performance components . 226
10.2 Web server: Global performance values. 227

10.2.1 Threads and asynchronous I/O. 228
10.2.2 Process control: HotBackup . 229
10.2.3 Logging . 230
10.2.4 HostNameLookups . 231
10.2.5 KeepAliveTimeout . 231
10.2.6 TCP buffer size . 232
10.2.7 Denial of service . 233
10.2.8 CGI initialization at server startup . 234

10.3 Web server: Specific performance values. 235
10.3.1 HTTP Server (powered by Apache) local cache. 236
10.3.2 HTTP Server (powered by Apache) proxy cache . 239

10.4 Increasing throughput with compression. 240
10.4.1 Compression considerations. 241
10.4.2 Example configurations. 241
10.4.3 Logging . 252
10.4.4 Controlling the compression environment. 257
10.4.5 For more information. 258

10.5 Triggered Cache Manager . 259
10.5.1 TCM system requirements . 260
10.5.2 TCM documentation . 261
10.5.3 TCM directory structure and authorization . 261
10.5.4 How the TCM server works. 262
10.5.5 Configuring a working TCM example . 264

10.6 Fast Response Cache Accelerator . 281
10.6.1 What FRCA is . 282
10.6.2 How FRCA local cache works. 283
10.6.3 How FRCA reverse proxy cache works . 285
10.6.4 FRCA limitations . 286
10.6.5 FRCA configuration examples . 287
10.6.6 Miscellaneous FRCA directives beyond the online help 296
10.6.7 The FRCA challenge. 299
10.6.8 For more information. 299

10.7 Cryptographic coprocessors . 300
10.8 Real Time Server Statistics . 301
10.9 References . 306

Chapter 11. Getting started with Webserver Search Engine and Web Crawler. 307
11.1 iSeries Webserver Search Engine . 308
11.2 iSeries Webserver Search Engine Web Crawler. 309

Chapter 12. Apache Portable Runtime: Extending your core functionality 311
12.1 Apache module design overview . 312

12.1.1 Documentation and resources . 314
12.2 Creating a module for the iSeries server. 315

12.2.1 The task at hand . 315
12.2.2 Source code and comments . 315
12.2.3 Compiling, linking, and exporting your service program 319
vi IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

12.2.4 Activating via configuration . 320
12.2.5 Testing header_module . 320
12.2.6 Debugging. 322

Chapter 13. Problem determination: When things do not go as planned 323
13.1 The art of problem determination . 324
13.2 Tools of the trade . 327

13.2.1 Working with configuration files. 327
13.2.2 Job logs. 329
13.2.3 Server logs . 331
13.2.4 Net.Data logs and traces . 340
13.2.5 HTTP server trace. 341
13.2.6 Collection Services performance data . 345
13.2.7 Other startup parameters . 351
13.2.8 HTTP status codes . 352
13.2.9 Communications trace . 353
13.2.10 Additional resources . 354

Chapter 14. High availability . 355
14.1 Highly available Web server cluster on the HTTP server . 356

14.1.1 Primary or backup with takeover IP model . 356
14.1.2 Primary or backup with a network dispatcher model. 358
14.1.3 Peer model . 359

14.2 A working primary or backup with takeover IP model . 359
14.2.1 Problem definition . 359
14.2.2 Solution definition . 360
14.2.3 Assumptions . 360
14.2.4 How to. 361

14.3 For more information. 371

Chapter 15. National language considerations . 373
15.1 Installing secondary languages. 374
15.2 Net.Data based: iSeries Tasks page and DCM . 375
15.3 Servlet based: Administration GUI . 376
15.4 Other programs linked from iSeries Task page. 380

15.4.1 Internet Printing Protocol server for the iSeries server 380
15.4.2 WebSphere family. 381
15.4.3 4758 Cryptographic Coprocessor . 381

15.5 Serving your own Web site in the world’s languages . 381

Part 4. Appendixes . 385

Appendix A. Bringing PHP to your iSeries server . 387
Programming with PHP on the iSeries server . 388

What PHP is . 388
Why PHP . 389
A code example . 390

PHP on the iSeries server . 391
PHP as a CGI program . 393
Another PHP script . 396

For more information . 397
Beware of PHP bugs. 397
Prerequisites . 398

Installing PHP on the iSeries server. 399
 Contents vii

Pre-preparation for installation . 399
Downloading PHP. 400
Patching the source code file . 401
Locating iSeries-specific files . 401
Preparing for the PHP compile . 402
Compile (make). 403
Testing PHP . 405
Configuring HTTP Server (powered by Apache) to use PHP . 405
Creating a sample database . 405
Limitations. 406
PHP 4.2.2 errata . 407

Appendix B. Bringing Tomcat Version 5.5 to your iSeries server 409
Software prerequisites . 410
Installation . 410

Installing Tomcat 5.5 on your iSeries server . 411
Installing the Tomcat 5.5 compatibility package . 412
Starting Tomcat 5.5 on the iSeries server. 413
Installing mod_jk connector . 415
Configuring your HTTP Server (powered by Apache). 416

Appendix C. Bringing Zip and Unzip to OS/400 PASE and Qshell environments . . . 419

Appendix D. Additional material . 421
Locating the Web material . 421
Using the Web material . 421

System requirements for downloading the Web material . 422
How to use the Web material . 422

Related publications . 423
IBM Redbooks . 423

Other resources . 424
Referenced Web sites . 424
How to get IBM Redbooks . 426
Help from IBM . 426

Index . 427
viii IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
alphaWorks®
developerWorks®
eServer™
ibm.com®
iSeries™
i5/OS™
pSeries®
AIX®
AS/400®

Domino®
DB2 Universal Database™
DB2®
Integrated Language Environment®
IBM®
Language Environment®
Lotus®
Net.Data®
OS/400®
PartnerWorld®

PowerPC®
POWER™
Redbooks™
Redbooks(logo) ™
RS/6000®
SecureWay®
Tivoli®
TotalStorage®
VisualAge®
WebSphere®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Foreword

IBM® embraced the widely popular open-source Apache server several years ago as the
Hypertext Transfer Protocol (HTTP) server of choice for its Web products. The foundation of
any On Demand Business application is the Web server, and IBM has made a significant
investment in Apache to be that foundation. The broad investment in Apache across IBM’s
product offerings allows Web developers to leverage existing Apache skills and software to
build applications for commercial use.

Just as your businesses do not stand still, neither does the world of Web products. The
Apache 2.0 server continues to evolve to meet the demands of today’s Web environments.
The IBM HTTP Server for iSeries™ (powered by Apache) continues to evolve as well,
incorporating the latest Apache changes into the IBM Eserver i5 and iSeries platform and
integrating them in an easy-to-use and easy-to-manage fashion. By reading this IBM
Redbook, you will gain a sense for the breadth of the functions available in the HTTP Server
(powered by Apache), as well as learn how to integrate the HTTP Server with the rest of your
computing systems and integrate your Web environment with IBM i5/OS™ applications. You
will understand how the renowned i5/OS security has been leveraged within the HTTP Server
(powered by Apache). You will also see how convenient all these capabilities are to configure
and use thanks to the administrative graphical user interface (GUI) that is provided.

If you are familiar with this redbook from earlier versions, you will find that the features of the
HTTP Server (powered by Apache) continue to grow. More options and greater integration
with Web solutions are provided with the addition of Kerberos authentication. New
performance enhancements are available with data compression.

If you are new to this redbook, you will find a wealth of information about what is possible with
the HTTP Server (powered by Apache) and to leverage these rich features for your benefit.
Examples and details are provided so that you can duplicate what we have done and take it
from there.

Evolving right along with the server is the administrative GUI. The administrative GUI is
another example of integration within the iSeries system to enable you to achieve the most
from your Web environment.

Whether you are looking to enhance an existing Web environment or introduce a new Web
solution, we hope that this redbook provides the information, or references to information, to
help you capitalize on the functionality provided with IBM HTTP Server for iSeries (powered
by Apache).

Brian Noordyke

HTTP Server Development Team Leader
IBM Eserver i5
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. xi

xii IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Preface

This IBM Redbook is designed as a guide to help you plan, install, configure, troubleshoot,
and understand the IBM HTTP Server (powered by Apache) running on the IBM Eserver i5
and iSeries server. This redbook starts with an introduction to the HTTP Server (powered by
Apache). It identifies all the components that are necessary for you to install and configure
your first Apache-based Web server running on your iSeries server. It includes a quick guide
to the Apache contexts and request routing. It also introduces the iSeries’ unique graphical
user interface (GUI) for further configuration and customization.

Then this redbook instructs you on how to use virtual hosts, secure your server, and serve
dynamic data with server-side includes (SSI), Common Gateway Interface (CGI), Net.Data®,
and Hypertext Preprocessor (PHP). Each lesson is written in an easy to follow “how to” style.

After that, this redbook takes an in-depth look at the HTTP Server (powered by Apache). It
details the steps that are necessary to implement Web application serving with Java™,
featuring the Apache Software Foundation’s (ASF) Jakarta Tomcat. More advanced topics
include how to achieve the best performance by using local caches, compression with
mod_deflate, Triggered Cache Manager (TCM), and the Fast Response Cache Accelerator
(FRCA).

One of the key differentiators of i5/OS compared to most other operating systems is the many
built-in security features and services that make this platform one of the most secure
platforms in the market. The HTTP Server (powered by Apache) in i5/OS also includes many
security functions extending the i5/OS security to the Web environment. An entire part of this
redbook is devoted to protecting your Web server and data traffic.

This redbook also introduces the Webserver Search Engine, problem determination, high
availability (HA), and national language support (NLS) considerations. It includes an example
of extending the core features of your HTTP Server (powered by Apache) via Apache
Portable Runtime (APR) support. This allows you to write your own modules or port them to
the iSeries as Integrated Language Environment® (ILE) service programs.

To complete the discussion, this IBM Redbook concludes with appendixes about bringing
PHP and Tomcat Version 5.5 to your i5/OS operating system. It also includes an appendix
about bringing zip and unzip functions to the OS/400® Portable Application Solutions
Environment (OS/400 PASE) and Qshell environments.

As an added bonus, you can download all the examples provided in this redbook from the
Web as explained in Appendix D, “Additional material” on page 421. This allows you to
reduce the transition time from understanding to implementation.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. xiii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the IBM
International Technical Support Organization (ITSO), Rochester Center.

Thomas Barlen is an IBM Certified Consulting IT Specialist for iSeries systems in IBM
Eserver iSeries Technical Sales Germany. His current areas of expertise include i5/OS
security, single signon, networking, Linux integration on iSeries, and On Demand Business
infrastructure. Before joining this team in September 2002, Thomas was assigned to the
ITSO, Rochester Center. He writes extensively and teaches IBM classes worldwide on all
areas of iSeries communications, On Demand Business infrastructure, and security. Thomas
is also a frequent speaker at technical conferences around the globe. Prior to his start in the
ITSO in 1999, he worked in AS/400® software support and as a systems engineer in IBM
Germany. He has over 15 years of experience in AS/400 and iSeries networking and system
management, as well as LAN and WAN network design and implementation. You can reach
Thomas by sending e-mail to barlen@de.ibm.com.

Wilfried Blankertz is a Senior IT Specialist for iSeries Technical Sales in the IBM EMEA
Central region located in Frankfurt, Germany. From 1995 to 1998, he was assigned to the
ITSO, Rochester Center, where he coauthored more than 14 IBM Redbooks™ and taught
IBM classes worldwide on all areas of OS/400® Groupware solutions and Systems
Management. Before joining the ITSO, he worked as a systems engineer in IBM Germany
supporting customers with the AS/400 system and its predecessor systems for 30 years. He
is also a Certified Lotus® Professional for Administration and for Domino® R5 Application
Development. He also owns several certifications for WebSphere® application development
for iSeries. You can reach Wilfried by sending e-mail to WilBlank@de.ibm.com

Thanks to the following people and groups for their contributions to this project:

Brian R. Smith, IBM Rochester, for his excellent ideas for, and efforts in, creating the first two
editions of this redbook

Wade Fode
Terry Hennessy
Brian Krings
Brian Noordyke
Scott McCreadie
Ryan Pendergast
Karen L. Richner
IBM Rochester

Debbie Landon
ITSO, Rochester Center

We extend a special thank you to the following contributors:

� Henri Gomez of SLIB, France, Apache Tomcat Project Commiter, who provides us with the
Jakarta Tomcat Connectors for the iSeries. For more information, see:

http://jakarta.apache.org/builds/jakarta-tomcat-connectors/jk/release/

� The previous authors of this redbook:
Gaia Banchelli
Monica Maria Echeverry
Axel Lachmann
John Nesbitt
Wolfgang Pauer
Brian R. Smith
xiv IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

mailto:barlen@de.ibm.com
mailto:WilBlank@de.ibm.com
http://jakarta.apache.org/builds/jakarta-tomcat-connectors/jk/release/

Sections of this IBM Redbook were prepared with assistance from Information Development
at IBM Rochester.

With permission from iSeries Network, we include in this IBM Redbook an article that was
previously published online at:

http://www.iseriesnetwork.com

See “Programming with PHP on the iSeries server” on page 388. In addition, “Fast Response
Cache Accelerator” on page 281 is also largely based upon a two-article series written for
iSeries Network.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829
 Preface xv

http://www.iseriesnetwork.com
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Summary of changes

This section describes the technical changes made in this edition of the book. This edition
may also include minor corrections and editorial changes that are not identified.

Summary of Changes for IBM HTTP Server (powered by Apache): An Integrated Solution for
IBM Eserver iSeries Servers, SG24-6716-02, as created or updated on January 6, 2005.

January 2005, Third Edition
This revision reflects the addition, deletion, or modification of new and changed information
described below.

New information
� An overview of new features has been added to Chapter 1, “‘Powered by Apache’ means

OS/400 integration” on page 3.

� Basic authentication with users in Lightweight Directory Access Protocol (LDAP)
directories is a common authentication method for Internet users. IBM i5/OS V5R3
provides an entirely new LDAP management interface. Chapter 6, “Defending the IFS” on
page 101, has been changed to include the instructions to set up LDAP-based basic
authentication for V5R3 including the Web-based LDAP management utility to manage
users.

� A new authentication method that has been added to the HTTP Server (powered by
Apache) is the Kerberos network authentication mechanism. Kerberos authentication
provides single signon capabilities and automatic authentication for protected Web
resources. Chapter 6, “Defending the IFS” on page 101, includes the setup information to
configure the HTTP Server (powered by Apache) to authenticate users via Kerberos
tickets.

� Confidentiality is a major goal in security. Using encryption functions, such as Secure
Sockets Layer (SSL), you can ensure that network traffic cannot be read by an
unauthorized user while in transit. The HTTP Server (powered by Apache) now provides
SSL proxy support for a reverse proxy environment. Detailed instructions have been
added to Chapter 6, “Defending the IFS” on page 101, that explain how to set up the
reverse SSL proxy.

� A good performing HTTP server is key to run a successful On Demand Business. Real
Time Server Statistics are a new function that provide information about the current
behavior and utilization of the HTTP Server (powered by Apache). Information about the
new support have been added to Chapter 1, “‘Powered by Apache’ means OS/400
integration” on page 3, and Chapter 10, “Getting the best performance from HTTP Server
(powered by Apache)” on page 223.

Changed information
� Feature changes, release information, and PTF level information have been updated in all

chapters.

� Most window captures have been updated in the entire book to reflect the new graphical
user interface (GUI) as introduced in 2004.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. xvii

� Onemethods to serve dynamic Web content to browsers is to use Common Gateway
Interface (CGI) programs. Information has been added to Chapter 7, “Serving dynamic
data” on page 157, about the support of Java CGI programs.

� Information about the withdrawn HTTP Server (original) has been removed from several
chapters in the book.

� Chapter 13, “Problem determination: When things do not go as planned” on page 323,
has been updated to include more debugging help. This includes more information about
error messages and possible causes, as well as how to solve problems with the HTTP
Server (powered by Apache).

� PHP is one of the major scripting languages. Appendix A, “Bringing PHP to your iSeries
server” on page 387, includes updated information about how to obtain binary PHP
packages for OS/400 and i5/OS.

� ASF Jakarta Tomcat is an open source product that allows you to run JavaServer Pages
(JSPs) and Servlets. Appendix B, “Bringing Tomcat Version 5.5 to your iSeries server” on
page 409, has been changed to provide instructions for installing and setting up Tomcat
Version 5.5 for the HTTP Server (powered by Apache).
xviii IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Part 1 Zen and the art of the
HTTP server

Your iSeries Web server is the center of most all On Demand Business applications.
Hypertext Transfer Protocol (HTTP) is the protocol used to communicate between a client
(browser) and your Web server. HTTP can be used to carry the order from your customers
and allow you to respond with a “thank you”.

Network administrators know how to configure your firewalls to allow the HTTP protocol
between your private intranet and the public Internet. They also know how to force people to
sign on before they access sensitive portions of your Web site. And they know how to encrypt
the data using powerful protocols such as Secure Sockets Layer (SSL) and Transport Layer
Security (TLS). These powerful tools are available to your network administrator via a
graphical user interface (GUI) configuration, not through complex programming.

Application servers, such as IBM WebSphere Application Server and the Apache Software
Foundation’s Jakarta Tomcat, can allow you to dynamically extend the power of your HTTP
server core features and functions. They are the incarnation of specifications from Sun
Microsystems that allow you to program industry standard Java applications as servlets and
JavaServer Pages (JSPs).

Read on to learn more about how the HTTP Server (powered by Apache) can handle your On
Demand Business needs. As you will see, this story is all about the integration of the Apache
Web server with OS/400.

Part 1
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 1

2 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 1. ‘Powered by Apache’ means
OS/400 integration

Most Hypertext Transfer Protocol (HTTP) servers originate from CERN or National Center for
Supercomputing Application (NCSA). The Apache server originates from NCSA. The
fundamental ideas behind and the basic design of the World Wide Web evolved from work
being done at CERN in Geneva, Switzerland. In its roots, the Apache server was developed
at NCSA, and it was based on the NCSA HTTP daemon (NCSA HTTPd 1.3).

The NCSA Web server, at that time, was adopted and used by a large number of webmasters
in the market. In mid-1994, however, the development for this Web server stalled and left
many webmasters to find their own solutions to problems encountered in their environments.
Some of them developed their own extensions and problem fixes, which could apply to other
webmasters searching for the same solution.

In February 1995, a group of webmasters volunteered to consolidate all information related to
the server and placed it in a publicly accessible domain for all webmasters to access. The
Apache Group was then formed from people who made substantial contributions to the
Apache server. NCSA later revived the suspended development of their NCSA Web server,
and two members from that development team joined the Apache Group so that ideas and
contributions could be exchanged among both projects. The Apache Group reviewed some of
the enhancements and bug fixes and added them to their own server for testing purposes.

In April 1995, the Apache server made its first public release with Version 0.6.2. It was given
this name because it was the “patched” version (A PAtCHy server) of the NCSA HTTPd 1.3
Web server.

From May through June 1995, some general overhaul and redesign was made to fine-tune
the Apache server, along with the introduction of some new features in Version 0.7.x. The
next release of the Apache server with Version 0.8.8 in August 1995 brought about a change
in the architecture of the server with the modular structure and application programming
interface (API) features. The latest level available for the Apache server is Version 2.0. It is
this version that we enjoy on the iSeries with the HTTP Server (powered by Apache).

1

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 3

The market share for the top servers across all domains in October 2004 was:

� 67.92% for Apache
� 21.09% for Microsoft® IIS
� 3.04% for SunONE
� 1.35% for Zeus

Apache, a freeware HTTP server, is open-source software that implements the industry
standard HTTP/1.1 protocol. The focus is on being highly configurable and easily extendable.
It is built and distributed under the Apache Software Foundation (ASF). It is available on the
Web at:

http://www.apache.org

The benefit of Apache to iSeries users is that the HTTP Server (powered by Apache) is based
on the open-source server code provided by the Apache Software Foundation. This version is
based on the general availability (GA) code for Apache Version 2.0. It is updated as future
Apache versions are made available. While iSeries source code not published, IBM offers any
enhancements it develops to the Apache Software Foundation in an open-source form for
inclusion in the Apache server. As with any supported product, IBM provides defect support
for the HTTP Server (powered by Apache). IBM has long been active in Apache development.

This integration with OS/400 forces IBM to no longer call this server an Apache server. It must
be called the HTTP Server (powered by Apache) with the parenthetical phrase as a bold
reminder of the power and value of the integration with OS/400.

1.1 HTTP Server (powered by Apache) features
Previously, OS/400 provided two different HTTP servers. The first one was the HTTP Server
(original) and was available up to OS/400 V5R2. Starting with IBM i5/OS V5R3, the only
HTTP server that is available for the operating system is the HTTP Server (powered by
Apache). Both servers have similar functions, but all newer functions were introduced only to
the HTTP Server (powered by Apache). This section provides a functional overview of the
HTTP Server (powered by Apache).

The overview is based on the V5R3 version of the HTTP Server (powered by Apache). Using
program temporary fixes (PTFs), the Rochester lab sent back much of this HTTP Server
(powered by Apache) functionality to V5R1 and V5R2. In essence, the overview is true for
V5R1 with the exception of these features that were not sent back via PTF:

� Fast Response Cache Accelerator (FRCA)
� Collection Services performance data
� Support for independent auxiliary storage pools (IASPs)
� Real-time server statistics
� Kerberos user authentication

Source: For more information, see the Netcraft survey from September 2004 at:

http://news.netcraft.com/

Tip: At the time of writing this book, the HTTP Server (powered by Apache) code on the
iSeries was based upon Apache Version 2.0.49. To see which version of Apache code is
the base for your HTTP Server (powered by Apache), see 13.2.7, “Other startup
parameters” on page 351.
4 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://news.netcraft.com/
http://www.apache.org

1.1.1 HTTP Version 1.1
The HTTP Server (powered by Apache) supports HTTP Version 1.1 (written as HTTP/1.1).
The HTTP protocol implementation in Apache was chiefly architected by one of the HTTP/1.1
authors. Most current versions of popular Web browsers support HTTP/1.1. Apache is
normally configured to detect popular browsers that do not properly support HTTP/1.1 and
use only HTTP/1.0.

Persistent connections
When you enter a Uniform Resource Locator (URL) into your browser’s address line or click a
link on a Web page, you open a connection between your browser and the HTTP server. Prior
to the availability of persistent connections, each file referenced on the Web page was
retrieved using a separate connection. This type of retrieval is tremendously costly for the
HTTP server and the network since overhead is required to establish and terminate each
connection. Persistent connections are the default behavior for an HTTP server that
implements the HTTP/1.1 protocol. They allow retrieval if there are multiple elements within a
single connection.

1.1.2 GUI configuration and administration
You can configure and administrate HTTP server instances from Web browsers. To access
the iSeries Tasks page, start the administration server:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

You may also start the administration server using iSeries Navigator (formerly called
Operations Navigator) as explained in 2.3.1, “Your first HTTP Server (powered by Apache) via
a wizard” on page 24.

Then type the following URL from a Web browser:

http://hostname:2001

This brings you to the iSeries Tasks page. From there, click IBM Web Administration for
iSeries. This option allows you to configure the HTTP Server (original) (up to V5R2) and the
HTTP Server (powered by Apache), WebSphere Application Server Express or Base, Version
5 or later, and other Web-related functions.

Tip: OS/400 V5R2 was the last release that supported the HTTP Server (original).
Enhanced migration options are available with the HTTP Server migration wizard of the
IBM Web Administration for iSeries interface that can help you migrate your existing
configuration to a HTTP Server (powered by Apache) configuration. For more information
about migrating HTTP Server (original) configurations to HTTP Server (powered by
Apache), refer to the migration article:

http://www.ibm.com/servers/eserver/iseries/software/http/product/migrate.html

The HTTP Server (powered by Apache) is the better choice. In this redbook, see
Chapter 8, “Migration from HTTP Server (original) to (powered by Apache)” on page 173.

Tip: The administration server’s port 2010 can be configured for a Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) encrypted session. See 6.4.3, “Enabling SSL for
the ADMIN instance” on page 137.
Chapter 1. ‘Powered by Apache’ means OS/400 integration 5

http://www.ibm.com/servers/eserver/iseries/software/http/product/migrate.html

Up to OS/400 V5R2, the HTTP Server (original) and the HTTP Server (powered by Apache)
can coexist. That is, you may have zero, one, or many HTTP Server (original) servers running
at the same time that you have zero, one, or many HTTP Server (powered by Apache)
servers running. The administration page allows you to create and manage HTTP servers.
However, with i5/OS V5R3 and later, the HTTP Server (original) is no longer supported and
must be migrated to the HTTP Server (powered by Apache). For more information, see
Chapter 8, “Migration from HTTP Server (original) to (powered by Apache)” on page 173.

The HTTP Server (powered by Apache) administration graphical user interface (GUI) is
available in multiple languages. For information about configuring your HTTP Server
(powered by Apache) in your native language, see 15.3, “Servlet based: Administration GUI”
on page 376.

1.1.3 Virtual hosts
You can enable virtual hosting. This allows you to host any number of Web sites through one
communications adapter. With virtual hosting, you do not need to assign a unique port to
each Web site. Virtual hosting is useful if you need to provide multiple “top-level” URLs for
your Web sites or if you provide Internet Service Provider (ISP) services to clients.

See Chapter 5, “Virtual hosts” on page 71, for more information about the more flexible
solution for the HTTP Server (powered by Apache).

Dynamic virtual hosting
The dynamic virtual host allows you to dynamically add Web sites (host names) by adding
directories of content. This approach is based on automatically inserting the Internet Protocol
(IP) address and the contents of the Host: header into the path name of the file that is used to
satisfy the request.

See 5.5, “Virtual hosts: Mass dynamic implementation” on page 94, for more information.

1.1.4 Authentication
Several options are available to authenticate Web users when accessing protected resources.

Basic authentication
Basic authentication is a popular way to secure Web resources. You can protect Web
resources by asking the user for a user ID and password to gain access to these resources.
Specifically for the HTTP Server (powered by Apache), the user ID and password on the
iSeries can be validated in one of three ways:

� OS/400 user profile: This requires each user to have a system user profile.
� Validation list: This requires you to create a validation list that contains Internet users.
� Lightweight Directory Access Protocol (LDAP) server: This requires you to configure an

LDAP server with the user entries.

For more information, see 6.2, “Basic authentication” on page 103.
6 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Kerberos authentication
Introduced via PTFs in V5R2 and included in V5R3, the HTTP Server (powered by Apache)
also supports authentication via the Kerberos authentication protocol. This technology is used
in single signon environments and uses tickets instead of user identifiers and passwords. For
the HTTP Server (powered by Apache), Kerberos is used in conjunction with Enterprise
Identity Mapping (EIM) to authenticate Kerberos tickets and map the Kerberos user principal
to OS/400 user profiles. This authentication method is an excellent choice in an intranet
environment. For more information, see 6.3, “Authenticating users via Kerberos” on page 120.

Client-side certificate authentication
The third option to authenticate individual users to protected resources is the authentication
via digital certificates. This authentication mechanism requires the HTTP Server (powered by
Apache) to be configured for SSL. You can find more information in 1.1.5, “SSL and TLS” on
page 7, and 6.4.5, “Client-side digital certificates” on page 139.

1.1.5 SSL and TLS
SSL has become an industry standard for enabling applications for secure communication
sessions over an unprotected network (such as the Internet). With the SSL protocol, you can
establish secure connections between clients and server applications which provide
authentication of one or both end points of the communication session. SSL also provides
privacy and integrity of the data that client and server applications exchange. Multiple
versions of the SSL protocol are defined. The latest version, Transport Layer Security Version
1.0, provides an evolutionary upgrade from SSL Version 3.0.

HTTP Server (powered by Apache) supports server authentication and client authentication
using digital certificates. With server authentication, the client ensures that the server
certificate is valid and that it is signed by a Certificate Authority (CA) which the client trusts.
With client authentication, the server ensures that the client certificate is valid and that it is
signed by a CA which the server trusts.

For more information, see 6.4, “Encrypting your data with SSL and TLS” on page 127.

SSL proxy
A recent enhancement to the HTTP Server (powered by Apache) is the support of an SSL
proxy server. This function is typically used as a reverse proxy where clients from the Internet
access resource behind a proxy on a server in an intranet or DMZ. Prior to this enhancement,
reverse proxy connections would not support client-to-content server SSL connections. For
more information, see 6.5.3, “SSL proxy” on page 149.

1.1.6 Proxy caching
You can configure IBM HTTP Server for iSeries as a non-caching or caching proxy server.
When used as a non-caching proxy, the primary benefit of enabling proxy services is that the
IP addresses used on the internal network are not sent out of your network. The proxy service
forwards the request from your internal network using the IP address of the proxy server, not
the address of the original requester. When the proxy server receives the response, it
forwards the response to the original requester.
Chapter 1. ‘Powered by Apache’ means OS/400 integration 7

With caching enabled, the proxy server can act as a high-speed local store of previously
accessed Web pages. When you configure the server as a proxy caching server, you can
improve performance. You can also allow users of your internal network to access documents
on the Internet. For example, if you frequently access the same set of Web pages from one or
more sites, it may be advantageous to activate the caching feature. The retrieved Web page is
stored locally on your iSeries server. Any subsequent accesses to the page occur at local
area network (LAN) speed, rather than at Internet speed.

Web pages can be encoded with a “no-cache” attribute or a specific expiration date. You can
also configure the IBM HTTP Server for iSeries proxy service so that it periodically performs
“garbage collection” to remove expired files from the cache.

Another use of the proxy service (with or without caching) is to log client requests. Some of
the available data includes:

� Client IP address
� Date and time
� URL requested
� Byte count
� Success code

With this information, you can construct reports to account for the use of your Web site. For
example, the information can be used in a charge-back system to understand and track
marketing trends.

See 6.5, “Proxy server: Protecting direct access” on page 142, for security-related information
about proxy support, and 10.3.2, “HTTP Server (powered by Apache) proxy cache” on
page 239, for performance-oriented information about caching.

Reverse proxy caching
Reverse proxy is another common form of a proxy server. It is generally used to pass
requests from the Internet, through a firewall, to isolated, private networks. It is used to
prevent Internet clients from having direct, unmonitored access to sensitive data residing on
content servers on an isolated network, or intranet. If caching is enabled, a reverse proxy can
also reduce network traffic by serving cached information, rather than passing all requests to
actual content servers. Reverse proxy servers may also balance workload by spreading
requests across a number of content servers.

An advantage of using a reverse proxy is that Internet clients do not know their requests are
being sent to and handled by a reverse proxy server. This allows a reverse proxy to redirect or
reject requests without making Internet clients aware of the actual content server (or servers)
on a protected network.

For more information, see 6.5.2, “Reverse proxy” on page 145.

In addition the HTTP Server (powered by Apache) can use FRCA. FRCA incorporates both a
local cache and another reverse proxy cache. That is, both the HTTP Server (powered by
Apache) and FRCA have the ability to be configured as a reverse proxy cache. For
information about FRCA, see 10.6, “Fast Response Cache Accelerator” on page 281.

1.1.7 Local memory cache
A proxy cache is traditionally most beneficial to clients on your network since it enables you to
store files that were retrieved from other Web sites. You can provide a caching service for files
on your site using the local memory cache configuration options.
8 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

To use a local memory cache, you identify an amount of memory to allocate and a set of files
to be cached. When the IBM HTTP Server for iSeries is started, the files are read into the
local memory cache up to the limit of the amount of memory allocated or the limit of the
number of files that you allow to be cached.

When a request is received at your IBM HTTP Server for iSeries, the local memory cache is
checked first to determine if it has a copy of the requested file. If so, the file is served from the
cache, which can be significantly faster than if the file is retrieved from disk storage.

See 10.3.1, “HTTP Server (powered by Apache) local cache” on page 236, for more
information. In addition, the HTTP Server (powered by Apache) (only) supports FRCA which
also has a local cache option.

1.1.8 Server-side includes
Server-side includes (SSI) enable the server to process some of the Web pages before the
server sends the page to the client. The current date, size of the file, and the last change date
of a file are examples of the kind of information that you can include in Web pages that you
send to the client.

See 7.1, “Server-side includes” on page 158, for more information.

1.1.9 CGI programming
Corporations and other customers benefit from interacting with browser users by sending and
receiving data. In the Web presence arena, this type of transaction is simple, such as
collecting the name and address of a browser user who wants to receive a catalog. In
general, these interactions start with a form, a Web page that contains input-capable fields
and push buttons (like function keys). The server needs to hand the input from the form to a
program for processing.

Typically, on the iSeries server (and most other platforms), this program is a Common
Gateway Interface (CGI) program. The CGI program receives the form data from the browser,
accesses business data and business logic on the iSeries server, updates or stores
information (if required by the transaction), and then builds the Web page that the HTTP
server returns to the browser user in response.

CGI programs written for the HTTP Server (original) function the same way for the HTTP
Server (powered by Apache).

In addition, CGI applications working with the HTTP Server (powered by Apache) can:

� Control the number of CGI jobs started with the server and their user profile
� Run Portable Application Solutions Environment (OS/400 PASE) (UNIX® binaries)

applications as CGI programs

See 7.2, “Everything dynamic with CGI support” on page 160, for more information.

1.1.10 LDAP support
The HTTP servers can use an LDAP-enabled directory to store:

� Configuration information: Refer to Implementation and Practical Use of LDAP on the
IBM Eserver iSeries Server, SG24-6193, for information about how to use LDAP to store
(and share) HTTP server configurations throughout your network.
Chapter 1. ‘Powered by Apache’ means OS/400 integration 9

� User authentication information: See 6.2.3, “Authentication by LDAP entries” on
page 113, to learn about the security aspect of LDAP configuration.

1.1.11 Webserver Search Engine and Web Crawler
The HTTP Server search engine allows you to perform full text searches on Hypertext
Markup Language (HTML) and text files stored in the iSeries file system from any Web
browser. The iSeries Webserver Search Engine is available at no charge with IBM HTTP
Server for iSeries (5722-DG1). You can control the options that are available to the user and
how the search results are displayed through customizable Net.Data macros.

On the iSeries server, the search engine comes in two logical pieces that are related to each
other. You can read more about them in 11.1, “iSeries Webserver Search Engine” on
page 308, and 11.2, “iSeries Webserver Search Engine Web Crawler” on page 309.

1.1.12 Web-based Distributed Authoring and Versioning
Web-based Distributed Authoring and Versioning (WebDAV) provides a network protocol for
creating interoperable, collaborative applications. Major features of the protocol include:

� Locking (concurrency control)

Long-duration exclusive and shared write locks prevent the problem of overwriting, where
two or more collaborators write to the same resource without first merging changes. To
achieve robust Internet-scale collaboration, where network connections may be
disconnected arbitrarily, and for scalability, since each open connection consumes server
resources, the duration of DAV locks is independent of any individual network connection.

� Properties

Extensible Markup Language (XML) properties provide storage for arbitrary metadata,
such as a list of authors on Web resources. These properties can be efficiently set,
deleted, and retrieved using the DAV protocol. The DAV Searching and Locating (DASL)
protocol provides searches based on property values to locate Web resources.

� Namespace manipulation

Since resources may need to be copied or moved as a Web site evolves, DAV supports
copy and move operations. Collections, similar to file system directories, may be created
and listed.

For more information about WebDAV, see the following Web site:

http://www.webdav.org/

You may also want to refer to Request for Comments (RFC) 2518: HTTP Extensions for
Distributed Authoring – WEBDAV, which you can find on the Web at:

http://www.ietf.org/rfc/rfc2518.txt

1.1.13 Access log reporting and Web usage mining
The HTTP Server (original) provides the log reporting and Web usage mining function. If you
are using HTTP Server (powered by Apache), you can obtain the IBM WebSphere Site
Analyzer to provide a similar function.

Tip: The market is full of Web log analyzer software that supports the industry-standard
common and combined log formats for Apache. The HTTP Server (powered by Apache)
uses these same formats. Choose the one that you feel is the best value for your money.
10 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.webdav.org/
http://www.ietf.org/rfc/rfc2518.txt

The HTTP Server (powered by Apache) includes complete facilities to log client access,
server errors, and other forms of customizable information. See 13.2.3, “Server logs” on
page 331, for more information.

1.1.14 Log rollover and maintenance
The HTTP Server (original) supports daily log files only. When a server instance is started, all
of the log files configured for that server instance are opened. By default, the server does not
create any logs. The proper directives must be configured by the Web administrator to cause
the HTTP server to log. Web server instances may not share log files.

The Apache code, as shipped from ASF, has no automatic rollover capability. If the user wants
the current log rolled, the support must be implemented via a user program.

In V5R2, the iSeries extended this feature with the HTTP Server (powered by Apache) to
include log rollover support. This is in the form of the HTTP Server (original) support, and is
then extended by allowing the user to specify one of the following values: Off, Hourly, Daily,
Weekly, or Monthly. The directive that provides log rollover support is LogCycle.

Another feature that was recently introduced to better manage HTTP server log files is an
automatic expiration management. Administrators can now choose to have the HTTP server
delete log files that are expired. For more information, see 13.2.3, “Server logs” on page 331.

1.1.15 Domino plug-in
With Domino 6 for iSeries, clients can take advantage of the HTTP Server (powered by
Apache) to forward HTTP traffic to their Domino 6 servers. This plug-in supports the HTTP
Server (powered by Apache) at V5R3 of i5/OS, V5R2 of OS/400, and was sent back by PTF
to V5R1. See IBM Lotus Domino 6 for iSeries Implementation, SG24-6592, for details about
the HTTP Server (powered by Apache).

For the latest information about Lotus Domino, see:

http://www.ibm.com/servers/eserver/iseries/domino/

1.1.16 WebSphere Application Server plug-in
The HTTP Server (powered by Apache) handles static content, CGI program invocations, and
proprietary plug-ins. The WebSphere Application Server run-time environment plugs into IBM
HTTP Server for iSeries using plug-in APIs. This extends the support of the HTTP Server to
include an implementation of the Java 2 Platform Enterprise Edition (J2EE) specification from
Sun Microsystems. See 9.1, “Web application servers for the iSeries server” on page 193, for
details.

1.1.17 Apache Software Foundation’s Jakarta Tomcat
The HTTP Server (powered by Apache) includes an industry-standard Java servlet and
JavaServer Pages (JSP) container, based on technology from the Apache Software
Foundation’s Jakarta Tomcat open source code base. Lightweight and easy-to-use software
extends the HTTP Server (powered by Apache) server and is compliant with the Java Servlet
2.2 and JavaServer Pages 1.1 specifications from SUN Microsystems.

Apache Software Foundation's Jakarta Tomcat for iSeries support can be used as a simple
starting point for business partners and customers interested in learning about or piloting
Java servlet and JSP applications. This support is based upon Version 3.2.4 of the Jakarta
Tomcat specification.
Chapter 1. ‘Powered by Apache’ means OS/400 integration 11

http://www.ibm.com/servers/eserver/iseries/domino/

For more information, refer to 9.2, “Apache Software Foundation’s Jakarta Tomcat on iSeries”
on page 197, and the iSeries HTTP server Web page at:

http://www.ibm.com/eserver/iseries/software/http

In addition, Appendix B, “Bringing Tomcat Version 5.5 to your iSeries server” on page 409,
provides an example that shows how to bring Tomcat Version 4.1 on the iSeries server. This
is not supported directly by IBM.

1.1.18 Apache Portable Runtime and modules
The design of the Apache HTTP server defines modules. Modules are operating system
objects that can be dynamically linked and loaded to extend the base nature of the Apache
HTTP server. Depending on the operating system, this is similar to:

� Microsoft Windows® Dynamic Link Libraries (DLL)
� UNIX shared object libraries
� OS/400 Integrated Language Environment (ILE) Service Programs

In this way, the Apache modules provide a way to extend a server’s function. Functions
commonly added by optional modules include:

� Authentication
� Encryption
� Application support
� Logging
� Support for different content types
� Diagnostics
� Compression

You can extend the core functionality of the HTTP Server (powered by Apache) by writing
your own modules or porting other modules to the iSeries as demonstrated in Chapter 12,
“Apache Portable Runtime: Extending your core functionality” on page 311.

1.1.19 Support for the TRCTCPAPP command
The Trace TCP/IP Application (TRCTCPAPP) command can be used to trace the server, but
only one instance at a time. It can be started while the server is running. See 13.2.5, “HTTP
server trace” on page 341, for more information about how to use the TRCTCPAPP
command.

1.1.20 Collection Services performance data
The HTTP Server (powered by Apache) supports collection services and provides
performance data that is specific to the HTTP server. It uses a feature that was introduced in
V5R2 from Collection Services for user-defined categories and probes. This support allows
IBM products and customer applications to capture application unique performance data
along with the system data already provided by collection services.

Note: The old -vv (very verbose) still works at startup much like the original server (and -vi
and -ve, which stand for informational and error tracing, respectively). You can use the
Dump User Trace (DMPUSRTRC) and Display Physical File Member (DSPPFM)
commands to see the results, but we recommend that you use the TRCTCPAPP trace
method.
12 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/eserver/iseries/software/http

1.1.21 Real-time server statistics
Real time server statistics provide information about HTTP Server (powered by Apache)
performance. You can view server statistics using the Real Time Server Statistics tool that is
available through the IBM Web Administration for iSeries interface. You can view only
statistics for running HTTP Server (powered by Apache). Data is collected from the primary
server job only. The statistics are real time and can help you to see how your server performs.

For example, you see information about proxy requests that were served from cache or
retrieved from disk. In this example, the information can help you determine whether your
proxy cache setup actually meets the user requests coming in to your server.

This function is available for OS/400 V5R1 and V5R2 via PTFs and in i5/OS. For more
information, see 10.8, “Real Time Server Statistics” on page 301.

1.1.22 Triggered Cache Manager
Triggered Cache Manager (TCM) provides a mechanism to manage dynamically-generated
Web pages. TCM is a separate server that can be used in conjunction with the HTTP server
to allow a Web designer to build dynamic pages. It only updates the cache when the
underlying data changes, thereby improving the performance of a Web site.

See 10.5, “Triggered Cache Manager” on page 259, for more information and a configuration
example.

1.1.23 Fast Response Cache Accelerator
Working with the HTTP Server (powered by Apache), FRCA provides a cache mechanism
that dramatically improves the file serving performance on your iSeries server. FRCA
operates below the Machine Interface (MI) and therefore eliminates much of the overhead
that is involved in switching to above MI threads. This enables FRCA to accelerate the
delivery of an individual file found in its cache and reduce the amount of central processing
unit (CPU) needed to handle the request (as compared to HTTP Server (powered by
Apache). FRCA can handle both a static file caching and a dynamic reverse proxy caching.

For more information, see 10.6, “Fast Response Cache Accelerator” on page 281.

1.1.24 Compression
The Apache module mod_deflate is a powerful tool that allows you to compress, by
configuration, files that are being served from your HTTP Server (powered by Apache).
mod_deflate is Apache’s open source equivalent to mod_gzip. Compressing the data that is
being sent by your HTTP Server (powered by Apache) can dramatically save on network
delays due to bandwidth restrictions. The data is decompressed at the remote client’s Web
browser. mod_deflate is particularly useful in networks where individual links are saturated
with traffic or the end-user is connected via modem. Of course, the compression of the data
takes additional resources on both the server and client, so you must use care with this
powerful module.

Note: The HTTP Server (powered by Apache) does not support the mod_status module’s
/status function. Instead IBM has chosen to write performance-related information to
collection services. For more information, see 13.2.6, “Collection Services performance
data” on page 345.
Chapter 1. ‘Powered by Apache’ means OS/400 integration 13

As an anecdotal example, the /index.html home page that is served from our NetObjects
Fusion-generated sample Web application used in this redbook is compressed by
mod_deflate from 10867 to 2002 bytes.

The initial compression support for the HTTP Server (powered by Apache) could be only
configured manually by adding the corresponding directives to the HTTP server configuration
file. Recent enhancements also provide configuration support via the IBM Web Administration
for iSeries interface. See 10.4, “Increasing throughput with compression” on page 240, for
more information and a configuration example.

1.1.25 Highly available HTTP server
If Web serving is a critical aspect of your business, you may want high availability for your
Web server environment. A highly available Web server takes advantage of iSeries clustering
technology and makes it possible to build a highly available Web site. This improves the
availability of business-critical Web applications built with CGI programs.

See Chapter 14, “High availability” on page 355, for more information. You can find an
example of this support in 14.2, “A working primary or backup with takeover IP model” on
page 359.

1.1.26 Support for IASPs
An IASP is a collection of disk units that you can bring online or take offline, independent of
the rest of the storage on a system. Each IASP contains all of the necessary system
information associated with the data it contains. While the system is active, you can take the
IASP offline, bring it online, or switch between systems. IASPs may contain:

� One or more user-defined file systems
� One or more external libraries

This feature was fully tested with the V5R2 delivery of the HTTP Server (powered by
Apache).

1.1.27 Asynchronous I/O
The HTTP Server (powered by Apache) processes communications requests
asynchronously. In this asynchronous input/output (I/O) model, threads are only involved in
processing when there is work to be done. Threads are dispatched to perform work as
required. When not performing work, the threads are returned to a pool of available threads
making the server process more efficient and improving performance by better using the
thread resources. Asynchronous I/O also makes the server more scalable to support a high
number of users especially when combined with persistent connections.

For more information, see 10.2.1, “Threads and asynchronous I/O” on page 228.

1.1.28 Denial of service
The denial of service configuration directives are equally performance settings and a security.
These directives allow you to identify, based on the data frame size, the possibility of an
attack. The HTTP server may identify an attack because the frame size differs from the one it
expects. Although this setting impacts the server performance as each request is tracked, it
allows you to prevent a more dangerous performance degradation when dealing with a type
of attack that may intentionally slow down or even completely paralyze your server.

For more information, see 10.2.7, “Denial of service” on page 233.
14 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

1.1.29 Miscellaneous
In addition to these functions, the following functions are provided only in HTTP Server
(powered by Apache):

� Headers control: Has the ability to control headers, expires, and other headers
� More customization of directory listings
� Automatic restart of multi-threaded child job monitored by parent job
� Configuration file support in thread safe integrated file systems (not just QSYS.LIB)

1.2 For more information
For more information, see the IBM HTTP Server for iSeries Web site. This site is the center of
much of the information related to the HTTP Server (powered by Apache). If you are reading
this redbook, then you should bookmark this Web site in your Web browser:

http://www.ibm.com/servers/eserver/iseries/software/http/
Chapter 1. ‘Powered by Apache’ means OS/400 integration 15

http://www.ibm.com/servers/eserver/iseries/software/http/

16 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 2. From zero to powered by Apache

This chapter explains how to install the HTTP Server (powered by Apache) and get a basic
HTTP server configuration up and running on your iSeries server. All the examples used in
this IBM Redbook are based on this configuration.

Certain portions of this chapter are optional and they are identified as so. The amount of time
it takes you to get to your first HTTP Server (powered by Apache) depends on where you are
starting from and the options you choose along the way.

2

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 17

2.1 Before you start
This section can help you identify the software components, upgrades, user profile
authorities, and Web browser requirements that you need to fully exploit the examples used in
this IBM Redbook. Carefully reviewing this section now will save you time later.

2.1.1 Software
Maybe the most time consuming aspect of starting any new enterprise on any computer
system today is getting all the software and the fixes for that software that you will need to
install and run without any trouble. This section helps you identify, in advance, exactly what
you need to get your first HTTP Server (powered by Apache) up and running.

Products and options to OS/400 and i5/OS
Review Table 2-1 for the mandatory and optional software used by your HTTP Server
(powered by Apache). This redbook is based on the latest available software release V5R3.

Table 2-1 Mandatory and optional software for your HTTP Server (powered by Apache)

Note: In this IBM Redbook, when we refer to the Eserver i5 or iSeries primary operating
system, we refer to OS/400, even though the operating system name has changed to
i5/OS in V5R3. If it is not explicitly stated otherwise, the term OS/400 also refers to i5/OS.

Note: Most of the software Licensed Program Products (LPP) and OS/400 options
mentioned in Table 2-1 are already available on the shipped media and are no cost with
your purchase of OS/400 5722-SS1 and i5/OS. In fact, on new shipments of the LPP
5722-DG1, some of the other LPPs are preloaded on many iSeries servers.

Name of product or option Product or option
number

Comment

These LPPs and OS/400 options are mandatory:

IBM HTTP Server for iSeries 5722-DG1 The LPP is IBM HTTP Server for iSeries.
See Table 2-2 on page 20 for a list of all
the components in 5722-DG1.

TCP/IP Utilities 5722-TC1 This is a useful collection of Transmission
Control Protocol/Internet Protocol
(TCP/IP) applications including Telnet
and File Transfer Protocol (FTP).

Java Developer Kit 1.3 5722-JV1 *Base and
Option 5

Your HTTP Server (powered by Apache)
requires this LPP for the administration
graphical user interface (GUI), commonly
referred to as the admin GUI.
18 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

These LPPs and options are recommended (but optional):

WebSphere Development
ToolSet

5722-WDS and
Option 51: Compiler -
ILE C

This is needed if you plan to do any
application development in ILE
languages. Chapter 12, “Apache
Portable Runtime: Extending your core
functionality” on page 311, has a source
example written in C.

Triggered Cache Manager
(TCM)

Option 1 of 5722-DG1 This is needed only if you will be working
with TCM.

OS/400 Portable Application
Solutions Environment (OS/400
PASE)

Option 33 of OS/400 If you plan to implement Hypertext
Preprocessor (PHP) or other Common
Gateway Interface (CGI) applications
running in OS/400 PASE, see
Appendix A, “Bringing PHP to your
iSeries server” on page 387.

HA Switchable Resources Option 41 of OS/400 Use this option if you plan to implement
Highly Available (HA) Web servers as
demonstrated in Chapter 14, “High
availability” on page 355.

These LPPs and OS/400 options are optional and only needed if you plan to work with digital
certificates and Secure Sockets Layer (SSL) and Transport Layer Security (TLS):

Digital Certificate Manager
(DCM)

Option 34 of OS/400 Optional: To support the handling of
digital certificates used by SSL and TLS
for secure Web serving

Cryptographic Access Provider 5722-AC2 or
5722-AC3

If you want to use SSL or TLS, you must
install one of the IBM Cryptographic
Access Provider products.

In V5R2, 5722-AC2 was withdrawn. You
can order this as a separate no-charge
LPP.

Name of product or option Product or option
number

Comment
Chapter 2. From zero to powered by Apache 19

In addition, LPP IBM HTTP Server for iSeries (5722-DG1) contains the components shown in
Table 2-2.

Table 2-2 Components available in LPP 5722-DG1

These LPPs and OS/400 options are optional and only needed if you plan to work with Java
servlet and JavaServer Page (JSP) programming with either Apache Software Foundation’s
Jakarta Tomcat or WebSphere Application Server:

WebSphere Application Server,
Advanced Edition

WebSphere Application Server,
Advanced Single Server Edition

WebSphere Application Server,
Express for iSeries Version 5.1

WebSphere Application Server
V5.0 Base and Network
Deployment for iSeries

WebSphere Application Server,
V5.1 Base and Network
Deployment for iSeries

5733-WA4 or

5733-WA4 or

5722-E51 or

5733-WS5 or

5733-W51

WebSphere Application Server enables
the HTTP Server (powered by Apache)
to serve servlets and JSPs. It enables
Extensible Markup Language (XML)
document processing.

Both WA4 and the IWE are chargeable
LPPs.

ASF’s Jakarta Tomcat is a component of
5722-DG1 (see Table 2-2).

Toolbox for Java 5722-JC1 We recommend this if you plan to
program in Java.

Java Developer Kit (JDK) 5722-JV1 Options Your HTTP Server (powered by Apache)
requires this LPP *Base and Option 5
(JDK 1.3). If you plan to program in Java,
you may need other options for other
levels of the JDK.

Qshell Interpreter Option 30 OS/400 This is useful for working with
WebSphere Application Server.

Name of product or option Product or option
number

Comment

Name of component Option number Comment

HTTP Server (original) *Base The original IBM HTTP Server (only until OS/400 V5R2)

HTTP Server (powered by
Apache)

*Base “You are here.”

Net.Data *Base See 7.3, “Net.Data: A ready-made scripting tool” on
page 161.

 Webserver Search Engine
and Web Crawler

*Base See Chapter 11, “Getting started with Webserver Search
Engine and Web Crawler” on page 307.

Apache Software
Foundation’s Jakarta Tomcat

*Base A Java servlet and JSP application server based upon
Tomcat version 3.2.4. See 9.2, “Apache Software
Foundation’s Jakarta Tomcat on iSeries” on page 197.

Highly Available HTTP Server *Base See Chapter 14, “High availability” on page 355.

Triggered Cache Manager Option 1 of 5722-DG1 See 10.5, “Triggered Cache Manager” on page 259.
20 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Group PTFs
Since the HTTP Server (powered by Apache) is new and ever-changing, it is mandatory that
you install the latest program temporary fixes (PTFs) for IBM HTTP Server for iSeries
(5722-DG1) and other related products. Table 2-3 shows the products and PTFs that you
must install on your iSeries server.

Table 2-3 Group PTF information for key iSeries products

Keep in mind that group PTFs are updated periodically with the latest PTFs. The group PTF
number does not change. During an update, any additional PTFs that impact the HTTP
Server (powered by Apache) are added to the group PTF.

Important: V5R2 was the last release to support the HTTP Server (original). To be ready
for the future, always use the HTTP Server (powered by Apache). For details, see:

http://www-1.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html

Product PTF
description

Comments

For the latest available PTFs for the HTTP Server (powered by Apache), see this Web site and click PTFs and Support:
http://www.ibm.com/servers/eserver/iseries/software/http/

IBM HTTP Server for
iSeries (5722-DG1) (V5R1)

Group PTF
SF99156

You can display the current installed version of this V5R1 group PTF on
the iSeries by entering the following command:

DSPDTAARA QHTTPSVR/SF99156

IBM HTTP Server for
iSeries (5722-DG1) (V5R2)

Group PTF
SF99098

You can display the current installed version of this V5R2 group PTF on
the iSeries by entering the command:

WRKPTFGRP SF99098

IBM HTTP Server for
iSeries (5722-DG1) (V5R3)

Group PTF
SF99099

You can display the current installed version of this V5R3 group PTF on
the iSeries by entering the command:

WRKPTFGRP SF99099

You can find the latest available PTFs for JDK on the Web at:
http://www-1.ibm.com/servers/eserver/support/iseries/index.html
Click Fixes →Group PTFs →R510 or R520 or R530 and the appropriate Group PTF number.

Java Developer Kit
(5722-JV1) (V5R1)

Group PTF
SF99069

You can display the current installed version of this V5R1 group PTF on
the iSeries by entering the command:

DSPDTAARA QJAVA/SF99069

Java Developer Kit
(5722-JV1) (V5R2)

Group PTF
SF99169

You can display the current installed version of this V5R2 group PTF on
the iSeries by entering the command:

WRKPTFGRP SF99169

Java Developer Kit
(5722-JV1) (V5R3)

Group PTF
SF99269

You can display the current installed version of this V5R3 group PTF on
the iSeries by entering the command:

WRKPTFGRP SF99269
Chapter 2. From zero to powered by Apache 21

http://www.ibm.com/servers/eserver/iseries/software/http/
http://www-1.ibm.com/servers/eserver/support/iseries/index.html
http://www-1.ibm.com/servers/eserver/support/iseries/index.html
http://www-1.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html

2.1.2 User profile authorities
To use the GUI for configuration and administration, a valid iSeries user profile and password
are required. You must have the following authorities to perform configuration and
administration tasks:

� Your user profile must have *IOSYSCFG authority.
� Your user profile must have *CHANGE authority to the library object QUSRSYS.

The following file objects require *ALL authority:

� QUSRSYS/QATMHINSTA
� QUSRSYS/QATMHINSTC

The following command objects require *USE authority:

� CRTVLDL
� STRTCPSVR
� ENDTCPSVR

QTMHHTTP is the default user profile of the HTTP Server. QTMHHTP1 is the default profile
that the HTTP Server uses when running CGI programs. The HTTP Server profile must have
*RWX authority to the directory path where the HTTP Server (powered by Apache)
configuration files are stored. The default path is /www/servername/, where servername is
the name of the HTTP server instance.

The HTTP Server profile must have access to the directory path where the log files are
stored. Fully consider the security of the log files. The path of the log files should only be
accessible by the appropriate user profiles.

2.1.3 Web browser
HTTP Server (powered by Apache) is configured using a client Web browser. To use the
Configuration and Administration forms, you need a Web browser that supports:

� HTTP 1.0 or 1.1 protocol
� Frames
� Java Script

Such browsers as Microsoft’s Internet Explorer 5.5 or later and Netscape Navigator 4.75 work
with the configuration and administration GUI forms.

Tip: If you plan to install and operate any product of the WebSphere family, ensure that you
install the latest group PTFs for the appropriate license program. The group PTFs for
WebSphere also include group PTFs for the HTTP Server (powered by Apache) and JDK.
For more information about WebSphere group PTFs, see:

http://www.ibm.com/servers/eserver/iseries/software/websphere

Use care and install every shipped group PTF if you are working with WebSphere and the
HTTP Server (powered by Apache), because the level of all involved licensed programs
should match in order to work properly.

Tip: We recommend that you do not use QSECOFR. Use a user profile with the
appropriate authority.

The admin GUI
for both the
original and
powered by
Apache
configuration is
served from an
HTTP Server
(powered by
Apache).
22 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/servers/eserver/iseries/software/websphere

To view the log reports generated by the HTTP Server, you must use a browser that supports
Java Virtual Machine 1.1.5 or later.

2.2 Software installation
The installation of software on the iSeries can be split into two pieces. First, install or make
sure that you have installed the required LPPs and OS/400 options. Then, update those
products with the latest PTFs available.

You can perform an optional third step now or later depending on how closely you want to
follow the how-to steps demonstrated in this IBM Redbook. This optional step explained in
2.2.3, “Installing the ITSO example Web application (optional)” on page 24, required you to
download a simple Web application from the International Technical Support Organization
(ITSO) Internet FTP server and install it on your iSeries server.

2.2.1 Installing LPPs and OS/400 options
Follow these steps to install the different LPPs and OS/400 options that you determined that
you want to use after reviewing Table 2-1 on page 18:

1. Insert the installation media into your iSeries server.

2. At the OS/400 command line, type:

GO LICPGM

Press Enter.

3. Select option 11 (Install licensed programs) on the Work with Licensed Programs display
to see a list of licensed programs that you can install on your iSeries server.

4. Select and install desired LPPs and OS/400 options.

5. To verify your installation, select option 10 on the Work with Licensed Programs (GO
LICPGM) menu. Make sure that the installation status for the options you installed is
*COMPATIBLE for DG1 and either *COMPATIBLE or *INSTALLED for your other products.

6. Although this is not really part of the installation process, make sure that the system value
Shared Memory Control (QSHRMEMCTL) value is set to 1 (Allowed). To display (and
change, if necessary) the current system value setting on your iSeries server, use the
Work with System Values (WRKSYSVAL) command:

WRKSYSVAL SYSVAL(QSHRMEMCTL)

Tip: As you can see in this IBM Redbook, most configurations are tested and all windows
have been captured with Microsoft’s Internet Explorer. We recommend that you use the
same browser.

Tip: See the Software Installation Guide at the iSeries Information Center, under
OS/400 and related software, for help with licensed program installation. You can find
the Information Center on the Web at:

http://www.ibm.com/iseries/infocenter
Chapter 2. From zero to powered by Apache 23

http://www.ibm.com/iseries/infocenter

2.2.2 Installing PTFs
To ensure a smooth test of the HTTP Server (powered by Apache) and to guarantee that you
have all the functions available, you must load the latest PTFs. Table 2-3 on page 21 identifies
the key group PTFs that you need to order and install on your iSeries server.

2.2.3 Installing the ITSO example Web application (optional)
To establish a quick, simple, and ready to use Web site for this IBM Redbook, we used
NetObjects’ Fusion 5.0. You can find the NetObjects Web site at:

http://www.netobjects.com/

Our goal was to have a Web site that had multiple layers of integrated file system (IFS)
hierarchy that could then be configured in many different ways showing you the powerful
Apache directives at work.

If you want to closely follow the how-to steps demonstrated in this IBM Redbook, be sure to
download the examples as explained in Appendix D, “Additional material” on page 421.

2.3 Testing the HTTP Server (powered by Apache) installation
Now that you made sure you have all the components and fixes to those components that you
need to work with the HTTP Server (powered by Apache), test them by creating and starting
your first server.

2.3.1 Your first HTTP Server (powered by Apache) via a wizard
The HTTP Server (powered by Apache) comes complete with a GUI that is unique to the
iSeries server. This GUI has dramatically changed since the introduction of V5R2 and has
become user friendly and comfortable. It is also available at V5R1 if you installed the latest
Group PTF for 5722-DG1.

Creating the server
You use the Create HTTP Server wizard to quickly create your first brand new HTTP Server
(powered by Apache):

1. Start the HTTP Administration server (*ADMIN). Using iSeries Navigator, expand
Network →Servers →TCP/IP and right-click HTTP Administration. Click Start.

Or, from the iSeries command line, enter:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

Tip: See the Software Installation Guide on the iSeries Information Center, under OS/400
and related software, for help with receiving and installing PTFs on your iSeries server. You
can find it on the Web at:

http://www.ibm.com/iseries/infocenter

Tip: The HTTP Server (powered by Apache) ships with a basic server instance by the
name APACHEDFT. Any time you create a new server on the iSeries server, always use
the GUI wizard even if later you plan to manually edit the configuration file.
24 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/iseries/infocenter
http://www.netobjects.com/

2. Verify that the *ADMIN server is up and running. Using iSeries Navigator, expand
Network →Servers →TCP/IP. On the right, the HTTP Administration server should have a
status of Started.

Or, from the iSeries command line, enter:

WRKACTJOB SBS(QHTTPSVR)

As soon as all ADMIN server jobs reach SIGW status as shown in Figure 2-1, you are
ready. Note that the startup time may take a minute.

Figure 2-1 WRKACTJOB SBS(QHTTPSVR) showing the ADMIN server ready and waiting for work

3. Open a Web browser and enter:

http://your.server.name:2001

Here your.server.name is the name or the IP address of your iSeries server.

4. Enter your user ID and password in the window shown in Figure 2-2.

Figure 2-2 Entering the OS/400 user ID and password when prompted

You are greeted by the iSeries Tasks page (Figure 2-3) which can be different, depending
on the optional LPPs that are installed on your iSeries server.

 Work with Active Jobs AS20
 01/09/02 15:32:53
 CPU %: .8 Elapsed time: 01:08:50 Active jobs: 190

 Type options, press Enter.
 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
 8=Work with spooled files 13=Disconnect ...

 Opt Subsystem/Job User Type CPU % Function Status

 QHTTPSVR QSYS SBS 0,0 DEQW
 ADMIN QTMHHTTP BCH 0,0 PGM-QZHBHTTP SIGW
 ADMIN QTMHHTTP BCI 0,0 PGM-QZSRLOG SIGW
 ADMIN QTMHHTTP BCI 0,1 PGM-QZSRHTTP SIGW
 Bottom
 Parameters or command
 ===>
 F3=Exit F5=Refresh F7=Find F10=Restart statistics
 F11=Display elapsed data F12=Cancel F23=More options F24=More keys
Chapter 2. From zero to powered by Apache 25

5. On the iSeries Tasks page (Figure 2-3), click IBM Web Administration for iSeries.

Figure 2-3 iSeries Tasks page for your iSeries
26 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. Click the Manage tab and then the All Servers subtab. As shown in Figure 2-4, you are
presented with a list of all the configured HTTP instances.

An improvement to the administration interface is that you can now easily identify which
servers are running and on which ports and addresses they are listening. From here, you
can Start, Stop, Restart, Delete, Rename, or Manage your servers. You can click any
existing server to quickly move to the configuration panel of the server.

Figure 2-4 Managing all servers on one page

7. Start the Create HTTP Server wizard. In the left pane of the page, click Create HTTP
Server. You see the first welcome panel for the Create HTTP Server wizard (Figure 2-5) in
the right panel.

Figure 2-5 Create New HTTP Server: Welcome panel
Chapter 2. From zero to powered by Apache 27

Wizards are nice tools that just about guarantee that if you answer all the questions
correctly, the resulting configuration will work. The only problem with a wizard is that
sometimes, right in the middle, it asks you a question to which you do not know the
answer. Table 2-4 can help with this situation. It contains the questions and our ITSO
Rochester answers for the Create HTTP Server wizard. You can also write down your own
answers if your first HTTP Server (powered by Apache) is different than ours.

Table 2-4 Questions asked by the Create HTTP Server wizard and ITSO Rochester’s answers

8. The Create HTTP Server wizard asks a series of questions as shown in Table 2-4. Answer
each question and click Next to move onto the next question.

Create HTTP Server wizard question Answer

HTTP server name ITSONEW

Migrate Original server configuration? (Yes/No)
This question appears only when you have an existing original server
configuration.

No

Server root. This is the base directory for your HTTP server. Within this
directory, the wizard creates subdirectories for your logs and configuration
information. The default is /www/webserver.

/www/ITSONEW

Document root. This is the directory from which your documents will be
served by your HTTP server. The default is /www/webserver/htdocs.

/www/ITSONEW/htdocs

Listen on IP address and Port. The default is All IP addresses and Port 80. All IP addresses

Port 8022 (or something unique for testing) 8022

Logging: Access log file or only Error log. You can find more information
about logging in 13.2.3, “Server logs” on page 331.

No Access log

Log maintenance Delete based upon age
7 days

Tip: If you run the Create HTTP Server wizard on a V5R1 or V5R2 system, you are
asked an additional question regarding the type of server: original or (powered by
Apache). Since i5/OS V5R3 does not support the original server anymore, this question
is not shown.
28 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9. In the end, you should see a confirmation panel that looks something like the example in
Figure 2-6. Verify all your choices. If you need to correct something, click Back.
Otherwise, click Finish to create your HTTP Server (powered by Apache).

Figure 2-6 Create New HTTP Server: Confirmation panel

When the wizard has finished setting up the new instance, you see a new page that allows
you to further configure your new server instance. See Figure 2-7.

Figure 2-7 Managing details for the new server instance

Note: We recommend that you always use the GUI to create new HTTP servers.
Chapter 2. From zero to powered by Apache 29

Starting the server
Now that you have created your HTTP Server (powered by Apache), it is time to start it.

1. Make sure that you are still on the HTTP Servers tab, under the Manage tab, for your
instance as shown in Figure 2-7.

2. The left frame changes and additionally shows the manage buttons (Figure 2-8). Click the
green Run button (circled in Figure 2-8) and the server starts. You can alternatively start
the server by entering the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(ITSONEW)

Figure 2-8 Buttons to manage your server

3. To verify that your ITSONEW server is up and running, click the Refresh button (circled in
Figure 2-9). Or you can enter the following command:

WRKACTJOB SBS(QHTTPSVR)

Figure 2-9 Your HTTP server ITSONEW is running

Testing the server
The final step is to simply test. Open your Web browser and enter:

http://your.server.name:port

Here your.server.name is the name or the IP address of your iSeries server, and port is the
TCP/IP port on which your HTTP server is listening. In our example, we use the URL:

http://hamts810:8022

Tip: Clicking the Refresh button a few times may be a good habit to ensure that the
server stays started. This is similar to the nervous habit of old S/38, AS/400, and
iSeries administrators repeatedly pressing PF5 (refresh) on a 5250 green screen.
Sometimes, due to TCP/IP port conflicts or errors in the configuration file, the server
terminates immediately. If this is the case, see Chapter 13, “Problem determination:
When things do not go as planned” on page 323.
30 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

You now see the default home page (Figure 2-10), which is stored in the
/www/ITSONEW/htdocs IFS directory and is named index.html.

Figure 2-10 Default index.html created automatically by the Create HTTP Server wizard

You have now created and are running an HTTP Server (powered by Apache) on your iSeries
server.
Chapter 2. From zero to powered by Apache 31

32 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 3. The new GUI: IBM Web
Administration for iSeries

The graphical user interface (GUI) for the administration instance dramatically changed in
V5R2 and in V5R1 (through a group PTF). The Rochester developers worked with the
feedback of many iSeries clients to design and create a new look and feel to the iSeries
administration GUI. New functionalities were added, and now, managing all of your servers
has never been easier. See 3.3, “Tabbed pages for easy navigation” on page 36, for details.

Unlike the previous edition of this redbook, this chapter describes only the new look-and-feel
that came to the administration GUI with PTFs for OS/400 V5R1 and V5R2 in December
2003, which is now in i5/OS V5R3 known as IBM Web Administration for iSeries. The
administration GUI takes on more responsibility with the IBM WebSphere Application Server
configuration. It allows you, the webmaster, to manage better the iSeries server.

This chapter gives you a general overview of the new functionalities. If you need more
information about a particular configuration, refer to the appropriate chapter in this IBM
Redbook.

3

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 33

3.1 Welcome page: iSeries Tasks page
The initial welcome page, or iSeries Tasks page, lists a wide range of applications that you
can manage. To reach this page, follow these steps:

1. Make sure that TCP/IP is configured and started in your OS/400 or i5/OS partition.

2. Start the HTTP administrative server (as described in 1.1.2, “GUI configuration and
administration” on page 5).

3. Open a Web browser and enter the following Uniform Resource Locator (URL):

http://as400host.domain:2001

The string as400host.domain stands for any IP address or host name that you can use to
reach the OS/400 or i5/OS partition from your workstation.

4. You are prompted to enter your user profile and password (Figure 3-1). Sign on with your
OS/400 user profile and password (refer to 2.1.2, “User profile authorities” on page 22, for
more information about the required authority).

If the user profile and password prompt does not appear in the window shown in
Figure 3-1, then most likely you need to start the Admin server. See 2.3.1, “Your first HTTP
Server (powered by Apache) via a wizard” on page 24.

Figure 3-1 iSeries Tasks page: Login
34 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. The iSeries Tasks page opens (Figure 3-2). The number of tasks that you see depends on
the installed licensed programs in this particular OS/400 or i5/OS partition on your iSeries
server. Therefore you may or may not see all the same links as those shown in Figure 3-2.

Click IBM Web Administration for iSeries.

You now go to the first page for the HTTP and application server administration.

Figure 3-2 iSeries Tasks page

Note: In OS/400 V5R2 and previous releases, this link was called IBM HTTP Server for
iSeries.

Tip: Do you want to see this page in a different language? By default, the iSeries Tasks
page appears in the language that is defined as the primary language for OS/400 of i5/OS.
You can override the language setting by using the LANGID parameter of the user profile
that signs on to the iSeries Tasks page. However, the pages that appear after you click the
IBM Web Administration for iSeries link are displayed in the language that is defined in
your browser settings. See 15.1, “Installing secondary languages” on page 374, for more
information.
Chapter 3. The new GUI: IBM Web Administration for iSeries 35

3.2 Header images to access information for help
The IBM Web Administration for iSeries user interface has several images in the header, or
top most portion, of the GUI. These images as shown in Table 3-1 are hyperlinks to helpful
information.

Table 3-1 Header images with links tor more information

3.3 Tabbed pages for easy navigation
The IBM Web Administration for iSeries GUI consists of several Web pages and wizards. As
you can see in Figure 3-3, four tabs are shown at the top of the page to guide you to an
individual section. You can easily access a specific page by clicking the tabs or subtabs at the
top of the page. The following sections look at the most important ones. The main task tabs
on the top (referred to in the documentation as tabs) are:

� “Setup tab: Common tasks and wizards” on page 37
� “Manage tab” on page 37
� “Advanced tab” on page 51
� “Related links page” on page 57

If you click the Manage or Advanced tab, you see subtabs to further group the tasks:

� Under Manage:

– All Servers (described on page 38)
– HTTP Servers
– Application Servers
– ASF Tomcat Servers

� Under Advanced:

– “Settings subtab” on page 51
– “Internet Users and Groups subtab” on page 52
– “Search Setup subtab” on page 55
– “TCM subtab” on page 56

Header image Description

This is the image hyperlink to the iSeries Information Center entry page.

This is the image hyperlink to the WebSphere Application Server Family
Web page. This Web page contains information about WebSphere
products, including support and service information.

This is the image hyperlink to the IBM Web page where you can find
information about all of IBM’s products.

This is the image hyperlink to the IBM HTTP Server for iSeries Web page.
This Web page contains additional information about PTFs and support,
developer documentation, and other topics.

You can find the question mark icon on many property forms near one or
more input fields. Clicking this icon points you to help information for this
particular configuration parameter.

Note: When you access the IBM Web Administration for iSeries GUI again, it opens the tab
and subtab that you last had open before you closed it.
36 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3.3.1 Setup tab: Common tasks and wizards
The Setup tab contains the setup tasks for your servers as shown in Figure 3-3. Setup tasks
include the common tasks and wizards for the IBM Web Administration for iSeries user
interface. Simple “getting started” tasks and wizards are also available. Under Common Tasks
and Wizards, the Setup page provides the ability to:

� Create a new HTTP server
� Create an application server, if you have the appropriate product installed
� Migrate an existing HTTP Server (original) to HTTP Server (powered by Apache)

Figure 3-3 IBM Web Administration for iSeries: Setup page

To create an application server, WebSphere Application Server, Express 5.0 or higher, either
the Express or the Base Edition needs to be installed on your system. Otherwise the second
option is not shown in the list.

In previous versions of the GUI, this page also offered the options to change the global server
configuration, manage Internet users, or set up a search engine. These functions have now
been moved to the Advanced tab.

For information about setup instructions, see 2.3.1, “Your first HTTP Server (powered by
Apache) via a wizard” on page 24. To learn more about the migration wizard, see Chapter 8,
“Migration from HTTP Server (original) to (powered by Apache)” on page 173.

If you plan to create or work with the WebSphere Application Server, Express, see the IBM
Redbook WebSphere Application Server V5 for iSeries: Installation, Configuration, and
Administration, SG24-6588.

3.3.2 Manage tab
The Manage tab contains the All Servers, HTTP Servers, Application Servers, and ASF
Tomcat Servers subtabs. It allows you to access lists of all servers that are defined on your
system or to set up new servers. You can control all servers from a single panel or choose a
specific server to manage on your iSeries server.

Note: The Common Tasks and Wizards option also appears on the Manage and Advanced
tabs (except the TCM subtab).
Chapter 3. The new GUI: IBM Web Administration for iSeries 37

Manage All Servers
The Manage page (Figure 3-4) is one of the most improved sections of the new GUI. It
enables you to manage an individual server or to see the status of all your servers.

� All HTTP Server (powered by Apache) instances
� All HTTP Server (original) instances (only available when using OS/400 V5R2 or earlier)
� All WebSphere Application Server, Express Base or Express, instances for Version 5 or

later
� All Apache Software Foundation (ASF) Tomcat servers

All HTTP Servers
The All Servers subtab (Figure 3-4) displays all of the currently configured servers on your
iSeries server. It also provides you the ability to start, stop, restart, and configure your
servers, as well as to monitor and manage the details.

The All HTTP Servers tab shows a table with all HTTP servers. It shows the ports and
interfaces on which they listen and if a WebSphere Application Server instance is associated
with the HTTP server. You can click any of the blue highlighted table headers (circled in
Figure 3-4) to sort the table depending on the selected column.

Figure 3-4 IBM Web Administration for iSeries: Manage All Servers

You can choose the server you want to work with. Simply select the server from the Server
area drop-down box or select the proper radio button to mark your instance. If you use the
radio button, you can choose from the following options:

Note: The HTTP Servers, Application Servers, and ASF Tomcat Servers subtabs, under
the Manage tab at the top of the page, serve a different purpose than the All HTTP
Servers, All Application Servers, and All ASF Tomcat Servers tabs, located under the All
Servers tab, in the Manage All Servers panel.
38 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

� Refresh: Click this button to refresh the status of all your servers.

� Start: This button enables you to start the selected server. The Server startup parameters
allow you to add additional startup parameters, mostly used for debugging problems. See
13.2.7, “Other startup parameters” on page 351, for more information.

� Stop: Click this button to simply stop your server. It may be necessary to click the Refresh
button to see the correct status.

� Restart: This is equal to the following OS/400 command:

STRTCPSVR SERVER(*HTTP) RESTART(*HTTP) HTTPSVR(xxxxxxxxxx)

� Manage Details: This option opens the main configuration page of the selected server.
The same page opens when you select the server from the Server area list.

� Delete: This button offers the only opportunity where you can delete your server instance.
When you click the Delete button, the server instance is removed from the list and you
cannot retrieve the server status anymore. If the server you selected is running, it stops
before the system deletes it. The system does not delete the server configuration that is
associated with this server or the directory and its contents.

� Rename: Click this button if you have a reason to rename your server.

All Application Servers
You can now manage WebSphere Application Servers through the IBM Web Administration
for iSeries (Figure 3-5). This enhancement was introduced in WebSphere Application Server,
Express V5.0 and was later extended to WebSphere Application Server Base for Versions 5.0
and 5.1.

Although only a subset of all configuration parameters for application servers is available
through this user interface, there are some advantages over using the WebSphere
Administrative Console:

� You see the name, versions, status, ports and the descriptions of all application servers
(as long as they are at version 5.0 or later and don’t include a Network Deployment
server).

� You can use the table in Figure 3-5 to start an application server. In contrast, to use the
WebSphere Administrative Console, the application server must already be active.

If you click the name of one of the application servers shown in the list, you can change or set
many of the configuration parameters for this server, as described in “Application Servers
subtab” on page 49.

Note: The Monitor Server option has been removed in V5R3, since it only applied to the
HTTP Server (original). A similar function has been added to HTTP Server (powered by
Apache) called HTTP Server statistics. See “Tools” on page 45 for more information.

Tip: The area at the bottom of the page is where completion messages appear after any
action. You can hide this area by clicking the green minimize button.

If any of these
operations fail,
refer to
Chapter 13,
“Problem
determination:
When things do
not go as
planned” on
page 323.
Chapter 3. The new GUI: IBM Web Administration for iSeries 39

Figure 3-5 IBM Web Administration for iSeries: Managing all application servers

All ASF Tomcat Servers
Under the All ASF Tomcat Servers tab, you can also see and manage all Tomcat servers.

Managing each individual server
There are two ways to reach an overview page so you can manage or configure a particular
server. The overview page describes the main server configuration tasks in the right panel
and shows a collapsible tree of configuration tasks in the navigation bar on the left.

� Start with the All Servers tab as explained in “Manage All Servers” on page 38 and click
the name of the server. If you want to manage an Application Server or ASF Tomcat
Server, click the All Application Servers tab or the All ASF Tomcat Servers tab first to see
a list of those server types.

� Click either the HTTP Servers, Application Servers, or ASF Tomcat Servers subtab. Then
select the name of the server from the Server list under the subtabs (see Figure 3-6).

Figure 3-6 IBM Web Administration for iSeries: Selecting a server
40 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

HTTP Servers subtab
The HTTP Servers subtab allows you manage or configure a single HTTP server. Figure 3-7
shows a sample page of the APACHEDFT instance, which is the IBM supplied sample HTTP
server (powered by Apache).

Figure 3-7 IBM Web Administration for iSeries: Managing your server

Server status
At the top of the page, under the subtabs and circled in Figure 3-7, you can see the status of
your server. Depending on the actual status, the different buttons are active on the right as
shown in Figure 3-8.

Figure 3-8 Server status: Running, Stopping, Stopped

The IBM Web Administration for iSeries user interface shows the current status of your
servers under the subtabs at the top of the page. The status of the currently selected server is
indicated by the icons listed in Table 3-2.

Table 3-2 Server states

Server state Description

The server is currently stopped. The server is no longer available. The IP address
and port number are not in use.

The server is currently running. The IP address and port number are in use.

The server is attempting to stop. The IP address and port number are still in use.
Chapter 3. The new GUI: IBM Web Administration for iSeries 41

Server and server area pull-down menus
To the right of the action buttons, you see the pull-down list to select a different server as
shown in Figure 3-6 on page 40.

Another menu farther to the right allows you to select the server area. The Server area list
contains the different container areas, such as <VirtualHost> or <Directory> for the HTTP
Server (powered by Apache) configuration file.

Tasks, wizards, property forms, and tools
These options are shown in the left pane in Figure 3-7. These are the main wizards that help
you to set up your server. Each subtab opens specific tasks, wizards, property forms, and
tools that provide you the ability to configure and manage your server. Table 3-3 explains
each option in greater detail.

Table 3-3 Tasks, wizards, property forms, and tools

The IBM Web Administration for iSeries interface checks any changes you make for errors. It
displays a message, below the forms (in the error window), detailing any errors.

The server is being configured and created. The IP address and port number are
not in use.

 The IBM Web Administration for iSeries interface is loading the selected form,
wizard, or Web browser frame.

Name Description

Task A task is guided property form that takes you through advanced configuration steps, but
it is not a wizard. It groups property forms together for advanced configuration tasks.

Wizards Wizards provide instructional steps that guide you through a series of advanced steps to
accomplish a task. They cannot save your progress and must be completed to
successfully update or create a server.

Property
forms

Property forms have field values that may be set for specific configuration requirements.
Each property form has help text to assist you in managing your servers.

Tools Tools provide easy access to log files, the server configuration file, directive index, and
real-time HTTP server statistics. They are useful for problem solving and server
maintenance.

Server state Description

Important: Do not resize the browser window during any operation due to a problem when
using wizards. Otherwise, you are redirected to the page from which you started the
wizard. At that point, there is no possibility to return to the wizard. You must start it again.
An error message displays, indicating that a wizard is already running and the previous
configuration data will be lost.
42 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Server Properties
The collapsible tree in the left navigation bar is your main configuration tool. When you
expand the subtree under Server Properties, you can define all of the operation environments
for your HTTP Server (powered by Apache).

By clicking any of the configuration sections, the content of the panel on the right changes
and shows the appropriate property form. Figure 3-9, shows the General Server
Configuration form. For example, because the APACHEDFT instance is configured to listen
on port 80 and bind to all interfaces, we disabled the instance from starting automatically by
changing the Autostart parameter to No and clicking Apply.

Figure 3-9 IBM Web Administration for iSeries: General Server Configuration (Part 1 of 2)

The message area tells you that the configuration was updated successfully. You also see a
message in this area if you encounter an error during your configuration.

Because of the larger size of this panel, you must scroll down to see the rest of the
configuration parameters. Figure 3-10 shows the rest of this panel after we scrolled down.

Tip: While working with the IBM Web Administration for iSeries, you may want to use as
much space of your display as possible. In Internet Explorer, you can do this by selecting
View →Full Screen (F11) function. However, if you do this while a certain form is displayed,
you return to the overview page (Figure 3-7 on page 41).
Chapter 3. The new GUI: IBM Web Administration for iSeries 43

Figure 3-10 HTTP Server Administration - General Server Configuration (Part 2 of 2)

You can add another port to your configuration. Simply click the Add button as indicated by
the mouse pointer in Figure 3-10. Notice that this button is not visible in Figure 3-9.

Then a new row is added to the list of ports as shown in Figure 3-11.

Figure 3-11 HTTP Server Administration: Adding a port to listen on
44 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Then, you can click the Preview button to review the configuration as shown in Figure 3-12.
The Preview button on this page lets you review your server configuration before you apply all
the configurations. Notice (in the circled area in Figure 3-12) that the configuration changes
are marked with a plus sign (+) if a configuration section is added.

If you remove a configuration directive, there is no indication in the configuration file. It is
simply removed.

Figure 3-12 HTTP Server Administration: Preview Configuration File

Tools
Tools provide easy access to the server configuration file, directive index, and real-time HTTP
server statistics. Tools are useful for problem solving and server maintenance. This section is
located on the bottom of the navigation bar on the left side.

Depending on size and resolution of your display, if you do not see the Tools tree, you must
scroll down, using the scroll bar on the right side of the left navigation pane, or collapse one
more of the subtrees above it. The tools allow you to:

� Display the configuration file (see Figure 3-13)
� Edit the configuration file (see Figure 3-14 on page 47)
Chapter 3. The new GUI: IBM Web Administration for iSeries 45

� View an index of all directives (see Figure 3-15 on page 48)
� View the real-time server statistics (see Figure 10-45 on page 302)

The Display the Configuration File Tool (Figure 3-13) allows you to see the raw content of the
configuration file, which is usually conf/httpd.conf within the server root directory.

Figure 3-13 IBM Web Administration for iSeries: Display Configuration File
46 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

With the Edit Configuration File Tool, you can also edit the configuration file if you want to add
your directives manually as shown in Figure 3-14.

Figure 3-14 IBM Web Administration for iSeries: Edit Configuration File

If you prefer to edit the configuration file directly, you can:

� Use the Edit Configuration File Tool, which is another part of IBM Web Administration for
iSeries as shown in Figure 3-14.

� Use the Work with Object Links (WRKLNK) CL command to change into the directory,
where the configuration file is placed. Then use option 2 to edit. Or you can simply use the
Edit File (EDTF) CL command.

� Use a client system with a mapped directory to the iSeries integrated file system (IFS) and
a tool that can edit Unicode files. If no such editor is available, copy the configuration (via
Edit Configuration File) and paste it to an ASCII encoded file.

Tip: Did you
know that the
httpd.conf file,
created by the
administration
GUI, is in
Unicode?

Note: If you add a directive that is not supported via the Edit Configuration File utility and
return to the Display Configuration File page, you see an error. This is also a good way to
examine and start debugging problems. For more hints and tips, see Chapter 13, “Problem
determination: When things do not go as planned” on page 323.
Chapter 3. The new GUI: IBM Web Administration for iSeries 47

The Directive Index (Figure 3-15) is an alphabetical list of all directives for the HTTP Server
(powered by Apache). It consists of cross-references to the place in the GUI where you can
configure this directive.

Figure 3-15 HIBM Web Administration for iSeries: Directive Index

Tip: If a directive is not valid in the currently selected context, you cannot click to access
the form. You must first change the context in the Server area list in the upper right side of
the panel.
48 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

In our example, we search for the place to configure the directive AccessFileName. Viewing
the Directive Index, we find it under General Server Configuration. Clicking this link opens the
property form where you can change the configuration as shown in Figure 3-16.

Figure 3-16 IBM Web Administration for iSeries: Directive Index, AccessFileName

Real Time Server Statistics
The Real Time Server Statistics form and tabs provide information about server performance.
You can only view statistics for running servers. You may choose this form to be automatically
refreshed every 10 or 30 seconds, or 1, 5 or 10 minutes, by selecting the option from the
Refresh Interval list. The default is to refresh the data manually by clicking the Refresh button.

For complete details about Real Time Server Statistics, see 10.8, “Real Time Server
Statistics” on page 301.

Application Servers subtab
WebSphere Administrative Console helps you to configure all functions of WebSphere
Application Servers are Version 4 or later. Similar to the IBM Web Administration for iSeries, it
is also a browser-based GUI. Unlike the IBM Web Administration for iSeries GUI, the
WebSphere Administrative Console, in most cases, is only used to manage a single
application server.

Tip: For a certain input field in a property form, if you want to determine which directive the
field controls, you can click the question mark icon as indicated by the mouse pointer in
Figure 3-16.
Chapter 3. The new GUI: IBM Web Administration for iSeries 49

The overview page for Manage Application Server – Express, in the example in Figure 3-17,
shows the most important information about the server. It also provides links to guide you to
key management and configuration forms and wizards.

Figure 3-17 IBM Web Administration for iSeries: Manage Application Server

The top row of the Manage Application Server form looks similar to the one in the Manage
HTTP server form, except that there is no Restart button or a Server Area list. However, the
navigation bar in the left pane is different, except for the Common Tasks and Wizards links.

There are wizards that enable you to:

� Create Virtual Host
� Install New Application
� Create JDBC Provider
� Create Data Source
� Deploy IBM Telephone Directory
� Deploy IBM Survey Creator

Under the wizards, you see links to configure some of the server properties, which include:

� Server Tracing
� Server Ports
� View HTTP Servers (associated with a virtual host for this application server)

Attention: There is one exception. You can use the console of a Network Deployment
(ND) server. In such a case, the ND server manages multiple Base (not Express) servers.
However, the application servers must be defined that way and then can be managed only
through the ND server.
50 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

In addition, you can manage:

� Installed Applications
� Virtual Hosts
� JDBC Providers
� Data Sources

Under Problem Determination in the navigation pane, you may view logs. And under Tools,
you may launch the Administrative Console from this pane.

3.3.3 Advanced tab
The Advanced tab (Figure 3-17) contains advanced tasks that you can perform on your
servers. It contains the four subtabs Settings, Internet Users and Groups, Search Setup, and
TCM. The Advanced tab allows you to:

� Set the Global Server Settings, which are values that apply to all HTTP Server (powered
by Apache) configurations

� Work with Internet users and groups to create, delete, and populate validation lists

� Use the Webserver Search Engine page to set up your Web site for full text searches on
HTML and text files

� Set up your iSeries server with advanced cache management servers called the Triggered
Cache Manager (TCM)

Settings subtab
In addition to the Common Tasks and Wizards links described in “Setup tab: Common tasks
and wizards” on page 37), the Settings subtab contains the Global Server Settings
(Figure 3-18). The values for Global Server Settings apply to each IBM HTTP Server
(powered by Apache) configuration. The values provided here can be overridden individually
within each IBM HTTP Server (powered by Apache) configuration.

Figure 3-18 IBM Web Administration for iSeries: Global Server Settings
Chapter 3. The new GUI: IBM Web Administration for iSeries 51

To change the global server configuration parameters, you click Global Server Settings link in
the left navigation pane as shown in Figure 3-18. You can also use the Change HTTP
Attributes (CHGHTTPA) CL command as shown in Figure 3-19.

Figure 3-19 Change HTTP Attributes display

Internet Users and Groups subtab
The Internet Users and Groups subtab allows you to define users of the HTTP servers using
validation lists. You may also list or delete digital certificates. You can perform the following
tasks on this subtab:

� Add Internet User
� Change Internet User Password
� Delete Internet User
� List Internet Users
� Delete Certificate
� List Certificates

Validation lists are used in conjunction with other resources to limit access to server
resources. Each validation list contains a list of Internet users and passwords. You use the
Internet users and groups form to list and manage digital certificates associated with
validation lists.

A validation list is used to store user ID and password information about remote users. You
can use existing validation lists or create your own. Validation list entries also require you to
identify an authentication protocol type to associate with the user ID and password. Validation
lists are case sensitive and reside in iSeries libraries.

A group file identifies a group of users with a common security profile. It contains iSeries user
profiles. A user profile is an object with a unique name that contains the user’s password, the
list of special authorities assigned to a user, and the objects the user owns or has access to.

Note: Since these values have the potential to impact the overall usability and
performance of all your servers, you must understand the implications of making any
changes to the global settings.

 Change HTTP Attributes (CHGHTTPA)

 Type choices, press Enter.

 Autostart *NO *YES, *NO, *SAME
 Number of server threads:
 Minimum 10 1-9999, *SAME, *DFT
 Maximum 80 1-9999, *SAME, *DFT, *NOMAX
 Coded character set identifier 00819 1-65533, *SAME, *DFT
 Server mapping tables:
 Outgoing EBCDIC/ASCII table . *CCSID Name, *SAME, *CCSID, *DFT
 Library Name, *LIBL, *CURLIB

 Incoming ASCII/EBCDIC table . *CCSID Name, *SAME, *CCSID, *DFT
 Library Name, *LIBL, *CURLIB

Note: Validation lists are not the same as iSeries user profiles. User profiles must be
created manually and are independent of a validation list.
52 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

A digital certificate is a form of personal identification that can be verified electronically. Only
the certificate owner who holds the corresponding private key can present a certificate for
authentication through a Web browser session. The key can be validated through any readily
available public key. You use the Digital Certificate Manager to create, distribute, and manage
digital certificates.

For more information about authentication and other security topics, see Chapter 6,
“Defending the IFS” on page 101.

Add Internet User
You can use the Add Internet User form (Figure 3-20) to add user names and passwords for
server access by using validation lists or group files or both. Internet users exist
independently of OS/400 user profiles and are used only with the IBM HTTP Server.

Figure 3-20 IBM Web Administration for iSeries: Add Internet User

To enter a new user, you perform the following steps:

1. Enter the new user name that you want to add. The user name can be up to 10 characters
long. You can specify names that contain a blank or certain special characters in them.
The special characters that you can use include tab, colon (:), comma (,), parenthesis (), at
sign (@), exclamation point (!), and close brace (}). For example, you could specify the
name “Smith, Joe”.

2. Enter the password for the new user. The password can be up to 10 characters long. This
is an optional entry.

3. In the Confirm password field, enter the same password as in the previous step for
verification. The confirmed password can be up to 10 characters long and must match
exactly your entry in the Password field. This is an optional entry.

4. Enter any comments to provide additional information about the user. For example, you
can enter the user’s e-mail address. This is an optional entry.
Chapter 3. The new GUI: IBM Web Administration for iSeries 53

5. Enter a validation list for which to add the user. A validation list is an OS/400 object of type
*VLDL that stores user names and passwords for use in access control. Validation lists are
case sensitive and reside in OS/400 libraries. They are required when you add a user,
unless you are adding the user to a group file. If you enter a validation list that does not
exist, the system will create it for you.

6. Enter an existing group file directory with a fully qualified path name in the IFS, followed by
the group file name (in the format /somedir/group1.grp). A group file contains information
about which users belong to which groups. A group file is created if it does not already
exist. This entry is required only if you are adding a user to a group file instead of a
validation list. Group file names can be case sensitive, depending on which file system
they are located in, and cannot contain any blank characters.

7. Enter the group within the group file in which to add the user. A group is a collection of
users who require common access control to a directory or file. This may, for example, be
a collection of people in the same department. If you enter a group that does not already
exist in the group file, then it is created for you. A group must be specified when adding a
user to a group file. A group cannot contain blank characters.

8. Click Apply to update the configuration file with the information that you entered on the
form. Click Reset to return to the values that were on the form before you made the
changes.

Change Internet User Password
You can use this form to change the password for an existing Internet user. Internet users
exist independently of OS/400 user profiles. They are used only with IBM HTTP Server when
you perform the following steps:

1. Enter the user name for which to change the password. The user name can be up to 10
characters long.

2. Enter the new password for the user. The password can be up to 10 characters long.

3. In the Confirm password field, enter the same password as above for verification. The
confirmed password can be up to 10 characters long and must match exactly your entry in
the New Password field.

4. Enter an existing validation list that stores the user name and password that you want to
change. As mentioned earlier, a validation list is an OS/400 object of type *VLDL that
stores user names and passwords for use in access control. Such lists are case-sensitive
and reside in OS/400 libraries. They are required when you change the password of a
user and check for valid user names and passwords.

Note: Enter the validation list name in the format somelib/somelist. In this example,
somelib is an existing library in the QSYS file system (up to 10 characters long).
somelist is the name of a validation list (up to 10 characters long) that exists in that
library.

Note: Group files are supported only in the IFS.

Note: When adding an Internet user to a group file, if a group is specified, then the user
is added directly into that group.

Note: This form does not use any configuration directives.
54 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. Click Apply to update the configuration file with the information that you entered on the
form. Click Reset to return to the values that were on the form before you made the
changes.

Delete Internet User
You can use the Delete Internet User form to delete an Internet user from a validation list,
group file, group, all groups within a group file, or all of these at the same time. Internet users
exist independently of OS/400 user profiles and are used only with IBM HTTP Server.

List Internet Users
You can use the List Internet Users form to list the Internet users in a specific validation list.
Internet users exist independently of OS/400 user profiles and are used only with IBM HTTP
Server.

Delete Certificate
You can use the Delete Certificate form to delete certificates associated with a validation list.
Validation lists are used in conjunction with protection setups and access control lists to limit
access to your server resources. They contain a list of users and their passwords. You us this
form to delete certificates that users are authorized to on a particular validation list.

Digital certificates handle authentication together with digital signatures. Authentication is the
process used to verify the identity of an Internet user. Digital signatures and certificates
provide integrity and accountability for Internet users.

List Certificates
You can use the List Certificates form to list any certificates associated with a validation list.
Certificates within validation lists can be used in conjunction with protection setups.

Search Setup subtab
The Search Setup subtab contains a series of forms that allow you set up the IBM Webserver
Search Engine. Use the Webserver Search Engine to set up your Web site for full text
searches on HTML and text files.

The following forms are available to help you setup and manage the IBM Webserver Search
Engine:

� Create search index
� Update search index
� Merge search index
� Delete search index
� View status of search index
� Build document list
� Register document list
� Delete document list
� Work with document list status
� Build URL mapping rules file
� Build thesaurus dictionary
� Test thesaurus dictionary
� Retrieve thesaurus definition
� Delete thesaurus dictionary
� Build URL object
� Delete URL object
� Build options object
� Delete options object
Chapter 3. The new GUI: IBM Web Administration for iSeries 55

� Build validation list
� Delete validation list
� Search index

You can control which options are available to the user and how the search results are
displayed with an included Net.Data macro. The Net.Data macro also allows you to customize
the look and feel of your Web site. There is a sample Net.Data macro and a sample HTML file
in the /QIBM/ProdData/HTTP/Public/HTTPSVR directory to use and test.

You can enhance your search results when you create the index by using field support for
META tags and a mapping rules file to map internal file names to an external path. The
search forms contain additional ways to customize a search, such as using a thesaurus.

Before you can search your files, you must have an index. The index is a set of files that
contain the contents of the documents (in a searchable form) that are to be searched.

The search index is used by the search engine rather than searching all of the actual
documents. It is created based upon a document list. A document list contains a list of fully
qualified path names of all the documents that you want to index. You can create the
document list from files in a local directory by entering a path name or from files on another
server by using the Web crawling functions. The Web crawling functions allow you to search a
single URL or a list of URLs, including those requiring authentication.

Before you add a search engine to your Web site, you can test it here and can see forms that
are similar to the ones you can customize for your web site.

For more information about the IBM Webserver Search Engine, see Chapter 11, “Getting
started with Webserver Search Engine and Web Crawler” on page 307.

TCM subtab
The TCM subtab (Figure 3-21) allows you to create and configure a TCM server that can
work with your HTTP Server (powered by Apache) to dramatically improve the response time
for complex Web pages. These pages allow you to set up your iSeries system with advanced
cache management servers called Triggered Cache Manager servers.

Figure 3-21 IBM Web Administration for iSeries: TCM tab Work with servers panel
56 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

You can use Triggered Cache Manager servers in conjunction with Web servers and Web
document caching agents to keep Internet (and intranet) Web sites running at peak
performance. If your Web site contains dynamically produced Web pages, or perhaps rapidly
changing static pages, you may want to have a Web document caching agent that is
managed by a Triggered Cache Manager server.

You use the menu of links in the navigation frame on the left to locate and load configuration
and administration forms for Triggered Cache Manager servers. To work with a specific
server, you select its name from the selection list located toward the top of the menu. You can
load forms for a specific server by clicking links that appear under the selection box after you
select a name.

An empty selection box means that there are currently no servers to work with. In this case,
you must create one using the Create server link above the selection box.

Clicking links in the navigation frame loads forms in this frame, called the work area frame.
Some links are grouped under a single menu heading. Clicking such a heading expands the
group of links for display. Clicking the same heading again collapses the group and hides the
links.

You can find more information about TCM in 10.5, “Triggered Cache Manager” on page 259.

3.3.4 Related links page
On the Related Links page (Figure 3-22), you simply follow the links listed on the page for
more information about the HTTP Server for iSeries and other related products.

Figure 3-22 IBM Web Administration for iSeries: Related Links page
Chapter 3. The new GUI: IBM Web Administration for iSeries 57

58 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 4. Quick guide to Apache contexts
and request routing

Let us step back a bit from the HTTP Server (powered by Apache) implementation on the
iSeries to learn more about generic version 2.0 Apache configuration directives and request
routing.

The best place to learn about Apache configuration directives is from the many books written
by the world’s Apache experts. That is one of the advantages of using the world’s most
popular Web servers. We recommend that you read the following books as a start to your
Apache library (in addition to this IBM Redbook, of course!):

� Professional Apache 2.0 by Peter Wainwright, with Michael Link and Poornachandra
Sarang

� Apache Server 2 Bible with CD-ROM by Mohammed J. Kabir

� Apache Server 2.0 The Complete Reference by Ryan Bloom, with a forward by Brian
Behlendorf

This chapter introduces you to the basic concepts of configuration and request routing with
your HTTP Server (powered by Apache). Remember, HTTP servers are essentially file
servers. The configuration directives tell the server which files to serve and which to protect.
Then you see how to apply what you learned by stepping through a simple configuration
scenario using the administration graphical user interface (GUI).

4

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 59

4.1 In-context configuration
If you are familiar with the HTTP Server (original), you will find configuring the HTTP Server
(powered by Apache) a little different. Apache server configurations generally deal directly
with files in physical directories. This differs from the HTTP Server (original) method, which
relies on Uniform Resource Locator (URL) mapping and deals only indirectly with physical file
locations. URL mapping lets you hide the physical location of Web objects, which is a security
advantage. However, in the Apache world, the thinking is that a simpler approach to
configuration reduces errors that may otherwise compromise security.

Because it’s unlikely that you would want to protect all the files on your iSeries server in the
same manner, the Apache server provides a mechanism for subsetting the configuration file
into logical entities. Apache's configuration subsets are called contexts. You can think of a
context as a container for settings.

For example, the configuration structure (see Figure 4-2 on page 65 for a graphical
representation of this) of the server ITSOco may look like this:

ITSO99 global configuration
Directory /
Directory /itso/itso99/itsoco
Directory /itso/itso99/itsoco/downloads

The entire ITSOco configuration is itself considered a context, the global context. Apache
subdivides that context into sub-contexts in the same way subdirectories divide the root
directory in a hierarchical file system. In fact, the global context is bound to the document root
directory of the ITSOco server. Apache defines all contexts in relation to the document root.

The contexts that you will use most often are the directory and file contexts. Directory
contexts define configuration settings for an entire directory. File contexts define settings for
files matching a particular name pattern.

In the ITSOco configuration structure, the first context within the global context is of type
directory. This context defines settings for the document root directory and all its
subdirectories. Similarly, the context directory /itso/itso99/itsoco is a directory context that
defines settings for the /itso/itso99/itsoco document directory and all its subdirectories. The
context directory /itso/itso99/itsoco/downloads further defines or overrides settings.

Within directory contexts, file contexts let you define or override settings based on file names
or extensions. File contexts have the form files pattern, where pattern is an expression that
matches file names by name and extension (for example, *.gif).

Other context types serve special purposes, so you may use them less frequently. The
location context specifies the URL of a request to further refine or override settings. Another
powerful context is VirtualHost. In the same way that the directory context defines how the
Apache server treats a group of files (and files located in all subdirectories), the VirtualHost
context defines settings based on the Internet Protocol (IP) address and port that a client
uses to access your iSeries server. When the server receives a request for a document on a
particular virtual host (defined by IP address and port), the VirtualHost context (for example,
VirtualHost 1.2.30.40:port) supplies the configuration directives used by the server.

Directives within a directory context let users retrieve the contents of files in the directory
exactly as those files appear on disk. VirtualHost contexts let you change this behavior to
force file retrieval through a specific data filter, such as encryption. You can define a
VirtualHost context with a specific IP address and port (for example, the default Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) port 443) to force the file to transfer
via an SSL/TLS encryption session.
60 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4.2 Apache server request routing
The IBM HTTP Server (powered by Apache) filters incoming URL requests by applying
certain access rules and configuration values specified in the server configuration. This
process is called request routing.

The HTTP Server (powered by Apache) can map a URL to a directory or file with the
mod_alias directives, which are processed sequentially. These directives include
Alias(Match), ScriptAlias(Match), Redirect(Match | Temp | Permanent), and Rewrite.
ScriptAlias lets you map to programs that reside outside of DocumentRoot. For example, you
can use ScriptAlias to map /cgi-bin/ to /QSYS.LIB/yourlib.lib/db2www.pgm. By default,
Apache configurations are not case sensitive.

However, most Apache request processing uses a procedure called a directory walk. In this
procedure, the server reads contexts in a specific order and merges the settings of specified
by the directives in those contexts. In the ITSOco configuration structure, for example, the
server first reads all directives within the global context, then those within directory / (the root
directory), then those within /itso/itso99/itsoco, and then those within
/itso/itso99/itsoco/downloads. All the while, it is merging the settings of the directives that it
finds. This is a more powerful mechanism than the HTTP Server (original) Pass/Exec syntax.
It lets you organize directives hierarchically (the same way you organize Web content) and
apply directives more consistently to groups of similar files.

The directory walk merges directives from contexts in the following order:

1. Directory contexts (except those containing regular expressions) and .htaccess files are
merged simultaneously (with .htaccess files overriding directory). Regular expressions are
a UNIX shorthand method of expressing ranges of objects. You can think of these as an
advanced version of DOS pattern-matching characters.

2. DirectoryMatch and directory contexts that contain regular expressions are merged.

3. Files and FilesMatch contexts are merged simultaneously.

4. Location and LocationMatch contexts are merged simultaneously.

5. Sections (that is, nested directory, files, location, and limit contexts) inside VirtualHost
contexts are applied merged after the corresponding sections outside the virtual host
definition. This lets virtual hosts override the main server configuration.

In the merging process, lower-level contexts that occur later in the sequence can inherit or
replace settings from earlier higher-level contexts. Or they can override those settings.
Directives that apply to subdirectories can override those for parent directories.

Tip: The directory context (number 1) is the weakest and is more likely to be overridden by
stronger contexts such as the files (number 3) and sections inside of the VirtualHost
context (number 5).

.htaccess file: This is an optional local configuration file that is described on the
following page.
Chapter 4. Quick guide to Apache contexts and request routing 61

Each directory can have its own local configuration file that you specify with the
AccessFileName directive. The normal convention is to use .htaccess as the file name, but for
security reasons some webmasters change it to something less well known. The file name
should start with a period, which makes it a hidden file. An .htaccess file can override the
server configuration only for the contents of the directory in which the file resides. Using
.htaccess files complicates the configuration and security. You can learn more about this in
4.4, “Configuration recommendations” on page 63.

4.3 Request routing example
Let’s look at an example directory. If you expand the configuration contexts for the server
ITSOco, you may see the following directives:

<Directory />
 AllowOverride None
 order deny,allow
 deny from all
</Directory>
<Directory /itso/itso99/itsoco/downloads>
 order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all
 AlwaysDirectoryIndex On
 DirectoryIndex index.html
 Options +Indexes
</Directory>
<Directory /itso/itso99/itsoco>
 order allow,deny
 allow from all
</Directory>

Let’s say a client request for the URL /itso/itso99/itsoco/downloads/downloads.html
arrives from IP address 10.10.1.2. The first directory match, because it’s the shortest, is “/”
(the root directory). The directive AllowOverride None tells the server not to look for the
.htaccess file in this directory (or any subdirectory) unless there’s a specific override. This
directive improves performance and sets an important security precedent.

The order directive defines the order in which Apache evaluates the list of clients to which
you deny or allow access. (No top-down processing here.) Specifically, order deny,allow
means that the default allows access, but this is overridden by any deny directives, which in
turn, can be overridden by any allow directives. In this case, deny from all overrides the
default allow access, and since no specific allow directive is used, deny from all is the rule
for this directory (and all subdirectories unless specifically overridden). At the top of this
configuration hierarchy, no access is allowed unless we override at a lower level. This
approach secures the server by default.

Next, the request routing process examines the directory /itso/itso99/itsoco. We want to allow
open access to DocumentRoot, which contains our ITSOco server’s home page. To do this,
we override and reverse the directive that we gave in the previous directory (order
deny,allow) with the directive order allow,deny. This directive establishes deny as the
default, but lets the next directive (allow from all) override denial of access.
62 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The final context (because it is the longest) is directory /itso/itso99/itsoco/downloads. Here
again we override the settings for the order directive by issuing the directive order
deny,allow. This directive sets allow as the default, but the next directive deny from all,
which excludes all clients, overrides it. The last directive to apply is allow from
10.10.0.0/255.255.0.0. (We ignore the final three directives in the directory here.) This
directive allows access only to those clients with IP addresses within the 10.10.0.0 subnet
and denies all others, which receive error message 403 "Forbidden by Rule".

This directory walk from the shortest to the longest is a useful tool that lets you set security
precedents that you can override when necessary and create relatively compact, yet powerful
configurations.

4.4 Configuration recommendations
Nested contexts and configuration directives can be confusing. Here are a few rules to help
you keep track of how the server processes them:

� Don’t use Location sections unless you really must do so. There are times when they are
unavoidable, for example, when you’re configuring servlets with Tomcat. However, you can
use Directory sections for almost everything you need to do.

� Use File sections only when you really need them. You can solve most problems by putting
files into a separate directory and using a Directory section.

� Minimize the number of sections in the configuration file. Rearranging the directory
structure can help you accomplish this.

As we mentioned earlier, you can use a special file with the default name .htaccess to
override settings in a specific directory context. However, overuse of this file can impair
performance and widen security holes. You should limit your use of .htaccess files to those
situations in which you need distributed administration and configuration. Avoid using several
.htaccess files in the same directory path (for example, /www/.htaccess and
/www/html/.htaccess).

4.5 Configuring directory listings
Let’s examine some powerful concepts of the HTTP Server (powered by Apache)
configuration GUI. When you request the URL http://system_name:8099 (where
system_name is the name of your system), you configure the server to display the home
page, usually a file named index.html in the directory defined as DocumentRoot
/ITSO/ITSO99/ITSOco. We override this default behavior to display the contents of a
subdirectory (that is, /ITSO/ITSO99/ITSOco/Downloads) instead of the Web page. Apache
displays the contents as a list of files and attributes with file names automatically made “hot”
so that clicking one downloads the corresponding file.

On the configuration page (Figure 4-1), in the Server area list on the right, you select the
context you want to work with and then select the forms and wizards you need in the menu of
options in the left hand navigation area. We don't have a context for the
/ITSO/ITSO99/ITSOco/Downloads subdirectory, so we must create one.

Note: Although we use a directory walk to demonstrate how the HTTP Server (powered by
Apache) handles requests, this is not done at runtime for each request of the server. The
HTTP Server (powered by Apache) reads the configuration file with all its directives at
startup time once and builds a tree structure to hold all the configuration details.
Chapter 4. Quick guide to Apache contexts and request routing 63

Follow these steps (note that the step numbers correspond to those in Figure 4-1):

1. From the Server list on the left, select your server name. In this example, we select
ITSO99. From the Server area list on the right, select Global Configuration.

2. In the left pane, under Server Properties, select Container Management.

3. On the right side, select the Directories tab.

4. Under the directory table, click Add. In the list in the Type column, select Directory. Enter
a new directory. For our example, we used /itso/itso99/itsoco/downloads.

5. Click Continue.

6. Click OK.

Figure 4-1 Configuring directory listings: Directories page
64 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The Server area list below the tabs at the top of the page is immediately updated with the new
context directory /itso/itso99/itsoco/downloads. It should look like the example in Figure 4-2.

Figure 4-2 Configuring directory listings: Success at creating a new directory context
Chapter 4. Quick guide to Apache contexts and request routing 65

Next, you enable directory listings in the subdirectory Downloads as shown in Figure 4-3. For
security reasons, you don’t want your server to display directory listings by default. Follow
these steps (note that the numbers correspond to those in Figure 4-3):

1. From the Server area list, select Directory /itso/itso99/itsoco/downloads.

Notice that the groups of available configuration tabs changed immediately. If you didn’t
see the change, change your selection to Global configuration, and repeat the
procedure. This is an important feature of the configuration GUI. That is, when you select
an Apache configuration context (directory, files, VirtualHost and so on), the user interface
shows only the tabs that you can apply to that context. Tabs that are not available are
grayed out.

2. From the left pane, under Server Properties, select Directory Handling.

3. You see a new set of tabs on the right. Select the General Settings tab.

4. Select Display directory listing for all directories.

5. Click OK.

Figure 4-3 Enabling Directory Listings
66 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

As shown in Figure 4-4, you can review your changes by selecting from the left pane
Tools →Display Configuration File. We recommend that you do this every time you make a
change to your configuration.

Figure 4-4 The new configuration file

Tip: Another nice feature of the HTTP Server (powered by Apache) is the Preview button
located in the lower right corner of the GUI. Anytime you make a configuration change or
entry, you may click this button and it displays the configuration prior to saving it.
Chapter 4. Quick guide to Apache contexts and request routing 67

You should now test the new
configuration:

1. Restart the server.

2. Click Refresh to ensure that the
server stays started. Sometimes
errors in the configuration can cause
the server to stop.

3. Enter the following URL to test your
directory listing:

http://as20:8099/downloads/

You see a listing of files in the
Downloads subdirectory much like the
example in Figure 4-5. For extra
practice, you can make the directory
listings “fancy” by using the
Fancy/Customized Indexing form in the
Web Site Definition form group.

Figure 4-5 Configuring directory listings: List of hot links
to files in /downloads
68 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Part 2 How to...

As you prepare to use HTTP Server (powered by Apache), you may ask these questions:

� What is the best way to configure my Apache Web server to support multiple virtual hosts,
and how do I do it?

� How do I implement security with HTTP Server (powered by Apache)?

� If I want to do more than just serve static Web pages, how do I serve the dynamic data?

This part answers these questions and more. It instructs you on how to use virtual hosts,
secure your server, and serve dynamic data with server-side includes (SSI), Net.Data, and
Common Gateway Interface (CGI).

Part 2
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 69

70 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 5. Virtual hosts

The concept of virtual hosts in terms of Web serving refers to the practice of maintaining
more than one domain in a single server. The way the domains are primarily differentiated is
by their host name or Internet Protocol (IP) address. Therefore, client requests are routed to
the correct domain by IP address or by host name contained in the Uniform Resource Locator
(URL) header. Traditionally virtual host implementation requires as many HTTP servers
running simultaneously as domains that the system is going to serve. Figure 5-1 illustrates
the virtual host concept.

One of the most important
features of the HTTP Server
(powered by Apache) is the
way this concept is
implemented. The HTTP
Server (powered by Apache)
allows you to use one HTTP
server to host as many
domains as the environment
requires.

The virtual host concept is
primarily used by Internet Server Provider (ISPs), content providers, or companies that need
to manage multiples domains, but they do not want to use a different server for each domain
they want to serve. For example, if two companies want to establish presence on the Internet
without buying, building, and maintaining their own Web site, they can ask an ISP to host and
publish their Web pages. The ISP then sets up the virtual host implementation so that each
site looks like it is running on a different server. Each of these servers is called a virtual host
since they are really running on the same server.

Before implementing the virtual host concept using the HTTP Server (powered by Apache),
let us review some of the concepts introduced by the HTTP Server (original) in this area and
some information required for you to understand the HTTP Server (powered by Apache)
implementation.

5

Client with Web browser

iSeries

www.business01.com
www.itso02.com
www.company03.com

Figure 5-1 Virtual host concept
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 71

5.1 HTTP virtual host overview
If you need to use the iSeries server to host multiple domains, you need to think about:

� The way Transmission Control Protocol/Internet Protocol (TCP/IP) is configured
� The way the HTTP server will be configured
� The way the HTTP server will handle visitor requests

5.1.1 The way TCP/IP is configured
Your TCP/IP configuration depends on the number of physical network connections your
server has, for example:

� One single IP address over one physical connection
� Multiple IP addresses over one physical connection
� Multiple IP addresses over multiple physical connections

Your iSeries server can be configured as a multi-homed server with multiple IP interfaces or
virtual IP addresses. Any of those IP addresses can be used with the HTTP server to handle
multiple domains in one iSeries server. For an alternative look at how to set up any of those
TCP/IP approaches, see the IBM Redbooks Application Service Provider Business Model:
Implementation on the iSeries Server, SG24-6053, and iSeries IP Networks: Dynamic!,
SG24-6718.

For your virtual host configuration, you need to identify the IP address, port, and domain
name for each domain.

5.1.2 The way the HTTP server will be configured
The HTTP server can be configured to host:

� Multiple domains using one HTTP server
� Multiple domains using multiple HTTP servers, one for each domain
� A combination of both

Figure 5-2 shows two approaches you can use with your HTTP server to support multiple
domains.

Figure 5-2 HTTP server instance approaches

Multiple HTTP servers

HTTP server 1

Server n
www.itso0n.com

Server 2
www.itso02.com

Server 1
www.itso01.com

HTTP server 2 HTTP server n

TCP/IP

One HTTP server

TCP/IP

HTTP server

www.itso0n.comwww.itso02.comwww.itso01.com
72 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The HTTP configuration is different if the domains are served using one HTTP server or
multiple HTTP servers. Each approach requires a different process and is based on different
server directives, as explained in the Table 5-1.

Table 5-1 One and multiple server instances: Configuration comparison

The runtime environment of each approach also differs, as demonstrated in Table 5-2.

Table 5-2 One and multiple server instances: Running environment comparison

The information in Table 5-1 and Table 5-2 allows you to identify the differences between the
two approaches. According to these tables, both HTTP server approaches process visitor
requests correctly. Deciding between running under one or multiple HTTP servers usually
depends more on the system resources, such memory and Central Processing Unit (CPU). It
also depends on security issues, such as independency between domains. HTTP server
directive limitations that can be used with any approach are not as important.

Unless, the multiple HTTP server approach allows you to achieve any specific requirement,
we recommend that you use one HTTP server to host the domains, since you must only
create and maintain one configuration file. The iSeries server has only one HTTP server to
process the request, which saves memory and CPU resources for other system activities.

One HTTP server Multiple HTTP servers

One configuration file shared by all domains Multiple configuration files, one for each domain

One or many access log and error log files Each configuration file includes its access and error
log files

One or many document root directories Many document root directories, one per configuration
file

One or multiple IP addresses and ports
within the server instance

One or multiple IP addresses and ports per
configuration file

The HTTP server process uses the IP
address or the domain to serve the request

The HTTP server process uses the IP address or the
domain name to serve the request

Specific HTTP server directives to handle
each domain

No specific server directives since each domain has
its own configuration file

One HTTP server Multiple HTTP servers

All domains run under the same environment:
configuration file, process, and some service
directives.

Each domain runs under its own environment:
configuration file, process, and server
directives.

One process is started because there is only one
HTTP server.

Many processes are started since more than
one HTTP server exists.

All the domains run under the same user profile,
since there is only one server process. However,
each one can be configured under a different
security mechanism. Refer to Chapter 6, “Defending
the IFS” on page 101, for more information.

Each domain can run under its own user
profile, since there is one process per domain.
You can change the user profile on which the
server instance runs, using the ServerUserID
directive.

If you have problems with one domain, and the
recovery procedure implies the HTTP server restart,
all the domains served by the HTTP are restarted.

If you have problems with one domain, the
HTTP server associated with the domain can
be restarted without affecting any other
domain.
Chapter 5. Virtual hosts 73

5.1.3 The way the HTTP server will handle visitor requests
The client submits a request. Based on information found in the header, the HTTP server will
process the request. The HTTP server can use the domain name provided in the header or
the translated IP address, depending on:

� The number of IP addresses your system has

� The way your IP addresses are used by the system

The iSeries server can host intranet and Internet domains. If the iSeries server is used as
a Web server in the Internet, you have to register every domain the system will use, which
means more cost associated with the HTTP implementation.

� The version of the HTTP protocol supported in the environment considering HTTP Version
1.0 and HTTP Version 1.1

The HTTP Server (powered by Apache) and most of the Web client browsers support the
HTTP 1.1 protocol. The differences between the protocols are:

– With the HTTP 1.0 protocol, the HTTP server relies on the Domain Name System
(DNS) server to translate the domain name into the IP address. The HTTP server then
uses the IP address to process the visitor request.

– With the HTTP 1.1 protocol, the domain name is included in the visitor request (as a
header). Therefore, the HTTP server receives the domain name and can process the
request according to the HTTP directives to include into the configuration file.

Because not all the client browsers support the HTTP Version 1.1 protocol, the HTTP server
must be configured in a way that, regardless of the limitations the environment has, each
client request is handled correctly. To accomplish this, the HTTP Server (powered by Apache)
supports three different virtual host implementations:

� IP based: The HTTP server uses the IP address to handle a visitor’s request. It can be
used with HTTP 1.0. For more information about the IP-based implementation, see 5.3,
“Virtual hosts: IP-based implementation” on page 77.

� Name based: The HTTP server includes the domain name into the URL header to handle
visitor requests. This requires HTTP 1.1. To learn more about name-based
implementation, see 5.4, “Virtual hosts: Name-based implementation” on page 89.

� Mass dynamic based: The HTTP server retrieves the domain name provided in the URL
header to process the data requested by the client. This is done dynamically, which means
that the domain does not have to be registered using any <VirtualHost> context in the
HTTP configuration. To learn more about mass dynamic-based implementation, see 5.5,
“Virtual hosts: Mass dynamic implementation” on page 94.

Based on the TCP/IP configuration and the Web client browser capabilities, the configuration
options listed in Table 5-3 are available to create the virtual host implementation.

Table 5-3 Instance creation options

IP address and port Protocol HTTP server configuration approach

One IP address, one port HTTP 1.0 � One HTTP server, with no virtual host configuration,
can be created

One IP address, one port HTTP 1.1 � One HTTP server, without virtual host configuration
� One HTTP server, name based
� One HTTP server, mass dynamic

Any other IP address and
port combination

HTTP 1.0
HTTP 1.1

� One HTTP server, IP-based
� Multiple HTTP servers
� One HTTP server, mass dynamic
74 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

With this information about TCP/IP configuration options, you can design your own virtual
host implementation to serve your domains. The “ideal” virtual host implementation using the
HTTP Server (powered by Apache) includes:

� One HTTP server, using specific virtual host directives in the configuration file
� Using either the IP address or the domain name to serve visitor requests
� Using any of the TCP/IP configuration approaches

Table 5-4 summarizes the HTTP virtual host implementation options. The HTTP Server
(original) column is included only as an aid.

Table 5-4 Virtual host implementation

Although the iSeries server supports the HTTP Server (original) and HTTP Server (powered
by Apache), the HTTP Server (original) configuration is beyond the scope of this book. If you
want to learn more about the HTTP Server (original), concepts and configuration process,
refer to the HTTP Server iSeries Information Center at:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzaie/rzaiemain.htm

Now, let’s focus on the HTTP Server (powered by Apache) implementation and how it works.

5.2 HTTP Server (powered by Apache) virtual host overview
The virtual host implementation with the HTTP Server (powered by Apache) allows one HTTP
server to process the request for one or more domains. Configuring your HTTP server for a
virtual host is a two-stage process:

1. Assign the IP address and port to listen on.
2. Define and configure the virtual host configuration.

Server type HTTP Server (original) HTTP Server (powered by
Apache)

IP interfaces One or multiple IP interfaces One or multiple IP interfaces

Server implementation One or multiple instances One or multiple HTTP server

Server directives Pass Listen
<VirtualHost>
NamedVirtualHost
VirtualDocumentRoot
VirtualScriptAlias

Server variations IP base
Name based

IP-based
Name based
Mass dynamic

Note: The <VirtualHost> implementation is supported since Apache Version 1.1, but it was
rewritten by Apache Version 1.3. The HTTP Server (powered by Apache) supports Apache
Version 2.0.

Note: Whether you use one server instance or multiple server instances, if any of the
domains require the Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
encryption, you have to use specific virtual host directives within the configuration files.
That’s because as the SSL configuration needs to listen on a different port, usually 443, for
encrypted information. For additional information of how to create the SSL/TLS virtual host
directive, see 6.4, “Encrypting your data with SSL and TLS” on page 127.
Chapter 5. Virtual hosts 75

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzaie/rzaiemain.htm

The virtual host configuration is done using the <VirtualHost> context directive. <VirtualHost>
and </VirtualHost> are used to enclose directives that apply only to a particular virtual host.
Almost any configuration directive can be used within the VirtualHost context, with the
exception of directives that control process creation. A typical virtual host configuration looks
similar to the following example:

Listen 10.5.92.28:8002
<VirtualHost 10.5.92.28:8002>
DocumentRoot /itso/itso01/ITSOco
ServerName www.itso01.com
</VirtualHost>

Here 10.5.92.28 is the IP address, 8002 is the port number the virtual host listens on, and
www.itso01.com is the domain name.

In terms of the HTTP Server (powered by Apache) configuration, there are two different
approaches to set up the virtual host:

� Main server with <VirtualHost>: One or more domains are handled by the main server
configuration and the <VirtualHost> context for any specific domain requirements, such as
security.

� Only <VirtualHost>: Use the <VirtualHost> context for domain and leave the main server
with no requests to handle.

With the first approach, unless overridden by <VirtualHost> context, the main server behavior
is inherited by all the virtual hosts. For example, the ServerAdmin and ErrorLog directives are
used by all virtual hosts.

Listen 10.5.92.28:8002
ServerAdmin admin@company.com
ErrorLog /itso/logs/error_log
NameVirtualHost 10.5.92.28:8002

<VirtualHost 10.5.92.28:8002>
DocumentRoot /www/itso01/itsoco
ServerName www.itso01.com
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
DocumentRoot /itso/itso02/itsoco
ServerName www.itso02.com
</VirtualHost>

With the second approach, each virtual host has its own server directive. Therefore, there is
no main server configuration that applies to all virtual hosts.

Listen 10.5.92.28:8002
ServerAdmin admin@company1.com
NameVirtualHost 10.5.92.28:8002

<VirtualHost 10.5.92.28:8002>
DocumentRoot /itso/its01/itsoco

Tip: The <VirtualHost> context defines a specific IP address and port through which
clients access files on your iSeries server. Through the design of your TCP/IP network
(complete with routers, firewalls, physically separated public and private networks, and so
on), you can force certain clients to arrive on a specific IP address or port. An example of
this is intranet traffic on 10.1.1.1 and Internet traffic on 100.1.1.1. In this way, you can treat
these clients differently by adding specific directives within the <VirtualHost> context.
76 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

ServerName www.itso01.com
ErrorLog /itso/itso01/logs/error_log
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
DocumentRoot /www/itso02
ServerName www.itso02.com
ErrorLog /itso/itso02/logs/error_log
</VirtualHost>

Now when a request arrives, the HTTP server uses the IP address and port, or the domain
name it arrived on, to find a matching virtual host configuration. If no virtual host matches the
address and port (or the domain name), the request is handled by the main server
configuration. If it does match a virtual host directive, the HTTP server uses the configuration
of that <VirtualHost> to handle the request.

5.2.1 Additional resources
Here are some additional references that can help guide your study of virtual hosts as
implemented by the HTTP Server (powered by Apache):

� Apache Week Web site

http://www.apacheweek.com/features/vhost

� Apache virtual host documentation

http://httpd.apache.org/docs/vhosts/index.html

5.3 Virtual hosts: IP-based implementation
As the term IP-based indicates, the IP virtual host implementation is based on the way the
HTTP server uses the IP address to serve the domain. If you want to serve multiple domains
using this implementation, the server must have a different IP address or port for each
IP-based virtual host.

You can do this by either
having multiple physical
network connections or
having multiple IP
addresses. Figure 5-3
shows the multiple IP
addresses and multiple
physical connections
concept. TCP/IP
implementation on the
iSeries server supports
the implementation of
multiple IP addresses.
For additional information, refer to TCP/IP Configuration and Reference, SC41-5420, to
create an additional IP interface in one physical connection.

Figure 5-3 Multiple IP addresses and physical connections concept

10.5.92.14:8002

10.5.92.28:8002

10.5.92.14:8002

10.5.92.28:8002

Multiple IP addresses Multiple physical connections

iSeries iSeries
Chapter 5. Virtual hosts 77

http://www.apacheweek.com/features/vhost
http://www.apacheweek.com/features/vhost
http://httpd.apache.org/docs/vhosts/index.html
http://httpd.apache.org/docs/vhosts/index.html

After you identify the IP address for
each domain, you tell the HTTP Server
(powered by Apache) how to handle it
using the <VirtualHost> directive.
IP-based implementation works very
well but requires a dedicated IP
address for every virtual host the
system is going to serve. Usually this
means more cost especially if you must
purchase these additional IP
addresses and domains from an ISP.
The IP-based virtual host
implementation provides an immediate
solution for any browser since the
implementation does not rely on any
specific browser funtionality. Therefore,
it tends to be the preferred method for
many sites to implement virtual
hosting. From the browser point of
view, there is no difference between a
virtual host and a real host. Both have
their own server name and associated
IP address, as shown in Figure 5-4.

IP-based implementation supports
multiple domains using different IP
addresses. This is a good implementation approach if you want to run each domain in a
different network using its own IP address.

5.3.1 IP-based virtual host: Problem scenario
Your company needs to
host two different domains,
www.itso01.com and
www.itso02.com using one
iSeries server. Since your
iSeries server has two
available IP addresses
and the Web browser
clients do not all support
the HTTP 1.1 protocol, you
decide to create an
IP-based virtual host
implementation.
Figure 5-5 shows the problem scenario.

To configure the HTTP Server (powered by Apache) to handle the client requests, you must
identify some of the basic resources used by the HTTP server to route and serve those
domains. Table 5-5 outlines some of the basic resources used by the HTTP server.

<VirtualHost 10.5.92.14:8002>
ServerName www.itso01.com
...
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
...
</VirtualHost>

Listen 10.5.92.14:8002
Listen 10.5.92.28:8002

TCP/IP

www.itso01.com
www.itso02.com

HTTP Server

www.itso02.com

Client with web browser
HTTP 1.0 or 1.1

www.itso01.com

Figure 5-4 IP-based implementation

www.itso01.com
10.5.92.14:8002

www.itso02.com
10.5.92.28:8002

iSeries

Client with browser
HTTP 1.0

Figure 5-5 IP-based virtual host: Problem overview
78 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Table 5-5 Basic Web server resources

With the Web server resources identified and the IP addresses selected, it is time to create
the HTTP configuration that will route each visitor request to the appropriate Web site.

5.3.2 IP-based virtual host: Solution overview
We already know what an IP-based virtual host can do. Now it is time to see the global
configuration steps involved in the process to create, activate, and use the IP-based virtual
host. Setting up basic TCP/IP operations is beyond the scope of this book, since we only
cover the additional steps required to set up the IP-based virtual host. You need to configure
the HTTP Server (powered by Apache) to route www.itso01.com and www.itso02.com
requests to the appropiated IP-based virtual host. Four steps are involved in the IP-based
virtual host implementation as shown in Figure 5-6 (note that the step numbers correspond to
those in Figure 5-6):

1. Add the IP addresses and ports to which your HTTP server will listen. Also add the server
host name.

2. Under the General Server Configuration, add a document root.

3. Create a new directory from which the files will be served.

4. Create an error log file.

Figure 5-6 IP-based configuration steps

Resource ITSO01 ITSO02

ServerName www.itso01.com www.itso02.com

Welcome page index.html index.html

IP address 10.5.92.14:8002 10.5.92.28:8002

DocumentRoot /itso/itso01/itsoco /itso/itso02/itsoco

ErrorLog /itso/itso01/logs/error_log /itso/itso02/logs/error_log
Chapter 5. Virtual hosts 79

Table 5-6 offers a detailed guide to the steps used to create a sample IP-based configuration
on your iSeries server. It shows how to create your first IP-based virtual host implementation.
It includes a column for the HTTP Server (original) for a comparison of configuration
directives. The procedure to create additional virtual host contexts works the same way.

Table 5-6 IP-based configuration overview

5.3.3 IP-based virtual host: Step-by-step implementation
To create the <VirtualHost> context and the server directives for each domain, follow these
steps (note that the step numbers correspond to those in the figures that follow):

1. Start the administration GUI.

2. Select the Manage tab.

3. From the Server list, select the HTTP server you want to work with. For this example, we
select ITSO02. In the Server area list, select Global configuration.

4. To set the IP addresses and ports on which the server will listen, click General Server
Configuration on the left navigation pane.

Original configuration Apache GUI configuration steps Apache final configuration file

� DNS entries to resolve IP
addresses. For example:
www.itso01.com
10.5.92.14:8002

� Pass directives:

pass /itso01 10.5.92.14:8002
pass /itso02 10.5.92.28:8002

Add Listen for any new IP
addresses (2 and 3)

1 # Configuration originally created by
2 Listen 10.5.92.28:8002
3 Listen 10.5.92.14:8002
...
24 <VirtualHost 10.5.92.14:8002>
25 DocumentRoot /itso/itso01/itsoco
26 ServerName www.itso01.com
27 UseCanonicalName Off
28 HostNameLookups off
29 ErrorLog /itso/itso01/logs/error_log
30 LogLevel error
31 <Directory /itso/itso01/itsoco>
32 AllowOverride None
33 order allow,deny
34 allow from all
35 </Directory>
36 Alias /itso01/ /itso/itso01/itsoco/
37 </VirtualHost>
38 <VirtualHost 10.5.92.28:8002>
39 DocumentRoot /itso/itso02/itsoco
40 ServerName www.itso02.com
41 UseCanonicalName Off
42 HostNameLookups off
43 ErrorLog /itso/itso02/logs/error_log
44 LogLevel error
45 <Directory /itso/itso02/itsoco>
46 AllowOverride None
47 order allow,deny
48 allow from all
49 </Directory>
50 Alias /itso02/ /itso/itso02/itsoco/
51 </VirtualHost>
52 ...

Create a virtual host context:
� One for IP address

10.5.928.14:8002 (24)
� Second for IP address

10.5.92.28:8002 (38)

Populate virtual host contexts:
� Add the DocumentRoot for

10.5.92.14:8002 (25).
� Add the ServerName for

10.5.92.14:8002 (26).
� Add the ErrorLog for

10.5.92.14:8002 (29, 30).
� Add the directory (31, 36).
� Add the DocumentRoot for

10.5.92.28:8002 (39).
� Add the ServerName for

10.5.92.28:8002 (40).
� Add the ErrorLog for

10.5.92.28:8002 (43, 44).
� Add the directory (45, 50).
80 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. In the General Server Configuration panel (Figure 5-7), click the General Settings tab.

Figure 5-7 IP-based virtual hosting: Adding listen directives

a. Scroll down until you see the “Server IP address and ports to listen on” heading. Click
Add.

b. Enter the IP address and port on which your server will listen. In this example, we type
10.5.92.28 for the IP address and 8002 for the port. Depending of the values you enter
in the basic server instance creation, there may already be some values under IP
address and port to listen on. Then click Continue.

c. Repeat steps a and b for any additional IP address and ports. Then click OK.

Figure 5-8 IP-based virtual hosting: Port listen directives
Chapter 5. Virtual hosts 81

When you finish, the HTTP configuration file has some new entries, one for each IP
address and the port that you added, as shown in Figure 5-9.

Figure 5-9 IP-based virtual hosting: Listen directives entries

Listen directives
82 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. Create the IP-based virtual host context. Here you create the context where all the
directives related to a specific domain will be located.

a. In the left pane, under Server Properties, click Virtual Hosts.

b. In the Virtual Hosts panel (Figure 5-10), select the IP-based tab.

c. Click Add.

d. Enter the IP address and port. For this example, we enter 10.5.92.14:8002 for the first
domain we are going to serve. Enter the server name and the document root for the
new virtual host. When a request comes in for the specified IP address and port, the
index and other HTML documents are served from this document root directory. For
the first virtual host, we entered /itso/itso01/itsoco.

e. Click Continue.

Figure 5-10 IP-based virtual hosting: General configuration

f. Repeat steps c, d, and e for each IP-based virtual host context that you want to create.
Chapter 5. Virtual hosts 83

g. When you are done, click Apply or OK. Both the administrative GUI and the HTTP
configuration file have new virtual host entries (one for each IP virtual host you
created). Figure 5-11 shows the new virtual hosts entries.

Figure 5-11 IP-based virtual hosting: Virtual hosts entries

7. Populate the IP virtual host context. To populate the <VirtualHost> context, add the
necessary directives within the <VirtualHost> context. Here you add those directives as
specified in Table 5-6 on page 80 for each virtual host.

The administrative GUI has added the DocumentRoot, ServerName, and some default
settings under each <VirtualHost> context you configured. You can add or change as
many HTTP server directives as you want under the <VirtualHost> context.

Note: Clicking Apply saves the changes and remains on the form. Clicking OK also
saves the changes but exits the form.

Tip: There are some directives that you cannot use in a virtual host. To determine
whether a particular directive can be used in the <VirtualHost> context, click the
Manage tab. Under Tools in the left pane, click Directive Index.

Virtual hosts
84 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

8. Create a new directory from which the files will be served. Perform the following steps to
add a directory to the virtual host context.

a. From the Server area list, select the virtual host context you want to work with. For this
example, we select Virtual Host 10.5.92.14:8002.

b. In the left pane, under Tasks and Wizards, select Add a Directory to the Web as
shown in Figure 5-12.

Figure 5-12 IP-based virtual hosting: Add a directory to the Web

c. Follow the wizard to create the new directory entries. This wizard asks for the
information related to the directory where the files are located, as shown in Table 5-7.

Table 5-7 Serving new directory options

If the directory you include does not exist, the wizard creates it for you. If the directory
exists, the wizard uses it. Then you can copy your HTML code, images, etc. into this
directory.

Wizard question Option or value

What type of information do you want to serve from this
directory?

� Static Web pages and files
� Common Gateway Interface (CGI)

Which directory do you want to serve from? Enter the directory name, for example
/itso/itso01/itsoco

What alias do you want to use to access the files in this
directory?

Enter any alias, for example /itso01/
Chapter 5. Virtual hosts 85

After you follow the wizard and enter the information from the table, you should see the
page shown in Figure 5-13.

Figure 5-13 IP-based virtual hosting: Adding a directory to the Web

d. Click Finish.

The administrative GUI and HTTP configuration file now have new entries for the new
directories, as shown in Figure 5-14. In addition to the Directory entry, there is an Alias
entry, since the directory can be a server using an alias.

Figure 5-14 IP-based virtual hosting: Directory and alias directives

Directory Directive

Alias Directive
86 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9. Create an error log file for the first virtual host as described in the following steps. For
administration and problem determination, it is useful to have a different error log file for
each virtual host. This approach may impact the server performance. See 10.2.3,
“Logging” on page 230, for more information.

a. From the Server area list, select the server you want to work with. For this example, we
select Virtual Host 10.5.92.14:8002.

b. From the left pane, under Server Properties, select Logging.

c. In the Logging panel (Figure 5-15), click the Error Logs tab.

d. From the Enable error logging list, select Enabled.

e. In the Error log field, type the error log file you want to use. For this example, we
entered /itso/itso01/logs/error_log. If you want to change the error logging level,
scroll down. From the Logging level list, select the appropriate logging level for your
environment (not shown).

Figure 5-15 IP-based virtual hosting: Adding error logs

f. Click OK.

Tip: For more information about the error logging level, see the HTTP online help.
Chapter 5. Virtual hosts 87

Now, the HTTP configuration file has new entries named ErrorLog and LogLevel for each
<VirtualHost> context. Figure 5-16 shows these new server directives. If you want to create a
different error log file for each virtual host, repeat step 9.

Figure 5-16 IP-based virtual hosting: Error logging directives

You created two <VirtualHost> contexts that will handle the incoming request to two different
domains. Now, it is time to see how they work. Start your server instance and then test it as
explained in the following steps.

1. Select the Manage tab.

2. From the Server list, select ITSO02.

3. Click the Start icon, which is circled in Figure 5-17.

Figure 5-17 Starting the server instance

Tip: If you want to start the server instance with any specific startup parameter, you can
enter the value in the Server startup parameters field. For example, you can use the -t
option to verify the configuration file syntax, such as to find misspelled directory names.
If there are errors, the command will notify you immediately.
88 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. To test the server instance, start a Web browser.

5. Type the URL for your domain. For this example, we type http://10.5.92.14:8002 for the
first virtual host.

6. Type the URL of another domain. For this example, we type http://10.5.92.28:8002 for
the second virtual host.

For both URLs, the index.html page should be displayed.

The IP-based implementation is simple, useful, and easy to configure, but it requires a
dedicated IP address for each virtual host. Since IP addresses can be an expensive Internet
resource, named-based virtual hosting was introduced.

5.4 Virtual hosts: Name-based implementation
The named-based virtual host implementation allows one IP address and TCP/IP port to host
more than one domain. The benefits of using the name-based virtual hosts implementation is
practically unlimited domains, ease of configuration and use, and no additional hardware or
software resources required. Figure 5-18 shows a graphical representation for name-based
virtual hosts.

Contrary to IP-based virtual host
implementation, name-based virtual
hosts rely on client Web browsers
supported by the HTTP Version 1.1
protocol, specifically, the hostname
information header. For name-based
virtual hosting, all the Web clients must
support HTTP 1.1 (or HTTP 1.0 with 1.1
extensions). The latest versions of most
browsers support HTTP 1.1.

Simply stated, name-based virtual
hosting requires that the client requests,
which are being routed to the same
physical interface with the same IP
address, carry the host name in the
HTTP headers so the HTTP server can
distinguish between virtual hosts.

In addition to the <VirtualHost> directive
used by IP-based implementation, the
name-based virtual hosting uses the
NameVirtualHost directive. This
directive specifies an IP address (or
host name that is mapped to an IP
address) that should be used as a target
for name-based virtual hosts as shown
on Figure 5-19. Although www.itso.com can be the host name, we recommend that you
always use an IP address for performance reasons. Any additional directive can (and should)
be placed into the <VirtualHost> context.

Client with Web
browser

HTTP 1.1

<VirtualHost 10.5.92.28:8002>
ServerName www.itso01.com
...
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
...
</VirtualHost>

NameVirtualHost 10.5.92.28:8002
Listen 10.5.92.28:8002

TCP/IP

HTTP Server

www.itso02.com
www.itso01.com

www.itso01.com www.itso02.com

Figure 5-18 Named-based virtual host
implementation example
Chapter 5. Virtual hosts 89

The HTTP Server configuration name base looks like the example in Figure 5-19.

Figure 5-19 NameVirtualHost directive

With the name-based virtual host configuration, make sure the DNS or static host tables are
configured so that one or more domains point to the same IP address. Otherwise, the
requests are rejected.

5.4.1 Name-based virtual hosts: Problem overview
This time, your company needs to host two
different domains, www.itso01.com and
www.itso02.com, but your iSeries server
only has one IP address to serve the
incoming requests. Since the system only
has one IP address, we decided to serve
both domains using name-based virtual host
implementation. This allows the HTTP
server to handle the client request based on
the domain name as shown in Figure 5-20.
All the Web browser clients must support
the HTTP 1.1 protocol.

To configure the HTTP Server (powered by Apache) to handle visitor requests, you must
identify information related to the domain configuration as shown in Table 5-8. With that
information, you can create the name virtual host configuration for the site. The Web server
resources are the same as those used for the IP-based implementation (see Table 5-5 on
page 79). But now, your iSeries server only has one IP address for all incoming client
requests.

Table 5-8 Basic Web server resources

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002
<VirtualHost 10.5.92.28:8002>
ServerName www.itso01.com
DocumentRoot /itso/itso01/itsoco
ErrorLog /itso/isto01/logs/error_log
</VirtualHost>
<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
DocumentRoot /itso/itso02/itsoco
ErrorLog /itso/itso02/logs/error_log
</VirtualHost>

NameVirtualHost
 directive

NameVirtualHost
uses the same IP address

Resource ITSO01 ITSO02

ServerName www.itso01.com www.itso02.com

Welcome page index.html index.html

IP address 10.5.92.28:8002 10.5.92.28:8002

DocumentRoot /itso/itso01/itsoco /itso/itso02/itsoco

ErrorLog /itso/itso01/logs/error_log /itso/itso02/logs/error_log

www.itso01.com
10.5.92.28:8002

www.itso02.com
10.5.92.28:8002

10.5.92.28:8002

iSeries

Figure 5-20 Name-based problem overview
90 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5.4.2 Name-based virtual host: Solution overview
The name-based virtual host configuration allows you to serve both domains using only one
IP address. To accomplish this, you must use the HTTP server directive NameVirtualHost.
This directive tells the HTTP server that you are going to share the IP address, but each
request, depending on the domain name, must be handled independently. The configuration
requires the following steps:

1. Add a name-based virtual host.
2. Include the IP address and port on which the server will listen.
3. Create the name-based virtual host context.
4. Populate the name-based virtual host context.

When the configuration is done, the HTTP configuration file includes the server directives
shown in Table 5-9. We include the original server directives as a reference in case you have
worked with the HTTP Server (original) before.

Table 5-9 Name-based overview

Original Admin GUI steps Apache final configuration file

� DNS with entries that resolve the IP
address

� Pass directives:

Pass /itso01 /itso01/itsoco
www.itso01.com

Pass /itso02 /itso02/itsoco

Add Listen directives for the
IP address and port 2.

1 # Configuration originally created by
2 Listen 10.5.92.28:8002
...
18 NameVirtualHost 10.5.92.28:8002
19 <VirtualHost 10.5.92.28:8002>
20 DocumentRoot /itso/itso01/itsoco
21 ServerName www.itso01.com
22 UseCanonicalName Off
23 HostNameLookups off
24 ErrorLog /itso/itso01/logs/error_log
25 LogLevel error
26 <Directory /itso/itso01/itsoco>
27 AllowOverride None
28 order allow,deny
29 allow from all
30 </Directory>
31 Alias /itso01/ /itso/itso01/itsoco/
32 </VirtualHost>
33 <VirtualHost 10.5.92.28:8002>
34 DocumentRoot /itso/itso02/htdocs
35 ServerName www.itso02.com
36 UseCanonicalName Off
37 HostNameLookups off
38 ErrorLog /itso/itso02/logs/error_log
39 LogLevel error
40 <Directory /itso/itso02/itsoco>
41 AllowOverride None
42 order allow,deny
43 allow from all
44 </Directory>
45 Alias /itso02/ /itso/itso02/itsoco/
46 </VirtualHost>
...

Add a name virtual host 18.

Create the virtual host
context for each domain:
� One for www.itso01.com

19.
� The other for

www.itso02.com 33.

Populate the virtual host
context:
� Add server directives for

the first domain 20, 21,
24, 25, 26, 31.

� Add server directives for
the second domain 34,
35, 35, 38, 39, 40, 45.
Chapter 5. Virtual hosts 91

5.4.3 Name virtual host: Step-by-step implementation
The step-by-step configuration process is similar to the process we followed for the IP-based
configuration. Here, there is an additional step to include for the new server directive
NameVirtualHost.

Here are the global steps used to create the new name-based virtual host context. Follow the
same configuration steps as demonstrated in 5.3.3, “IP-based virtual host: Step-by-step
implementation” on page 80:

1. Start the Administrative GUI.

2. Select the HTTP server you want to work with. From the Server area list, select Global
Configuration.

3. Include the IP address and port on which the server will listen. Under General Server
Configuration, select the General Settings tab. Include the IP address and port for the
virtual host.

4. Add a named virtual host. Under Virtual Hosts, select Name-based. Add the server name.

5. Create the name-based virtual host. Under Virtual Hosts select Name-based. Here you
create the virtual host container for each domain. You also enter the server name and the
document root.

For more server directives, see HTTP Server Documentation Center on the HTTP Server
documentation Web site at:

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

Sometimes it is necesary to
access the same virtual host by
more than one server name.
Additional names can be listed
with the ServerAlias directive.
For example, if you want to
access www.itso01.com also
with the name itso01, you can
use the ServerAlias directive to
accomplish this.

Here, we create an additional
name for the name virtual host
configuration we just created
(the ServerAlias directive also
can be configured using
IP-based implementation). This
time the HTTP configuration file has an additional entry as shown in Figure 5-21.

To add the ServerAlias directive, complete the following steps.

1. From the Server area list, select the virtual host you want to work with. For this example,
we select Virtual Host 10.5.92.28:8002.

2. From the left pane, under Server Properties, select Virtual Hosts.

3. In the Virtual Hosts panel (Figure 5-22), select the Name-based tab.

4. Under Additional names, click Add and type the new alias name. For this example, we
enter itso01.

5. Click Continue.

6. Click OK.

Figure 5-21 ServerAlias entry

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002
<VirtualHost 10.5.92.28:8002>
ServerName www.itso01.com
ServerAlias itso01
DocumentRoot /itso/itso01/itsoco
ErrorLog /itso/itso01/logs/error_log
</VirtualHost>
<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
DocumentRoot /itso/itso02/itsoco
ErrorLog /itso/itso02/logs/error_log
</VirtualHost>

ServerAlias directive
92 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

Figure 5-22 ServerAlias directive

7. Start the HTTP server instance and test the configuration. You can test the new
ServerAlias directive by making a request to the Web site. This time use the server alias
name, which is http://itso01 for this example.

There are many configuration possibilities for the IP addresses and domain names your
system is going to serve. For example, you may have one IP address with multiple domain
names using a default port or specific port with the Listen directive, or multiple IP addresses
with multiple domain names using default port or specific port, and so on. Although the
configuration process is basically the same, there are some server directives you should
include to resolve visitor requests aptly.

For more information about virtual host configurations, see the virtual host examples for
common setups using HTTP Server (powered by Apache) Version 1.3. You can find them on
the Web at:

http://httpd.apache.org/docs/vhosts/examples.html

Tip: The IBM HTTP Server for iSeries Documentation Center offers a good explanation of
the name-based virtual hosting including a sample configuration. Refer to the following
Web site and select e-business and Web serving →HTTP Server →Scenarios →Add
virtual hosts:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzaie/
rzaiemain.htm
Chapter 5. Virtual hosts 93

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzaie/rzaiemain.htm
http://httpd.apache.org/docs/vhosts/examples.html

5.5 Virtual hosts: Mass dynamic implementation
Mass dynamic virtual host
implementation allows you
to add dynamically
domains (host names) by
adding directories of
content. This approach is
based on automatically
inserting the IP address
(or host name) and the
content of the Host:
header into the path name
of the file that is used to
satisfy the request. This
means that using the host name provided in the URL requested by the client, the HTTP
server processes the request as shown in Figure 5-23.

The mass dynamic virtual host implementation differs from IP-based or name-based in the
mechanism used to determine the location of the files you want to serve. Here, the HTTP
server uses the content that the host provides in the URL to serve visitor requests. Basically,
mass dynamic virtual host uses a variable path name (based on the header) to find the file
system structure of the static data that the site is going to serve. Using a mapping mechanism
and the mass dynamic virtual host, the HTTP server converts:

� http://www.itso01.com into /itso/itso01/itsoco
� http://www.itso02.com into /itso/itso02/itsoco

The conversion process is supported by specifiers inspired by the UNIX command printf,
which has a number of formats as shown in Table 5-10.

Table 5-10 UNIX printf specifiers

The client request is processed based on the URL. Which part retrieves the HTTP server
depends on the value you write in the mass dynamic virtual host directives using the
information in Table 5-11.

Table 5-11 Mass dynamic value interpretation

Variable Value

%% Insert a %

%p Insert the port number of the virtual host

%N.M* Insert (part of) the name

* N and M are used to specify substrings of the name. N selects from the dot-separate component
of the name, and M selects characters within whatever N has selected. M is optional and defaults
to zero if it is not present. The dot must be present if and only if M is present.

Value Description

0 The whole name

1 The first part

2 The second part

-1 The last part

-2 The next to the last part

Client with Web browser
with HTTP 1.1 support

iSeries

www.itso03.com

www.itso01.com

www.itso02.com

www.itso0n.com

Figure 5-23 Mass dynamic implementation
94 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Using the specifiers in the Table 5-10 and the values in the Table 5-11, mass dynamic
performs the interpretation process, called directory name interpolation. The interpolation
process requires that the interpolated directory exists into the file system since the Web
server name is translated into physical path names in the iSeries integrated file system (IFS).
For example, if the domain name www.itso01.com is interpolated into /itso/itso01/itsoco, the
directory /itso/itso01/itsoco must exist in the IFS. Otherwise, the request fails.

Mass dynamic implementation is supported by the mod_vhost_alias module. This module
supports the server directives associated with the mass dynamic host implementation. The
directives are:

� VirtualDocumentRoot: Allows you to determine where the server looks for the document
root based on the value of the server name

� VirtualDocumentRootIP: Allows you to determine where the server looks for the
document root based on the IP address

� VirtualScriptAlias: Allows you to specify the directory path where the server looks for
CGI scripts based on the value of the server name

� VirtualScripAliasIP: Allows you to specify the directory path where the server looks for
CGI scripts based on the IP address

5.5.1 Mass dynamic virtual host: Problem scenario
Using one HTTP server to host multiple domains becomes inefficient if the HTTP
configuration file contains many <VirtualHost> contexts that are substantially the same. The
following example illustrates this situation:

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002

<VirtualHost 10.5.92.28:8002>
 ServerName www.itso-01.com
 DocumentRoot /itso/www.itso-01.com/itsoco
 ScriptAlias /cgi-bin/ /itso/www.itso-01.com/itsoco/cgi-bin
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
 ServerName www.itso-02.com
 DocumentRoot /itso/www.itso-02.com/itsoco
 ScriptAlias /cgi-bin/ /itso/www.itso-02.com/itsoco/cgi-bin
</VirtualHost>
and so on...
<VirtualHost 10.5.92.28:8002>
 ServerName www.itso-0n.com
 DocumentRoot /itso/www.itso-0n.com/itsoco
 ScriptAlias /cgi-bin/ /itso/www.itso-0n.com/cgi-bin
</VirtualHost>

2+ The second and all subsequent parts

-2+ The next to last part and all preceding parts

1+ and -1+ The same as 0

Value Description
Chapter 5. Virtual hosts 95

This HTTP server is hosting multiple domains using the name-based implementation. Here,
every <VirtualHost> context has a DocumentRoot and ScriptAlias related to the value in the
ServerName directive. With the advantages of the mass dynamic virtual host, we are going to
interpret the domain name. Based on the interpretation, the HTTP server processes the
request. Using this new implementation, the HTTP configuration file looks like the following
example:

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002
UseCanonicalName Off
...
VirtualDocumentRoot /www/%2/itsoco
VirtualScriptAlias /itso/%0/itsoco/cgi-bin

In the new configuration file, there is no ServerName directive, because this ServerName is
provided by the URL received in the client request. The way the HTTP server identifies the
ServerName provided in the header is based on the value configured to the
UseCanonicalName directive as shown in Table 5-12.

Table 5-12 UseCanonicalName directive

The advantages of the mass dynamic implementation are:

� It adds domains dynamically.
� You do not need to restart the HTTP server to serve a new domain.

The disadvantages of this implementation are:

� There are no individual logs when used with IP or named virtual host implementations.
� There is no tailoring of individuals domains with use of other directives in a virtual host

context.

5.5.2 Mass dynamic virtual host: Solution overview
To understand the advantages of the mass dynamic virtual host, we are going to act as an
ISP. Using the iSeries server and the HTTP Server (powered by Apache), we are going to
create an HTTP server required to host domains dynamically. We need to include the mass
dynamic directives that allow us to process the request for the following domain names:

� www.itso01.com
� www.itso02.com
� www.itso0n.com

We need to find the appropriate interpolation value that allows us to use the header provided
in the URL, retrieve the host name, and process the request. We perform these steps:

UseCanonicalName value Use

Off The HTTP server forms a self-referential URL using the host name
and port supplied by the client.

DNS The HTTP server does a reverse DNS lookup on the server IP
address that the client connected to in order to work out a
self-referential URL.

On The HTTP server uses the ServerName and Port directives to
construct a canonical name for the server.

Not include The HTTP server uses the TCP/IP Domain of the server.
96 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

1. Retrieve the second part of the host name provided in the URL. In our case, this is the
host name.

2. Interpolate the host name into some directory that exists in the iSeries IFS.

3. Serve the documents from that IFS directory.

In our example, the second
part itsoXX is part of the
document root directive as
shown in Figure 5-24.

Using the interpolation values
and the mass dynamic
directives, we must include
the following directive in the HTTP configuration:

VirtualDocumenRoot /itso/itso04/%2

Here /itso/itso04 is the document root of the HTTP server. Also, /%2 retrieves the second part
of the URL request. It is the directory used to process the requests and the place where the
HTML code, images, and so on are located.

The mass dynamic implementation requires some configuration. Some configuration steps
and their results are shown in Table 5-13. Note that the HTTP Server (original) really has no
equivalent function or feature.

Table 5-13 Mass dynamic overview

The following section includes the step-by-step configuration options. Before you create the
mass dynamic configuration, you must identify the specifiers that will interpolate your site
ServerName into the directory structure.

Apache GUI steps Apache final configuration file

Add Listen for the IP address 3. 2 LoadModule vhost_alias_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
3 Listen 10.5.92.14:8004
...
9 UseCanonicalName Off
...
22 VirtualDocumentRoot /itso/itso04/%2
23 <Directory />
24 AllowOverride None
25 order deny,allow
26 deny from all
27 </Directory>
28 <Directory /itso/itso04>
29 AllowOverride None
30 order allow,deny
31 allow from all
32 </Directory>

Add the mass dynamic directives 2 and 22.

Include the UseCanonicalName directive 9

www.itso02.com

/itso/itso04/itso02

www.itso01.com

/itso/itso04/itso01

www.itso0n.com

/itso/itso04/itso0n

Figure 5-24 Mass dynamic problem overview
Chapter 5. Virtual hosts 97

5.5.3 Mass dynamic virtual host: Step-by-step implementation
To create the HTTP Server (powered by Apache) mass dynamic configuration, follow these
steps:

1. Create the HTTP server.

2. To create the mass dynamic entries, select your server from the Server list. We selected
ITSO04. From the Server area list, select Global Configuration.

3. In the left pane, under Server Properties, select Virtual Hosts.

4. In the Virtual Hosts panel (Figure 5-25), click the Mass-dynamic tab.

5. For the How to build a self-referencing URL option, select Do not build self-referencing
URLs - use hostname and port supplied by client.

Remember that this option determines how a URL is constructed. Using the selected
option, the server constructs self-referencing URLs by using the host name and port that
was provided by the user in the browser.

6. In the Root directory for serving files field, type the virtual document root. For this
example, we enter /itso/itso04/%2.

7. Click OK.

Figure 5-25 Mass dynamic configuration
98 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Now, the HTTP configuration file has new entries whose numbers are circled in Figure 5-26.
These entries load the module required to handle the mass dynamic request and the HTTP
server directive that is required to interpolate the request.

Figure 5-26 Mass dynamic module and virtual document root directive

The mass dynamic configuration is ready. To test the configuration, start the HTTP server and
open a client Web browser. In our scenario, a URL of http://www.itso03.com:8004/ results
in the display shown in Figure 5-27.

Figure 5-27 Mass dynamic example: URL http://www.itso03.com:8004/
Chapter 5. Virtual hosts 99

A URL of http://www.itso02.com:8004/ results in the display shown in Figure 5-28.

Figure 5-28 Mass dynamic example: URL http://www.itso02.com:8004/

The advantages of a dynamic virtual host are:

� A smaller HTTP configuration file so the server instance starts faster and uses less
memory

� Easy administration since adding virtual host does not require configuration changes or
server restarts

The mass dynamic example that we showed was based on a URL. However, you can create a
mass dynamic configuration based on the IP address. To do this, you simply turn the
UseCanonicalName from off to DNS and use the mass dynamic virtual host directives related
to the IP, such as VirtualDocumentRootIP.
100 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 6. Defending the IFS

Security is always a main concern on the mind of a Web server administrator. Even though
your server only runs on a private intranet, you should not underestimate the importance of
security planning. Private networks are not exempt from security exposures, as recent waves
of Internet worms that have made their way into intranets have repeatedly proven.

Security comes from a set of constantly updated rules and practices, specifically designed to
protect the availability of your server and the integrity of your data. Figure 6-1 presents a
high-level overview of iSeries server security in a network environment. A network security
layer, encompassing both physical devices and software filters, is the outer protector of your
iSeries fortress.

Figure 6-1 iSeries security in the network environment

Once inside, all requests are filtered by Apache server security. Data is protected through:

� User authentication: The process of verifying a user’s identity through some sort of
credentials. This can either be done through user ID and password combinations or
through an exchange of digital keys (or certificates).

� Access control: Specifically, at this point, we discuss access control from the HTTP
Server (powered by Apache)’s point of view, above the access control that OS/400 also
enforces. This is enforced through a set of policies that define who can access your data,
what kind of authority they are granted, and what actions they are allowed to perform on

6

Client

iSeries server

Network security
layers:

Firewalls
Routers
IP filtering
Proxies
Network
Address
Translation
...

Apache security
directives

Authentication

Encryption

O
S/

40
0

DB
Network
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 101

your data. A server-wide access control policy is enforced on the document root and
propagated upon lower-level contexts unless overridden by local directives or local
configuration files. In addition to that, the server never tries to access system resources for
which explicit access has not been configured.

� Encryption: A mathematical process is used to disguise data to keep unauthorized
parties from gaining access to sensitive information. Data is encrypted into ciphertext
using a unique key and a set of operations that define an algorithm. The strength and
effectiveness of encryption techniques depend on three factors: complexity of the
algorithm, the length of the encryption key, and the overall strength of the key itself. A
compromised key can easily render the strongest encryption techniques completely
useless.

At the core of your system, the renowned strength of OS/400 security is the ultimate defender
of your database and all objects on your server. The main reason is that the HTTP Server
(powered by Apache) is just another job running under the operating system. If the user
profile associated with the instance of the HTTP Server (powered by Apache) or the user
profile associated with an authenticated user does not have access to the object, then nobody
can access that object.

6.1 Access control
Apache enforces access control through configuration directives at server or virtual host level.
The control policies are inherited by lower-level contexts and can only be overridden by either
local configuration directives or access control files (see the following paragraph). The
following directives define access control policies:

� Allow: Specifies which client hosts are allowed access to server resources
� Deny: Specifies which client hosts are not allowed access to server resources
� Order: Controls the order in which deny and allow directives are evaluated
� Require: Indicates which users and groups are allowed access to server resources

Access control files are usually named .htaccess, but you can change the name using the
AccessFileName directive. If used together with AllowOverride directive, .htaccess files can
define context-based configurations. These files are not parsed at startup, but every time a
request is processed. This means that changes to those files do not require a server restart.
You should also be aware that the server looks for .htaccess files in every accessible directory
and subdirectory before it serves a request.

Tip: In general, you should configure AllowOverride None as your root or default behavior.
This causes your HTTP Server (powered by Apache) to not even look for the .htaccess file.

Why? One reason is performance. For every access to your system, OS/400 must perform
extra input/output (I/O) to look for the .htaccess file (even if it is not there), which decreases
performance. Another reason is security. Setting AllowOverride None gives you an extra
padding of security. For example, if a hacker can place their own .htaccess file (with
security-related directives within), they can immediately open your server for attack. This
also applies to local OS/400 user profiles. In many installations, OS/400 user authority to
directories, such as your directories you serve content from, is too high.

This also allows a signed on user to place or modify .htaccess files in a directory. One
place to use the .htaccess file is when you need distributed administration and
configuration. See 4.1, “In-context configuration” on page 60, for a wider discussion of
.htaccess.
102 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The Order directive is sometimes confusing to new Apache administrators. It is worth
spending your time reading Apache text books, Web sites, or help text via the HTTP Server
(powered by Apache) to understand how it works. For example, you may have a configuration
file such as:

Order deny,allow
 Deny from all
 Allow from somehost

This means (in order of precedence):

1. Allow is the default and rules if no Deny or Allow was specified.

2. To deny, you must explicitly specify the clients that you want to deny. In this example, we
are saying that we want to Deny all clients (by Internet Protocol (IP) address).

3. Allow overrides the Denied clients. In this case, the client coming from the IP address
behind somehost is the only client allowed to this directory.

6.2 Basic authentication
Basic authentication is a popular means of verifying a user’s identity before granting access to
a protected resource or realm. Figure 6-2 illustrates the authentication process. The process
flow is explained here (note that the step numbers correspond to those in Figure 6-2):

1. The client requests access to a protected resource.

2. The server replies with HTTP status code 401 (see 13.2.8, “HTTP status codes” on
page 352) and a special header, WWW-Authenticate, that contains the name of the
protection realm.

3. The client interprets the WWW-Authenticate and presents the user with a login prompt,
requesting valid credentials for the realm.

4. The user’s credentials are sent back to the server for validation.

5. Depending on the method you choose, the credentials are checked against OS/400 user
profiles, a validation list, or Lightweight Directory Access Protocol (LDAP) entries.

6. If the user’s credentials can be verified, the client is granted access to the protected
resource. Otherwise, an error message is returned in the browser window.

Tip: You must enter the keyword deny,allow or allow,deny exactly as shown. No space is
found between the two words since this is seen by the Apache server as a single keyword.

Even the Order
directive is
implemented
as a series of
default
behaviors that
are later
overridden.

Important: If the authentication request is sent via an HTTP request, and not an
HTTPS request, the user credentials are only encoded, but not encrypted. The
encoding is done via Base64 encoding and can be decoded easily through freely
available decoding programs. We strongly recommend that you use a Secure Sockets
Layer (SSL) protected (HTTPS protocol) session for authentication.
Chapter 6. Defending the IFS 103

Figure 6-2 The 401 challenge process

Table 6-1 introduces the three different types of basic authentication that are available on the
HTTP Server (powered by Apache):

� See 6.2.1, “Authentication by OS/400 user profiles” on page 105
� See 6.2.2, “Authentication by a validation list” on page 108
� See 6.2.3, “Authentication by LDAP entries” on page 113

We detail the steps to configure the three different authentication methods in the sections that
follow. In the end, all three methods have more in common than they have differences.
Table 6-1 demonstrates this. This table reads top down. By following your goals, you can use
the graphical user interface (GUI) configuration steps to create the Apache final configuration
file directives as listed.

You must have the directives on lines 34, 36, 38, and 43. Your choices within these
configuration directive lines are common regardless of the basic authentication goal you
choose. That is, you can change the name of the realm defined by AuthName to something
other than MyRealm, but this does not affect your goal of basic authentication.

The directives for lines 41 and 42 in Table 6-1 allow you to make choices for either a user
access policy and a user validation policy.

Web
browser

get as20:2001

iSeries

UserName
Password

Web content

Authentication via:
OS/400 user ID and
password
LDAP entry
Validation list of
Internet users

401

1

3
2

5

6

4

104 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Table 6-1 Getting started with basic authentication

6.2.1 Authentication by OS/400 user profiles
OS/400 user profiles can be used for authentication. The advantage of this implementation is
that is does not require you to perform additional configuration steps or to maintain a separate
user database. User profiles with limited capabilities and no signon access, and *SECOFR
class users (although this practice is highly discouraged), can be used for this purpose.

Goal GUI configuration steps Apache final configuration file
directives

Locate and select the context
to protect 34

Select a context from the menu on the left. 34 <Directory /ITSO/itso06/
itsoco/Projects/Archives>
35 AllowOverride None
36 AuthName MyRealm
37 ProfileToken off
38 AuthType Basic
39 order allow,deny
40 allow from all

Create a protection setup 36 Choose Authentication name or realm

Choose a user access policy.
The server will access this
resource as:

Select a User name to process requests
from the list, or enter one of your choice. The
server always swaps to this profile when
serving content from this resource.

� The webmaster
(QTMHHTTP) 41a

Select Default server profile. 41a UserID %%SERVER%%

� The validated user profile
41b

Select User profile of the client. 41b UserID %%CLIENT%%

� A specific user profile 41c Select - Other - and enter a valid OS/400
profile in the blank field

41c UserID gbanchelli

Choose a user validation
policy. User credentials can
be validated by:

Select one of the options using the radio
buttons.

� Validation list 42a Go to 6.2.2, “Authentication by a validation
list” on page 108, for details.

42a PasswdFile qgpl/itso06

� OS/400 user profiles 42b Go to 6.2.1, “Authentication by OS/400 user
profiles” on page 105, for details.

42b PasswdFile %%SYSTEM%%

� LDAP entries 42c Go to 6.2.3, “Authentication by LDAP entries”
on page 113, for details.

42c PasswdFile %%LDAP%%

Enforce security 43 Under Authentication and Security, select
Control Access. Select All authenticated
users and click Apply.

43 require valid-user
44 </Directory>

Tip: Access validation through OS/400 user profiles is the simplest and, under certain
circumstances, least secure way to restrict access to your data. While acceptable in
non-critical environments, we do not recommend this kind of authentication alone on public
networks such as the Internet, where its simple Base64 encoding and the use of actual
user profiles and passwords can compromise the security of your system. A good choice
for protecting your data is to use SSL. See 6.4, “Encrypting your data with SSL and TLS”
on page 127, for an example.
Chapter 6. Defending the IFS 105

Implementation
Follow these steps to create a configuration that authenticates a remote user by using
OS/400’s user IDs and passwords as shown in Figure 6-3:

1. From the Server area list, select the context that you will protect.

2. In the left pane, under Server Properties, select Security.

3. In the right panel, select the Authentication tab.

4. On the Authentication page, complete these steps:

a. Select OS/400 user profiles.

b. Specify a significant name for this realm. It’s not only a unique identifier for this
protection setup, but also a hint for the user to identify the type of authentication
enforced.

c. Select the client authority that will perform access to this resource:

• Enabled: When accessing the resource, the server temporarily switches to the user
profile of the authenticated user and performs access under this user profile. A
special value %%CLIENT%% is used on the UserID directive. The UserID directive
overrides the ServerUserID directive.

• Disabled: Access to the protected resources is, by default, performed under the
QTMHHTTP profile for static pages and QTMHHTP1 profile for CGI programs
unless the ServerUserID directive specifically names another user profile.

d. If Disabled is selected for the client authority, enter the profile name that the server will
use to access it. You must enter a user profile name. No special values are allowed.

e. Click Apply to save your settings.

Tip: When dealing with OS/400 user profiles, remember that users with *ALLOBJ
authority are not subject to any access restriction on the file system, not even an
explicit *EXCLUDE.
106 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 6-3 Basic Authentication

5. Select the Control Access tab (Figure 6-4).

6. On the Control Access page, complete these steps:

a. Select All authenticated users (valid user name and password). This adds the
require valid-user directive to your configuration and enforces the access restriction.

b. Click Apply to save your settings.

Figure 6-4 Control Access
Chapter 6. Defending the IFS 107

c. Click OK to close the Security page.

7. Restart your server instance. Point your Web browser to the context that you just
protected. You are then prompted for an OS/400 user name and password.

6.2.2 Authentication by a validation list
Protection by a validation list does not require the use of actual OS/400 profiles and
passwords, reducing risk to your iSeries server in the event that a user ID is compromised.
Like all other forms of basic authentication, passwords are sent Base64 encoded. That is,
they are sent “in the clear”.

Implementation
First create a validation list for your Internet or intranet users. You use the Create Validation
List (CRTVLDL) command as shown in Figure 6-5.

Figure 6-5 Create Validation List display

The default public authority on our newly created validation list is set to *EXCLUDE. While
this is good for security, it also prevents the webmaster from accessing it for authentication
purposes. Use the Grant Object Authority (GRTOBJAUT) or the Edit Object Authority
(EDTOBJAUT) CL commands to grant the webmaster *CHANGE authority for the validation
list as shown in Figure 6-6. This authority is needed to manage validation list users. The user
profile under which the HTTP server runs needs *USE authority to the validation list to
perform the user authentication.

Note: You can further grant access based on the IP address from which the request
originates. In this case, you have to select the options in the Control access based
on where the request is coming from and the Control access policy sections.
Selections in these sections must also be made when you inherit settings from a
parent context.

 Create Validation List (CRTVLDL)

Type choices, press Enter.

Validation list WEBUSERS Name
 Library QGPL Name, *CURLIB
Text 'description' WebUsers protection realm

 Additional Parameters

Authority *EXCLUDE Name, *EXCLUDE, *USE...

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
108 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 6-6 Edit Object Authority

Figure 6-7 illustrates the final EDTOBJAUT display after authority on the object is successfully
changed. Notice that the *ALL authority given to the original owner is no longer needed once
the list is set up.

Figure 6-7 Checking webmaster authority

 Edit Object Authority (EDTOBJAUT)

 Type choices, press Enter.

 Object > WEBUSERS Name
 Library > QGPL Name, *LIBL, *CURLIB
 Object type > *VLDL *ALRTBL, *AUTL, *BNDDIR...

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
 Function key not allowed.

 Edit Object Authority

Object : WEBUSERS Owner : BARLEN
 Library : QGPL Primary group . . . : *NONE
Object type : *VLDL

Type changes to current authorities, press Enter.

 Object secured by authorization list *NONE

 Object
User Group Authority
BARLEN *ALL
WEBMAST1 *CHANGE
QTMHHTTP *USE
*PUBLIC *EXCLUDE

 Bottom
F3=Exit F5=Refresh F6=Add new users F10=Grant with reference object
F11=Display detail object authorities F12=Cancel F17=Top F18=Bottom
Chapter 6. Defending the IFS 109

Now add users to this validation list using the GUI as shown in Figure 6-8:

1. Click the Advanced tab and then the Internet Users and Groups subtab.
2. In the left pane, under Internet Users and Groups, select Add Internet User.
3. In the Add Internet User panel, complete the fields as shown in Figure 6-8 and click Apply.

Figure 6-8 Add Internet User
110 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. As shown in Figure 6-9, click the Manage tab and then the HTTP Servers tab.
5. From the Server area list, select the context you will protect.
6. In the left pane, select Security.
7. In the right panel, select the Authentication tab.

8. On the Authentication page, complete these tasks:

a. Under User authentication method, select Internet users in validation lists.
b. Enter a realm for the browser authentication prompt.
c. Under Validation lists, click Add.
d. In the Validation list table, enter the library and validation list name.
e. Click Continue.

Figure 6-9 Authentication by Validation List: Basic authentication
Chapter 6. Defending the IFS 111

f. Scroll down and specify a user profile to process requests as shown in Figure 6-10.

Specify a user name to process requests. In the case where you are using a validation
list to verify the identity of the remote user, the authenticated user has no connection to
an OS/400 user profile. Therefore, you cannot process the request under the client
authority. However, you can enter a user profile name for OS/400 user profile to
process requests. This user must have proper authority to the protected resources. If
this parameter is left blank, the default server profile QTMHHTTP is used to access
static content and QTMHHTP1 for CGI programs.

Click Apply.

Figure 6-10 Authentication by Validation List: Specifying a user name
112 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9. In the Security panel (Figure 6-11), select the Control Access tab.

10.On the Control Access page, complete these tasks:

a. Select All authenticated users (valid user name and password).
b. Click OK to save the configuration. This activates the protection setup.

11.Restart your server instance. Point your Web browser to the context you just protected.
You are then prompted for a user name and password. Use the one that you can entered
into the validation list.

Figure 6-11 Control Access

6.2.3 Authentication by LDAP entries
The LDAP authentication provides access to a centralized X.500 directory where information
about users, networks, and systems (actually any kind of information) is stored.

Prior to reading this section, you should:

� Be familiar with basic LDAP concepts and configuration

� Have an LDAP server already configured on your system, or have administrator access to
an external LDAP server

If you have not met one or both these requirements, refer to the iSeries Information Center for
documentation about your current OS/400 version and release under Networking →TCP/IP
applications, protocols, and services →Directory Server (LDAP). You can find the
Information Center on the Web at:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

Tip: In V5R1, LDAP was included in the OS/400 base, but it still displays as option 32 for
backwards compatibility with all applications. Starting with V5R2, 5722-SS1, option 32 is
no longer displayed when using GO LICPGM, option 10 (Display installed licensed
programs). LDAP in your iSeries is always available for any application use.
Chapter 6. Defending the IFS 113

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

The Information Center has detailed information about LDAP concepts and configuration and
pointers to external resources. Remember that basic LDAP configuration on the iSeries is
done by using iSeries Navigator. You can perform additional server configuration using the
IBM SecureWay® Directory Management Tool up to OS/400 V5R2 and the IBM Tivoli® Web
Administration tool in i5/OS V5R3.

We highly recommend that you refer to the IBM Redbook Implementation and Practical Use
of LDAP on the IBM Eserver iSeries Server, SG24-6193.

Managing the directory
Starting with i5/OS V5R3, a new tool has been introduced to manage the LDAP directory. It is
called IBM Tivoli Directory Server Web Administration Tool. This is a browser-based tool that
is launched from the iSeries Tasks page. For information about the Directory Management
Tool that was used in V5R1 and V5R2, see the IBM Redbook Implementation and Practical
Use of LDAP on the IBM Eserver iSeries Server, SG24-6193.

After you complete installation, start the application server system instance, and add your
i5/OS system to the list of servers to be managed by the administration tool, follow these
steps:

1. Open a Web browser and enter the following URL to start the iSeries Tasks page:

http://iseries_hostname:2001

2. Click IBM Directory Server for iSeries.

Tip: Starting with V5R2, OS/400 heavily uses LDAP Directory Services via several OS/400
services such as Enterprise Identity Mapping (EIM), Quality of Service (QoS), and HTTP
server. The base version of V5R2 shipped with an LDAP directory services version with a
function set that corresponds to IBM SecureWay Directory Server V3.2. As of 16 May
2003, new PTFs were released that implement the IBM Directory Server V4.1 functionality
into OS/400 V5R2. You can find the PTF numbers and detailed description of the new
support on the Web at:

http://www-1.ibm.com/servers/eserver/iseries/ldap/whatsnew41.htm

These PTFs are not on any cumulative (CUM) package yet, so you must order them
individually. Plus a new Directory Management Tool for V4.1 is available for download.

The LDAP directory server in i5/OS V5R3 is based on the IBM Directory Server V5.1.

Important: The IBM Tivoli Directory Server Web Administration Tool runs as a WebSphere
application under the WebSphere system instance. The instance is plugged in to the HTTP
Server *Admin instance. To enable the WebSphere system instance, you need to modify
the General Server Configuration properties of the *Admin instance and select Yes for
starting the system application server instance when the Admin server is started. For more
information about starting the Web administration tool, refer to the iSeries Information
Center under Networking →TCP/IP applications, protocols, and services →Directory
Server (LDAP) →Get started → Web administration at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm
114 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www-1.ibm.com/servers/eserver/iseries/ldap/whatsnew41.htm
http://www-1.ibm.com/servers/eserver/iseries/ldap/whatsnew41.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm

3. On the Tivoli Directory Server Web Administration Tool login page (Figure 6-12), select the
system your LDAP server runs on and enter your directory server’s credentials. The
distinguished name (DN) must have the authority to manage entries in the directory. You
can use the administrator DN for this task. By default, this DN is cn=administrator.

Figure 6-12 Tivoli Directory Server Web Administration Tool Login page

Click Login to bind to the directory server.

4. Group users that need to access a protected resource. The IBM Directory Server V5.1
provides realms and groups to achieve this goal. From the left navigation bar, expand
Realms and templates.

5. Click Add user template.

6. In the Add user template panel (Figure 6-13), you can create a user template to provide
defaults for new users that are added to a realm. Enter a template name and the parent
DN that stores the new entry. Click Next at the bottom of the page.

Figure 6-13 Tivoli Directory Server Web Administration Tool: Adding a user template

Note: You can only manage LDAP directory servers that have been added to the list of
managed servers via the Directory Server Web Administration Tool console. By default,
the console can be accessed via the user name superadmin with the password secret.
We recommend that you the change the password for the administrator.
Chapter 6. Defending the IFS 115

7. Select the object classes you want to assign to the template. In this case, only the
inetOrgPerson structural object class is selected. Click Next to continue.

8. In the Edit tab panel, select the Tab name, which in this example is Required. Then click
the Edit button.

9. Now you see the panel shown in Figure 6-14. If necessary, edit the template defaults for
the Required attributes. In our example, we added the uid and userPassword attributes.
Click Finish to create the template.

Figure 6-14 Tivoli Directory Server Web Administration Tool: Editing attributes

10.In the left navigation pane, click Add realm to create a new realm for the users who want
to access the protected resource.

11.In the Add realm panel (Figure 6-15), enter a name and a parent DN that will store the new
entry as a leaf in the directory information tree (DIT). Click Next at the bottom of the page.

Figure 6-15 Tivoli Directory Server Web Administration Tool: Adding a realm
116 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

12.Select the user template that you just created and click Finish to create the realm.

13.Create a user entry to use for authentication for the protected HTTP server resource.

a. In the left navigation bar, expand Users and groups.
b. Click Add user.
c. In the Select the realm panel (Figure 6-16), select the realm.
d. Click Next at the bottom of the page.

Figure 6-16 Tivoli Directory Server Web Administration Tool - Adding a user

e. In the Naming attribute panel (Figure 6-17), fill in the attribute values. In this example,
the user template asks only for the required attributes sn (last name), cn, uid (user
identifier), and userPassword (password for authentication).

Figure 6-17 Tivoli Directory Server Web Administration Tool: Naming attributes
Chapter 6. Defending the IFS 117

f. Click Finish to create the new user entry.

Implementation
Now that the LDAP server is configured and contains a user entry, you are ready to configure
your HTTP Server (powered by Apache) to use basic authentication and LDAP:

1. From the Server area list, select the context that you want to protect.

2. In the left pane, under Tasks and Wizards, select LDAP Configuration.

3. In the LDAP configuration panel (Figure 6-18), enter the directory path to your LDAP
configuration file. The file name does not have to exist, but you need to specify an existing
path when you create a new file. Click Next.

Figure 6-18 Basic Authentication with LDAP: LDAP configuration file

4. In the LDAP Configuration File panel (Figure 6-19), select the General Settings tab.

5. On the General Settings page, complete these tasks:

a. Enter your LDAP server description.

b. Under LDAP server location, enter the host name or IP address, the port number, and
the search base DN. The search base DN refers to the position in the DIT where you
store the Web users.

c. Scroll down and select Basic Authentication(DN and password).

Important: The userPassword attribute is a special attribute in a LDAP directory. It
can store the password in a protected fashion. The protection method is configured
via the IBM Directory Server properties in iSeries Navigator. The Password tab
contains the password encryption level and properties for the password policies.

Tip: To avoid path errors, browse for the file and let the system enter the name for you.
118 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

d. Enter your Server DN and server password.

The HTTP server uses this DN to bind to the LDAP directory server. The DN must have
the authority to search and read the directory portion that holds the user entries. This
includes read authority of the userPassword attribute. Even though most users enter
the directory administrator (cn=administrator) as the DN, it could be any other DN as
long as it has the proper permissions.

e. Click Apply and then click OK to save the general settings.

Depending on the object classes you used for your user entries, you may need to
modify the search filter on the User Authentication tab. By default, the search filter is:

(&(objectclass=person)(|(cn=%v1* %v2*)(uid=%v1)))

This filter causes the HTTP server to search for entries that belong to the person object
class and where the value entered at the login prompt matches a common name or uid
in the specified search base. The specified object class can also be an inherited class.

Figure 6-19 Basic Authentication with LDAP: LDAP server description

6. In the left pane under Server Properties, select Security.

7. Select the Authentication tab.

8. On the Authentication page (Figure 6-20), complete these tasks:

a. Select Use user entries in LDAP server.
b. Enter a name for the realm.
c. Enter the LDAP configuration file.
d. Scroll down and specify a user profile to process requests.

Specify a user name to process requests. In a case where you are using LDAP
directory entries to verify the identity of the remote user, the authenticated user has no
connection to an OS/400 user profile. Therefore, you cannot process the request under
the client authority. However, you can enter a user profile name for the OS/400 user
profile to process requests. This user must have proper authority to the protected
resources. If this parameter is left blank, the default server profile QTMHHTTP is used
to access static content and QTMHHTP1 for CGI programs.

e. Click Apply to save the settings.
Chapter 6. Defending the IFS 119

Figure 6-20 Basic Authentication with LDAP: User entry selection

9. Click the Control Access tab.

10.On the Control Access page, complete these tasks:

a. Select All authenticated users (valid user name and password).
b. Click OK to save the changes and close the Security window.

11.Restart your server instance. Point your Web browser to the context you just protected.
You are then prompted for a user name and password. Use the one that you entered into
the LDAP directory.

6.3 Authenticating users via Kerberos
Kerberos is a network authentication protocol that was developed by the Massachusetts
Institute of Technology (MIT) as part of their Athena project. It was designed to provide strong
authentication for client/server applications by using secret-key cryptography. Kerberos is a
ticket-based authentication system that provides an alternative to user/password or X.509
certificate authentication. Since Kerberos uses additional ports for its IP services, such as the
Key Distribution Center (KDC), it is not always feasible to use it for authentication in an
Internet environment. It is rather useful to provide single signon (SSO) capabilities for an
intranet environment.

For more information about the Kerberos authentication protocol, refer to the MIT Web site at

http://web.mit.edu/kerberos/

Important: You can only use Kerberos authentication for resources that are protected by
the HTTP Server (powered by Apache). Proxy authentication with Kerberos is not
supported due to limitations in Web browsers.
120 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://web.mit.edu/kerberos/

With the HTTP Server (powered by Apache), you can use Kerberos on its own or in
conjunction with EIM to authenticate Web users to the Web server as illustrated in
Figure 6-21.

Figure 6-21 HTTP Server (powered by Apache) Kerberos authentication

The Kerberos authentication process in Figure 6-21 follows this flow:

1. The browser accesses a URL that is protected by the Kerberos authentication mechanism.

2. The HTTP server returns a 401 (authorization required) response, causing the browser to
obtain credentials. Opposed to basic authentication where the authentication header
contains the value basic, the HTTP header now contains the www-authenticate:
negotiate value. The negotiate option is used for Kerberos authentication.

3. Assuming that the workstation is already successfully authenticated to the KDC, the
browser application requests a service ticket for the HTTP server from the KDC. The
service principal for the HTTP server is HTTP/hostname@KERBEROS_REALM.

4. The KDC issues a service ticket and returns it in the Kerberos TGS reply to the
workstation.

5. The browser sends the Kerberos service ticket embedded in the HTTP request to the
HTTP server. The HTTP server validates the service ticket. If you configured the HTTP
server to process the client request under a specific user profile (not under the client
profile), the authentication is complete.

6. If you selected the configuration option to process the client request under the client user
profile, the authentication process continues with this step. Since the user principal in the
service ticket does not relate to an OS/400 user profile, the HTTP server performs an EIM
lookup operation to the EIM domain controller. Specifically, the HTTP server asks for a
target association in the OS/400 user registry for the given Kerberos user principal in the
Kerberos user registry.

7. The EIM domain controller looks up and returns the target association, which corresponds
to an OS/400 user profile, to the HTTP server. The HTTP server, if configured that way,

HTTP Server

Kerberos KDC

http://hostname/prot/protected.html
1

7

3 2
401 - www-authenticate: negotiate

KR
B

_T
G

S_
R

EP

EI
M

 lo
ok

up
 s

ou
rc

e-
ta

rg
et

5

4

EIM domain
controller

Kerberos service ticket
6

KR
B

_T
G

S_
R

EQ

EI
M

 re
sp

on
se

 ta
rg

et
Chapter 6. Defending the IFS 121

switches to the target OS/400 user profile and performs resource access under this user
profile.

6.3.1 Getting ready for Kerberos authentication
Using Kerberos in combination with EIM for HTTP server authentication requires some
prerequisites. The configuration steps in 6.3.2, “Implementing Kerberos Web authentication”
on page 122 assume that:

� Kerberos and EIM support availability on the iSeries server are as follows:

– HTTP Server for iSeries (powered by Apache) V5R2 with group PTF SF99098 level 13
(December 2003)

– HTTP Server for iSeries (powered by Apache) V5R3

� The client operating systems must support Kerberos authentication. The list of supported
clients includes:

– Windows 2000 Professional
– Windows XP
– Linux clients

� At the time this redbook was written, the following Web browsers supported Kerberos
authentication:

– Microsoft Internet Explorer 5.5 and later
– Mozilla 1.7 for UNIX or Linux
– Mozilla 1.8 and Firefox 1.0 for Windows (still an Alpha version at the time of writing this

book)

� The configuration presented in this chapter assumes that a Kerberos environment already
exists and the that the iSeries server and the workstation are already configured to be
members of that Kerberos realm.

� If you want to access protected resources under the client user profile (user profile value
%%CLIENT%%), you also need to set up an EIM domain. For this implementation, the
EIM domain controller is already set up.

6.3.2 Implementing Kerberos Web authentication
The following steps guide you through the setup of the HTTP server for Kerberos
authentication. The example also shows the necessary steps to enable Kerberos
authentication for Microsoft Internet Explorer 6. The examples assume that the Kerberos
realm name is ISERIES.IBM.COM and the iSeries host name is tarheels.barlen.net.

Preparing the Kerberos environment
Perform the following steps to add the Kerberos service principal for HTTP Kerberos
authentication.

Note: The workstation user in not prompted for any user input during the authentication
process. Kerberos authentication is totally transparent to the user.

Note: For an excellent source of information about setting up SSO with Kerberos and EIM
in a Windows and iSeries environment, see Windows-based Single Signon and the EIM
Framework on the IBM Eserver iSeries Server, SG24-6975.
122 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

1. If have not already configured your OS/400 Kerberos environment for the HTTP service,
start iSeries Navigator and connect to the system that will host your HTTP server
instance.

2. Expand Security →Network Authentication Service and click Configure Network
Authentication Service from the list of Security Tasks in the lower pane of the iSeries
Navigator window.

3. The Network Authentication Service (NAS) setup wizard starts. Enter the correct values
for your Kerberos realm, the KDC, and the password server. If your KDC is a Windows
domain controller, select the Microsoft Active Directory is used for Kerberos
authentication option.

4. Continue with the wizard. Select HTTP Server powered by Apache and click Next.

5. In the Create HTTP Keytab Entry window (Figure 6-22), enter a password for the HTTP
service principal keytab entry. Click Next.

Figure 6-22 Network Authentication Service wizard: HTTP keytab entry

Depending on the selected wizard options, one or two keytab entries are added for the
HTTP service.

6. Complete the wizard. The wizard adds a keytab entry to the keytab file
/QIBM/UserData/OS400/NetworkAuthentication/keytab/krb5.keytab. The entries in this file
are used by applications that are processed with Kerberos during Kerberos authentication.

Note: If you do not see the HTTP server option in the wizard, you may experience one
of the following problems:

� You have an older version of iSeries Navigator installed. You need to upgrade
iSeries Navigator to see this option.

� You are connected to a V5R2 system that is not aware of HTTP Server Kerberos
support.

Alternatively, you can manually add the keytab entry by starting QShell from a 5250
session and enter the following commands:

keytab add -p password HTTP/tarheels.barlen.net@ISERIES.IBM.COM
keytab add -p password HTTP/TARHEELS.BARLEN.NET@ISERIES.IBM.COM
Chapter 6. Defending the IFS 123

The OS/400 preparation for HTTP Kerberos authentication is completed. In the remaining
steps, you need to register the HTTP service principal to the KDC database. An outline of the
configuration steps are included for a Windows 2000 domain controller and the i5/OS KDC.

Adding a service account to Windows Active Directory
The following steps assume that your Windows domain controller is the KDC for your network.
They also assume that you selected the NAS wizard option that Microsoft Active Directory is
used for Kerberos authentication.

1. Copy the batch file that the NAS wizard created to your Windows domain controller.

2. In the Windows domain controller, start a command prompt and run the batch file.

The batch file creates a service account and maps the HTTP service principal to the new
service account. If you selected the NAS wizard option to not store the password in the
batch file, you are prompted on the Windows domain controller to enter a password. This
password must match the password that you entered in the NAS wizard for the HTTP
service keytab entry.

Adding service accounts to the i5/OS KDC
If you use the i5/OS KDC as your primary Kerberos authentication service in your network,
perform the following steps to add the HTTP service principals to the KDC database.

1. Within a 5250 command prompt on the system that runs the KDC, start the OS/400
Portable Application Solutions Environment (OS/400 PASE) shell with the command:

CALL QP2TERM

2. Start the KDC administration interface with the command:

/usr/krb5/sbin/kadmin.local

3. Add the service principals with the following kadmin commands:

addprinc -pw password HTTP/tarheels.barlen.net@ISERIES.IBM.COM
addprinc -pw password HTTP/TARHEELS.BARLEN.NET@ISERIES.IBM.COM

The password must match the password that you entered for the HTTP service keytab
entry in the NAS wizard.

Setting up the HTTP server for Kerberos authentication
Use the following setup to configure the HTTP server to protect a resource and authenticate
the users via Kerberos.

1. From the Server area list, select the context that you will protect.

2. In the left pane, under Server Properties, select Security.

3. In the right panel, select the Authentication tab.

Note: Two commands in the batch file, by default, are not installed on a Windows
server. One command is the ktpass command. This command is part of the Windows
Support Tools and must be installed separately from the Windows installation CD. The
second command is setspn, which is part of the Windows 2000 Server Resource Kit. It
can also be downloaded from the Microsoft Web site.
124 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. On the Authentication page, complete these tasks:

a. Select Kerberos.

b. Select the client authority that you will use to perform access to this resource. The
available options are:

• Enabled: When accessing the resource, the server temporarily switches to the user
profile of the authenticated user and performs access under this user profile. A
special value %%CLIENT%% is used on the UserID directive. The UserID directive
overrides the ServerUserID directive. This option uses EIM to provide the source to
target identity mapping.

• Disabled: Access to the protected resources is, by default, performed under the
QTMHHTTP profile for static pages and QTMHHTP1 profile for CGI programs
unless the ServerUserID directive specifically names another user profile. Using
this option, EIM is not used in the authentication phase. Only the Kerberos service
ticket is needed to complete the authentication. Access to the protected resource is
performed under the hardcoded user profile.

c. If Disabled is selected for the client authority, enter the profile name that the server will
use to access this resource. You have to enter a user profile name. No special values
are allowed.

d. Click Apply to save your settings.

Figure 6-23 Authentication with Kerberos

5. Click the Control Access tab.

Tip: When dealing with OS/400 user profiles, always remember that users with
*ALLOBJ authority are not subject to any access restriction on the file system, not even
an explicit *EXCLUDE.
Chapter 6. Defending the IFS 125

6. On the Control Access page, follow these steps:

a. Select All authenticated users (valid user name and password).
b. Click OK to save the changes and close the Security window.

7. Restart your server instance.

Enabling Kerberos authentication for the Microsoft Internet Explorer
By default, Kerberos authentication is turned off for the Internet Explorer browser. The
following steps enable Kerberos authentication for the browser.

1. Start Internet Explorer.

2. In the browser action bar, click Tools and then Internet Options....

3. In the Internet Options window (Figure 6-24), complete these tasks:

a. Click the Advanced tab.

b. Scroll down to the security section and select the Enable Integrated Windows
Authentication (requires restart) option.

c. Click OK to save the changes and restart your browser.

Figure 6-24 Internet Explorer - Internet Options

To verify Kerberos authentication with your browser, you must log into a Kerberos realm. If
you selected the option to perform access to the protected resource under the client’s
authority, you must also have an EIM identifier with the corresponding source and target
associations defined in the EIM domain controller.

Point your browser to the protected resource. You can open the HTTP server access log to
see which user principal was used to authenticate to the server. Example 6-1 shows an
access log authentication message.

Example 6-1 HTTP server access log

172.25.10.142 - - [09/Sep/2004:15:31:33 +0200] "GET /kerbprot/ HTTP/1.1" 401 205
172.25.10.142 - thomas@ISERIES.IBM.COM [09/Sep/2004:15:31:34 +0200] "GET /kerbprot/
HTTP/1.1" 200 876
126 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6.4 Encrypting your data with SSL and TLS
This section is written based on the assumption that you are already familiar with digital
certificates and the Digital Certificate Manager (DCM) interface. Also, a valid server certificate
must already be installed or created on the system. Two good IBM Redbooks to help you in
this area are:

� IBM Eserver iSeries Wired Network Security: OS/400 V5R1 DCM and Cryptographic
Enhancements, SG24-6168, offers step-by-step instructions on digital certificate creation
and management.

� AS/400 Internet Security: Developing a Digital Certificate Infrastructure, SG24-5659,
documents information about downloading and maintenance of digital certificates from
VeriSign. Appendix C in this book guides you through obtaining a trial certificate from
VeriSign. You can also go directly to the VeriSign link at:

http://www.verisign.com/client/index.html

In addition, the HTTP Server (powered by Apache) uses module mod_ibm_ssl for all the
authentication and encryption for SSL and Transport Layer Security (TLS). You can find the
manual for this module on the Web at:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzaie/rzaiemod_ibm_ssl.htm

6.4.1 Enabling SSL
As an overview of the operations necessary to configure SSL/TLS with your HTTP Server
(powered by Apache), Table 6-2 lists a series of goals. The first three are handled by the
administration GUI of the HTTP Server (powered by Apache) and result in new directives in
your configuration file. The rest depends on the configuration steps necessary with the DCM.

Important: The host name that you enter as part of the URL to access the protected
resource must be the name that you registered as part of the service principal in the KDC
and the i5/OS keytab file. For example, if you enter http://sysa/protect, but you
registered the service principal HTTP/sysa.iseries.com@REALM.COM, the URL host name
sysa does not match the service principal name sysa.iseries.com. In this case, the KDC
does not find a corresponding entry. To enable users to use different host names in the
URL, such as short names and fully qualified names, add multiple service principals to the
KDC and the keytab file.

Tip: Since you need to add HTTPS as a new protocol for your server, you must create a
virtual host context to manage your SSL-secured communications.
Chapter 6. Defending the IFS 127

http://www.verisign.com/client/index.html
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzaie/rzaiemod_ibm_ssl.htm

Table 6-2 Enabling SSL

Implementation
You can enable a new port, create a virtual host context, and tell the server to load the SSL
module used for secure communications. Follow these steps:

1. From the Server list, select your server name.

2. From the Server area list, select Global Configuration.

3. In the left pane, under Server Properties, select General Server Configuration.

4. Click the General Settings tab.

Goal GUI configuration steps Apache final configuration file

Add a new port for SSL-
secured communications. The
well-known port for SSL is 443.
In this example, we use port
44306.

In your server’s General Server
Configuration panel, click the General
Settings tab and add the new port
number.

Listen 44306

Create a virtual host context
that contains the SSL
directives.

In the Virtual Hosts panel, add a Virtual
Host context listening on the new port.

33 <VirtualHost *:44306>

Enable SSL for the virtual
host.

Select the new virtual host as the
active context. Select Security and then
click the SSL with Certificate
Authentication tab. Under SSL, click
Enable SSL.

2 LoadModule ibm_ssl_module /QSYS.LIB/
QHTTPSVR.LIB/QZSRVSSL.SRVPGM
...

35 SSLAppName
 QIBM_HTTP_SERVER_TOMITSO1
36 SSLEnable
37 SSLCacheDisable
38 </VirtualHost>

Assign a digital certificate to
the server.

In the DCM GUI, open the *SYSTEM certificate store. Under Fast Path, select Work
with server applications. From the list on the right, select your server. Assign a valid
certificate and make sure that the Certificate Authority (CA) is marked as trusted in the
CA Trust List. No change is made to the HTTP configuration file.

Install the local CA on the
client PC.

Select Install Local CA Certificate on Your PC.

Restart the server and test
your SSL configuration.

Point your browser to:
https://servername:SSLport

Remember that you can access the virtual host only through the HTTPS protocol now.
128 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. On the General Settings page (Figure 6-25), complete these steps:

a. Click Add to enable the new port we will use for SSL communications. In our example,
we listen on a new port of 44306 on all IP addresses on our iSeries server.

b. Click Continue to add the new port to the list of ports the server listens on.

c. Click OK to close the General Server Configuration window.

Figure 6-25 A context for SSL3

6. In the left pane, select Container Management.

7. In the right panel, click the Virtual Hosts tab.

Tip: There are three options you can click to update the configuration with a new listen
port. The first is to click Continue. The second is to click OK. The third is to click Apply.
Although all three options update the configuration, Apply is the only option that results
in a message being displayed in the lower blue message area stating that the
configuration was successfully updated.
Chapter 6. Defending the IFS 129

8. On the Virtual Hosts page (Figure 6-26), follow these steps:

a. Scroll down to locate the Virtual host containers table.
b. Click Add.
c. Fill the blank fields with the IP address and port to use with SSL.
d. Click OK.

Figure 6-26 Adding an IP-based virtual host

9. To enable your server to support SSL, from the Server area, select first the virtual host
context.

10.In the left pane, under Server Properties, click Security.

11.In the Security panel, click the SSL with Certificate Authentication tab.

Important: If you do not switch to the virtual host context before continuing with the
next steps, you can only access the entire server instance with SSL (HTTPS). Normal
HTTP connections will not work anymore.
130 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

12.On the SSL with Certification Authentication page (Figure 6-27), complete these steps:

a. For SSL, select Enable SSL.

b. Notice the server certificate application name that is used for this server. You need this
application name in the DCM configuration later in this chapter.

c. Click Apply.

d. Click OK.

Figure 6-27 Enabling SSL

At this point, the GUI adds all the proper LoadModule and SSL directives into your
configuration file. You may want to look at all the new directives using the Display
Configuration File form. In addition, the GUI registers your Application name with the DCM
as a new server application.

Tip: You can also enter the following CL command to register an HTTP instance within
the DCM environment:

CALL QHTTPSVR/QZHAPREG PARM('RegisterAppName' 'QIBM_HTTP_SERVER_name')
Chapter 6. Defending the IFS 131

Your HTTP Server (powered by Apache) configuration is now complete and supports SSL
and TLS. Next, you associate the application name (specified in Figure 6-27) with a valid
server digital certificate. This is done through the DCM GUI. The following steps take you into
the Digital Certificate Manager GUI.

1. From the tabs at the top of the IBM Web Administration for iSeries page, select Related
Links.

2. You see all of the links as shown in Figure 6-28. Click Digital Certificate Manager.

Figure 6-28 Accessing DCM

3. In the DCM main menu, complete these steps:

a. Click Select a Certificate Store. You must be signed on to the iSeries Tasks page with
a user that has at least *SECADM and *ALLOBJ special authorities to see the Select a
Certificate Store button.

b. Under Select the certificate store that you want to open, select *SYSTEM.

c. Click Continue.

4. Enter the Certificate Store password as shown in Figure 6-29. Enter your certificate store
password and click Continue.

Figure 6-29 Certificate Store and Password
132 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. After the certificate store opens, in the left navigation pane, click Fast Path to expand the
list of options. Then select Work with server applications.

6. On the right side, select your server application name from the list. This is the same name
that you specified in Figure 6-27 on page 131. You may have to scroll down to see the
name of the server instance. Click the Work with Application button.

Figure 6-30 Working with server applications

The following steps help to establish the association between the server digital certificate and
your HTTP Server (powered by Apache).

1. Click the Update Certificate Assignment button.

2. Select the server certificate that your application will use.

3. Click the Assign New Certificate button.
Chapter 6. Defending the IFS 133

4. You see confirmation message in the top part of the page as shown in Figure 6-31. Click
Cancel to return to the Work with Application window.

Figure 6-31 DCM Update Certificate Assignment panel

5. Check that the issuer of your certificate is listed among the trusted certificate authorities.

6. Click the Define CA Trust List button to add one or more CAs to the list. Remember that,
in case of a local CA, you also have to install the CA certificate in your Web browser.

7. In the Define CA Trust List window (Figure 6-32), select the CAs that you want to trust and
click OK.

Figure 6-32 DCM Define CA Trust List panel
134 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

8. Click Cancel to return to the Work with Server Applications panel (Figure 6-33).

Figure 6-33 DCM Work with Server Application panel

9. Restart your HTTP server and point your browser to:

https://servername:SSLport

When you open a SSL connection, you may see a browser window that asks you to verify the
information contained inside the digital certificate, and whether you want to accept it. This
window typically opens when the host name entered in the URL does not match the host
name in the common name attribute of the certificate. Another reason why the window opens
is because you have not installed the CA certificate of the CA that issued the server certificate
in the browser certificate store. Click the lock displayed in your browser’s status bar for
detailed information about the secure transaction.

Tip: Do not forget the “s” as part of the HTTPS protocol.
Chapter 6. Defending the IFS 135

6.4.2 TLS upgrade
A feature that was introduced with V5R2 of the HTTP Server (powered by Apache) is the
ability to allow clients to request an upgrade to TLS encryption on an unencrypted port. This
allows new applications to need only one port for both normal and SSL traffic. Right now the
primary user is Internet Print Protocol (IPP) client as illustrated in Figure 6-34.

Figure 6-34 TLS upgrade

The historical practice of deploying HTTP over SSL3 has distinguished the combination from
HTTP alone by a unique Uniform Resource Identifier (URI) scheme and the TCP port
number. The scheme “http” meant the HTTP protocol alone on port 80, while “https” meant
the HTTP protocol over SSL on port 443. Parallel well-known port numbers were similarly
requested, and in some cases granted, to distinguish between secured and unsecured use of
other application protocols (for example news and FTPS). This approach effectively divides in
half the number of available well-known ports.

At the Washington D.C. Internet Engineering Task Force (IETF) meeting in December 1997,
the Applications Area Directors and the Engineering Steering Group (IESG) reaffirmed that
the practice of issuing parallel “secure” port numbers should be deprecated. The HTTP/1.1
Upgrade mechanism can apply Transport Layer Security [6] to an open HTTP connection.

Tip: Refer to Request for Comments (RFC) 2817: Upgrading to TLS Within HTTP/1.1.

Allows a client to request an upgrade to TLS encryption on
an unencrypted port

New applications only need one port for both normal and SSL traffic

Primary user is Internet Print Protocol (IPP)
Web browsers do not yet support this... but when they do:

Internet

http://myhost.../servlet/page.jsp

426 Upgrade Required

http://myhost.../servlet/page.jsp
Upgrade: TLS/1.0

TLS Handshake

page.html

http://myhost.../servlet/page.jsp
136 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

In the nearly two years since, there has been broad acceptance of the concept behind this
proposal, but little interest in implementing alternatives to port 443 for generic Web browsing.
In fact, nothing in this memo affects the current interpretation of HTTPS: URIs. However, new
application protocols built atop HTTP, such as the Internet Printing Protocol, call for just such
a mechanism to move ahead in the IETF standards process.

The Upgrade mechanism also solves the “virtual hosting” problem. Rather than allocating
multiple IP addresses to a single host, an HTTP/1.1 server uses the Host: header to
disambiguate the intended Web service. As HTTP/1.1 usage has grown more prevalent, more
Internet Service Providers (ISPs) are offering name-based virtual hosting, thus delaying IP
address space exhaustion.

TLS (and SSL) have been degraded by the same limitation as earlier versions of HTTP. The
initial handshake does not specify the intended host name, relying exclusively on the IP
address. Using a cleartext HTTP/1.1 Upgrade: preamble to the TLS handshake, choosing the
certificates based on the initial Host: header, allows ISPs to provide secure name-based
virtual hosting as well.

6.4.3 Enabling SSL for the ADMIN instance
Enabling SSL support for the configuration GUI requires additional considerations. First add
the following lines to the ADMIN customization include that is located in /QIBM/UserData/
HTTPA/admin/conf/admin-cust.conf:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM
Listen 2001
Listen 2010
SetEnv HTTPS_PORT 2010
<VirtualHost *:2010>
SSLEnable
SSLAppName QIBM_HTTP_SERVER_ADMIN
</VirtualHost>

Then enter the following CL command to register the ADMIN instance within the DCM
environment:

CALL QHTTPSVR/QZHAPREG PARM('RegisterAppName' 'QIBM_HTTP_SERVER_ADMIN')

You can now access the DCM GUI and assign a server certificate to the
QIBM_HTTP_SERVER_ADMIN application that you just registered.

For more information about setting up SSL for the HTTP Admin instance, refer to the iSeries
Information Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzaie/
rzaieconfigssladmin.htm

6.4.4 SSL handshaking
Three versions of SSL, or protocols, are in use. SSL V2 and SSL V3 are standards published
by Netscape. TLS V1 is an RFC (RFC2246) published and administered as are the other
Internet standards. RFC2246 has been updated by RFC3546.

SSL V2 is old and not often used now. It does not support client authentication and has a
number of known security weaknesses. SSL V3 is significantly different from SSL V2 and is
now the protocol most commonly used. TLS V1 is a relatively new protocol, similar to SSL V3,
that addresses some security and performance issues discovered in SSL V3.
Chapter 6. Defending the IFS 137

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzaie/rzaieconfigssladmin.htm

Both the SSL clients and servers have a list of ciphers, known as the cipher suite list that they
are willing to use. During the SSL handshake, the lists are compared and a cipher, normally
the strongest, is chosen.

In a perfect world and with modern Web browsers, the negotiation of the suite of ciphers used
is transparent to both the client and even the HTTP server administrator. But, in a
business-to-consumer (B2C) environment, you cannot control the age and quality of the Web
browser.

The handshake
When a client (that is, a Web browser) establishes an SSL session, the client sends a Client
Hello message to the server. Among other things, this message contains all supported cipher
suites that the browser can handle. A single cipher suite is a combination of an encryption
protocol (that is, DES, RC4, AES), the encryption key length (40, 56, or 128), and a hash
algorithm (SHA or MD5) that is used for integrity checking. When the server receives the
Client Hello message, the server controls and decides which offered cipher suite it will use to
secure this particular session.

With no SSLVersion or SSLCipherSpec directives specified, the server accepts anything. That
is true for all newer browsers, because they support the handshake correctly. With some older
browsers, there are some problems due to bugs in their implementation of the SSL protocol at
that time.

To fix these bugs, you can force your clients to upgrade to a more modern version of Web
browser. As mentioned earlier, however, in a B2C environment, this is not always an option.
Or, you can control the order that the ciphers are selected during the SSL handshake to avoid
know problems with older (buggy) Web clients.

To actually force a client to work with a specific encryption strength, you have the chance, via
directives, to control what algorithms and key lengths your server will accept. If, for example,
your client only supports 56-bit encryption and your server requires at least 128-bit, then the
handshake fails. As a general rule, the SSLCipherSpec directives are good to limit the
number of algorithms and key lengths to what you think is acceptable and secure. That, of
course, depends on the content to be protected (how sensitive) and the client community you
are dealing with.

An example
For the HTTP Server (powered by Apache), you have to add one SSLCipherSpec directive
per cipher suite from top (preferred) to bottom.

The problem is that Microsoft’s Internet Explorer’s (IE) 56-bit SSL implementation has flaws in
it. The flaws prevent it from negotiating with servers that use higher encryption than it does
unless you disable a few ciphers on the server side. This bug was released with IE Version 5,
and the only fix that Microsoft has for it is to install 128-bit encryption. To circumvent this
problem in the HTTP Server (powered by Apache) configuration, use these directives:

SSLCipherSpec SSL_RSA_WITH_RC4_128_MD5
SSLCipherSpec SSL_RSA_WITH_RC4_128_SHA
SSLCipherSpec SSL_RSA_WITH_DES_CBC_SHA
SSLCipherSpec SSL_RSA_WITH_3DES_EDE_CBC_SHA

Tip: This section helps you understand how to configure these cipher lists in your HTTP
Server (powered by Apache). The theory behind the example used in this section is based
on the IBM Redbook IBM Eserver iSeries Wired Network Security: OS/400 V5R1 DCM
and Cryptographic Enhancements, SG24-6168. This redbook is a must read for your work.
138 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

SSLCipherSpec SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSLCipherSpec SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

Through the IBM Web Administration for iSeries tool, you can configure directives to control:

� The cipher suites that the server accepts for SSL and TLS sessions
� The secure protocol version that the server accepts
� SSL/TLS timeout values
� SSL caching

To configure the directives for the context that you want to protect, click Security and then
select the SSL Advanced tab (Figure 6-35). To activate the SSL Advanced tab, you need to
enable SSL on the SSL with Certificate Authentication tab.

Figure 6-35 SSL Advanced tab

6.4.5 Client-side digital certificates
Client-side digital certificates are an advanced means of user authentication. A user
certificate issued by the server is installed in the browser and used to verify the end user’s
identity.

Attention: The third line SSLCipherSpec SSL_RSA_WITH_DES_CBC_SHA indicates use of DES
with 56-bit encryption. The fourth line SSLCipherSpec SSL_RSA_WITH_3DES_EDE_CBC_SHA
indicates use of 3DES with 168-bit encryption. Why would you want to choose a weaker
cipher before choosing the stronger one? To solve a problem with an older browser.

You must be careful to not “oversell” to your clients the strength of your encryption on your
site if you make these kinds of server-side configuration changes.
Chapter 6. Defending the IFS 139

Implementation
This section explains how to protect one of the IFS folders using client authentication:

1. From the Server area list, select the SSL-secured virtual host as the active context. In this
example, we select Virtual Host *:44306.

2. In the left pane, select Security.

3. Select the SSL with Certificate Authentication tab.

4. In the SSL with Certificate Authentication page (Figure 6-36), under Client certificates
when establishing the connection, select Require client certificate for connection. Click
OK.

Figure 6-36 SSL Client Authentication for Virtual Host

5. The folder that we want to protect is served by a directory directive inside our virtual host
context.

a. Ensure that you still have the Virtual Host *:44306 context selected in the Server area
list.

b. Start the Add a Directory to the Web wizard.

c. Follow the wizard pages to serve a new directory.
140 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. Looking at the Server area list, you can see the new directory listed below the virtual host,
as shown in Figure 6-37. From the Server area list, select the new directory as the active
context.

Figure 6-37 Directory selection from Server area list

7. In the left pane, click Security.

8. Select the Control Certificate Access tab.

9. On the Control Certificate Access page (Figure 6-38), complete these tasks:

a. Under Verification of expiration and trusted root, select Verify client certificate.
b. Under Client certificate authentication, select Use client certificate.
c. Scroll down. Select Client certificate must be associated with OS/400 user profile.

Figure 6-38 SSL client authentication
Chapter 6. Defending the IFS 141

d. From the Process requests using client’s authority list, select Enabled.

This option enforces OS/400 object level access authority settings. If you set this value
to Disabled, access to the protected resources is, by default, performed under the
QTMHHTTP profile for static pages and QTMHHTP1 profile for CGI programs unless
the ServerUserID directive specifically names another user profile.

e. Click Apply.

10.In the right panel, select the Control Access tab.

11.On the Control Access page, complete these steps:

a. Select All authenticated users (valid user name and password).

b. Scroll down to the Control access policy section. Select Control access based on
where or from whom the request originates.

c. Click OK to save your settings.

12.Restart your server.

This configuration requires a valid client certificate for access to the new folder. It also forces
the server to access protected data as the user for whom that certificate was issued. This
powerful capability of the HTTP Server (powered by Apache), also known as profile
swapping, is further proof of the granularity and versatility of the HTTP Server (powered by
Apache) implemented on the iSeries server.

Alternatively, you can configure SSL client authentication to authenticate client certificates
that are stored in validation lists or client certificates that meet certain criteria in the DN. For
example, you can allow users access to a protected resource where the certificate subject DN
contains an organization (attribute of IBM and the issuer DN’s common name attribute
contains VeriSign).

6.5 Proxy server: Protecting direct access
Proxy servers are deployed on a network for two key purposes: security and performance. A
proxy can be used to monitor and filter inbound and outbound requests. Or it can be used as
a single point of access for communications with untrusted networks. Proxies can also
dramatically improve HTTP response times by serving documents from a local cache (see
10.3.2, “HTTP Server (powered by Apache) proxy cache” on page 239). This effectively
reduces network traffic, bandwidth occupation, and Central Processing Unit (CPU) load
(depending on the type of request being served).

This section focuses on the two mainstream proxy implementations: the forward proxy and
the reverse proxy. Both can be implemented as virtual hosts or stand-alone servers. Apache
proxy can also be configured as part of a proxy chain by specifying to which server the
requests will be relayed.

Important: Selecting the Control access based on where or from whom the request
originates option adds the Satisfy Any directive to the HTTP configuration. The Any
value for the satisfy directive is required for SSL client authentication to work. If you
select Inherit (which defaults to ALL) or select Control access based on where and
from whom the request originates, the All value for the Satisfy directive requires a
valid client certificate and authentication via user and password.
142 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Table 6-3 offers a brief overview of the configuration steps with the resulting Apache
directives.

Table 6-3 Proxy configuration overview

6.5.1 Forward proxy
A forward proxy fetches content from another server, allowing clients to reach a network to
which they wouldn’t otherwise have access. Figure 6-39 demonstrates the role of a forward
proxy in an environment where clients on a private intranet do not have direct access to the
Internet.

Figure 6-39 Forward proxy: Example network

In this configuration, the clients send all outbound HTTP requests to the forward proxy, as
indicated by 1 in Figure 6-39. The proxy checks the request against security restrictions and
then looks for a valid copy of the requested document in the local cache. If the document can
be retrieved from the cache, the proxy poses as the destination server itself, and serves it to

Goal GUI configuration steps Apache final configuration file

Enable proxy support. See
6.5.1, “Forward proxy” on
page 143, for an example
implementation.

Under the Forward Proxy
tab, select Enable.
Optionally define how Via
headers will be handled.

2 LoadModule proxy_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

3 LoadModule proxy_http_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

4 LoadModule proxy_connect_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

5 LoadModule proxy_ftp_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
......

24 ProxyRequests On
25 ProxyVia off

Proxy mapping rules
(reverse proxy or proxy
chain only). See 6.5.2,
“Reverse proxy”, for an
example implementation.

Under the Reverse Proxy
or the Proxy Chaining tab,
define mapping rules
(Pass file access requests
to remote servers) or filters
(Block URL requests).

25 AllowCONNECT 443
26 AllowCONNECT 563
27 ProxyNoConnect Off
28 ProxyReceiveBufferSize 0
29 ProxyPass /webprojects/ http://www.myco.com/projects/
30 ProxyPassReverse /webprojects/

http://www.myco.com/projects/

Private
intranet

http://www.webco.com

cache

Client

Public Network
(Internet)

Forward
proxy

get http://www.webco.com

get
http://www.webco.com

index.html

index.html

2 1
3

5

4

Chapter 6. Defending the IFS 143

the client. Otherwise the proxy establishes a connection to the www.webco.com server,
indicated by 2, and retrieves an updated copy of the document, indicated by 3. The document
is (optionally) stored in the local cache (see 4) and sent to the requestor (noted by 5). Note
that from the client’s point of view, the proxy is the Web server itself, and no other system
appears to be involved in the transaction.

Implementation
Figure 6-40 and the following steps guide you through the configuration for proxy support
activation:

1. From the Server area list, select Global Configuration.

2. In the left pane, under Server Properties, select Proxy.

3. Select the Forward Proxy tab.

4. On the Forward Proxy page, complete these tasks:

a. Under Forward proxy capabilities, select Enabled.

b. If necessary, specify a default domain for unqualified requests. This suffix is used
whenever a fully qualified name is not used in the client’s request. In the example in
Figure 6-40, the ibm.com® domain is appended to unqualified requests.

c. Add the ports that you want to allow for SSL traffic through the proxy server. For
example, if a user accesses a Web page via HTTP and clicks a link that switches to
HTTPS, the SSL connection is not established when the SSL port is not listed in the
CONNECT method for HTTPS requests list. The well-known port for HTTPS is port
443. As shown in Figure 6-40, we added port 443.

Figure 6-40 Forward proxy settings

Note: Remember to add every port that should be allowed for HTTPS requests
through the proxy server to the list of ports for the CONNECT method. HTTPS
requests for ports that are not defined for the CONNECT method will fail.
144 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

d. Scroll down on the Forward Proxy page. You see a section named Incoming URL
requests to block. This section allows you to define words, host names, and domain
names.

Requests to sites whose URLs contain matched words, hosts, or domains are blocked
by the server. At startup, the server attempts to determine list item IP addresses, that
may be host names, and records them for a match test. The values entered can be any
part of the host address part of the URL. The values are not checked against any other
part in the URL, such as a path or file name. For example, if you want to block all
requests to all sites at the myco.com domain, such as www.products.myco.com, you can
add the entry myco.com. If the MYCO corporation operates sites under the .com, .org,
and .net domains, you can enter just the value myco, as shown in Figure 6-41, to block
requests to any page of the MYCO corporation.

If required, click the Add button to enter values for sites to be blocked.

Figure 6-41 Forward proxy settings: Incoming URL requests to block

e. Click Apply.

f. Click OK.

5. Restart your server and test it.

6.5.2 Reverse proxy
Reverse proxy is the same as a forward proxy, except that requests from outside of the
firewall to the proxy are allowed.

A reverse proxy is another common form of a proxy server. It is generally used to pass
requests from the Internet, through a firewall, to isolated, private networks. It is used to
prevent Internet clients from having direct, unmonitored access to sensitive data residing on
content servers on an isolated network or intranet. If caching is enabled, a reverse proxy can
also reduce network traffic by serving cached information rather than passing all requests to
actual content servers. Reverse proxy servers may also balance workload by spreading
requests across a number of content servers.

Tip: Another reverse proxy associated with your HTTP Server (powered by Apache) is Fast
Response Cache Accelerator (FRCA). See 10.6, “Fast Response Cache Accelerator” on
page 281, for more details and a configuration example of using FRCA as a reverse proxy.
Chapter 6. Defending the IFS 145

An advantage of using a reverse proxy is that Internet clients do not know their requests are
being sent to and handled by a reverse proxy server. This allows a reverse proxy to redirect or
reject requests without making Internet clients aware of the actual content server (or servers)
on a protected network.

A reverse proxy server first checks to make sure a request is valid. If a request is not valid, or
not allowed (blocked by the proxy), it does not continue to process the request resulting in the
client receiving an error or a redirect. If a request is valid, a reverse proxy may check if the
requested information is cached. If it is, the reverse proxy serves the cached information. If it
is not, the reverse proxy requests the information from the content server and serves it to the
requesting client. It can also cache the information for future requests.

A quick and easy demonstration of the power of a reverse proxy is shown in Figure 6-42.

In this configuration, the clients send all HTTP requests to the iSeries reverse proxy server, as
indicated by 1 in Figure 6-42, at the public host and domain name of www.webco.com. The
reverse proxy checks the request against security restrictions and then looks for a valid copy
of the requested document in the local cache. If the document can be retrieved from the
cache, the reverse proxy server serves it to the client. Otherwise the reverse proxy
establishes a connection to the as23 content server, as indicated by 2, and retrieves an
updated copy of the document, indicated by 3. The document is (optionally) stored in the local
cache (see 4) and sent to the requestor, as shown by 5. Note that from the client’s point of
view, the reverse proxy is the Web server itself, and no other system appears to be involved in
the transaction.

Figure 6-42 Reverse proxy: Example network

Tip: Compare the network diagrams in Figure 6-39 on page 143 and Figure 6-42. One of
the major points that you should notice is that we switched the label on the two different
networks. That is, for the forward proxy, the client is connected to an internal intranet and
needs access to the Internet. For the reverse proxy, the client is connected to a public
network and needs access to a content server found someplace in the internal intranet.
One of the features of reverse proxy is that you can hide, from the remote clients, the
internal IP addresses and naming of your intranet and applications.

cache

Client

Public Network
(Internet)

get
http://www.webco.com/index.html

get http://as23/index.html

index.html

index.html

2 1
3

5

4

Private
intranet

www.webco.com:
Reverse

proxy

as23: Content
server
146 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Implementation
To configure a simple reverse proxy scenario, we use two iSeries servers.

1. On as23 (your content server), create an HTTP Server (powered by Apache) with the
parameters listed in Table 6-4. For this simple scenario, do not add any additional
configuration directives to the content server to support reverse proxy.

Table 6-4 Reverse proxy: Configuration basics for as23 content server

2. On www.webco.com (your reverse proxy server), create an HTTP Server (powered by
Apache) with the parameters in Table 6-5.

Table 6-5 Reverse proxy: Configuration basics for www.webco.com reverse proxy server

3. Add the necessary proxy directives to the HTTP Server (powered by Apache)
PBARPRXY02 server configuration so that for all incoming URI path requests traffic are
sent to the content server on as23. Select the Manage tab.

4. From the Server list, select PBARPXRY02.

5. From the Server area list, select Global configuration.

6. In the left pane, select Proxy.

7. In the right panel, select the Reverse Proxy tab.

8. From the Reverse proxy capabilities list, select Enabled. This expands your options for
this page as shown in Figure 6-43. In addition, enabling reverse proxy causes the GUI to
add the following LoadModule directives to the global context to support proxy:

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Note: The reverse proxy server as described in this section supports HTTP connections
only. If you want to SSL-protect the entire traffic from the client browser through the proxy
to the content server, configure the SSL proxy as explained in 6.5.3, “SSL proxy” on
page 149.

Create HTTP Server wizard parameter Value

Server name PBABASIC02

Server root /tcp52d02/basicConfig

Document root /tcp52d02/basicConfig/ITSOco

On which IP address and TCP/IP port do you want your server to
listen?

IP address: 10.5.92.30
Port: 8002

Do you want your new server to use an access log? Yes

Create HTTP Server wizard parameter Value

Server name PBARPRXY02

Server root /tcp52d02/rprxy

Document root /tcp52d02/rprxy/itsoco

On which IP address and TCP/IP port do you want your server to listen? IP address: all
Port: 8002

Do you want your new server to use an access log? Yes
Chapter 6. Defending the IFS 147

9. Under Proxy requests to remote servers, click Add to add a new row into the table. Add
one row for the redirected requests and another for client requests. The order does not
matter. This adds the following directives to your httpd.conf configuration file:

ProxyPassReverse / http://10.5.92.30:8002/
ProxyPass / http://10.5.92.30:8002/

10.After you enter the information for each entry, click Continue to save the entry into the list.

Now all of the get requests for this instance of the HTTP Server (powered by Apache)
running on www.webco.com are redirected to the fully qualified URL of the content server
at http://10.5.92.30 on port 8002. You can also specify individual request paths to be
answered by a different content server behind the reverse proxy. When defining the
Redirected requests option, headers in response documents are adjusted in the event that
a "Redirect" is issued by the remote server. This allows clients to remain unaware of any
transformation of the requests even if remote servers redirect the proxy.

Figure 6-43 Reverse proxy: GUI configuration

11.Click OK.

12.Start both servers. The following client get request is forwarded to the content server:

http://www.webco.com/index.html

It is sent using the following URL:

http://10.5.92.30:8002/index.html

This processing is transparent to the client.

Note: We used the IP address of the content server as23 for performance reasons.
The host name (as23) can be used instead. If you use a name, such as as23, your
reverse proxy server www.webco.com must have the ability to resolve the name to an
IP address using either a local host table or a split Domain Name System (DNS) server.
For an example of how to configure a split DNS on the iSeries, see iSeries IP Networks:
Dynamic!, SG24-6718.
148 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6.5.3 SSL proxy
The SSL proxy is typically used as a reverse proxy that supports SSL for the connection from
the client browser through the proxy to the content server. In fact, two connections are
established. The first HTTPS connection is established from the browser to the proxy server.
This connection terminates at the proxy, which in turn establishes a second HTTPS
connection from the proxy to the content server. You can also configure the proxy server to
always establish a SSL connection from the proxy to the content server, but to allow
non-protected (HTTP) and protected (HTTPS) connections from the client to the reverse
proxy.

In this configuration, the clients send all HTTP requests to the iSeries reverse proxy server, as
indicated by 1 in Figure 6-44, at the public host and domain name of www.webco.com. This
time, the client accesses sensitive information and, therefore, needs a protected session from
the client to the content server. The first SSL connection is established between the client and
the proxy at www.webco.com. The reverse proxy checks the request against security
restrictions and then looks for a valid copy of the requested document in the local cache. If the
document can be retrieved from the cache, the reverse proxy server serves it to the client.
Otherwise the reverse proxy establishes a second SSL connection to the fra822 content
server, as indicated by 2, and retrieves an updated copy of the document, indicated by 3. The
document is (optionally) stored in the local cache (see 4) and sent to the requestor, as shown
by 5. Note that from the client’s point of view, the reverse proxy is the Web server itself, and no
other system appears to be involved in the transaction.

Figure 6-44 SSL proxy environment

The setup of the SSL proxy involves some configuration tasks to be performed via the DCM. If
you are not familiar with DCM, you may want to consult the IBM Redbook IBM Eserver
iSeries Wired Network Security, SG24-6168.

Note: As stated earlier, the SSL proxy is used for establishing a protected session from the
client through the proxy server to the content server in a reverse proxy environment. For
forward proxy protected sessions, the CONNECT request method is used as described in
6.5.1, “Forward proxy” on page 143.

cache

Client

Public Network
(Internet)

get
https://www.webco.com/conf1.html

get https://fra822/conf1.html

index.html

index.html

2 1
3

5

4

Private
intranet

www.webco.com:
Reverse

proxy

fra822: Content
server

SSL connection 2 SSL connection 1
Chapter 6. Defending the IFS 149

Implementation
The following steps illustrate the implementation steps for the SSL reverse proxy support:

1. On fra822 (your content server), create an HTTP Server (powered by Apache) with the
parameters in Table 6-6. For this simple scenario, do not add any additional configuration
directives to the content server to support reverse proxy.

Table 6-6 Reverse SSL proxy: Configuration basics for fra822 content server

2. Using the configuration steps from 6.4.1, “Enabling SSL” on page 127, configure your
content server TOMSERV1 to allow SSL connections on port 443 and use DCM to assign
a server certificate to the content server.

3. On www.webco.com (your reverse proxy server), create an HTTP Server (powered by
Apache) with the parameters in Table 6-7.

Table 6-7 Reverse SSL proxy: Configuration basics for www.webco.com reverse proxy server

4. Select the Manage tab.

5. From the Server list, select TOMSSLPROX.

6. Create a virtual host and enable SSL for the virtual host as explained in 6.4.1, “Enabling
SSL” on page 127. Use the secure application name
QIBM_HTTP_SERVER_TOMSSLPROX. Use DCM to assign a server certificate to the
HTTP application name. This certificate represents the content server on the public
network. The common name of the certificate should be www.webco.com.

7. Add the necessary proxy directives to the HTTP Server (powered by Apache)
TOMSSLPROX server configuration so that for all incoming URI path requests traffic are
sent to the content server on fra822. From the Server area list, select Global
configuration.

8. In the left pane, select Proxy.

9. In the Proxy panel, click the Reverse Proxy tab.

Create HTTP Server wizard parameter Value

Server name TOMSERV1

Server root /www/tomserv1/

Document root /www/tomserv1/htdocs

On which IP address and TCP/IP port do you want your server to listen? IP address: All
Port: 80

Do you want your new server to use an access log? Yes

Create HTTP Server wizard parameter Value

Server name TOMSSLPROX

Server root /www/tomsslprox

Document root /www/tomsslprox/htdocs

On which IP address and TCP/IP port do you want your server to listen? IP address: all
Port: 443

Do you want your new server to use an access log? Yes

Note: The proxy server is configured to allow only SSL connections from the client to
the server. Therefore, port 443 was selected at the Create HTTP Server wizard.
150 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

10.On the Reverse Proxy page, complete these steps:

a. From the Reverse proxy capabilities list, select Enabled. For more information about
the parameter of the reverse proxy function, see 6.5.2, “Reverse proxy” on page 145.

b. Under Proxy requests to remote servers, click Add to add a new row into the table. Add
one row for the redirected requests and another for client requests. The order is not
important. This adds the following directives to your httpd.conf configuration file:

ProxyPassReverse / https://10.164.96.84/
ProxyPass / https://10.164.96.84/

Note that the protocol is HTTPS and not HTTP. Using these directives, the server
always establishes a protected session from the proxy to the content server.

c. After entering the information for each entry, click Continue to save the entry into the
list.

11.Click the SSL Proxy tab.

12.On the SSL Proxy page (Figure 6-45), complete these tasks:

a. From the SSL Proxy list, select Enabled.

b. For Proxy server certificate application name, select
QIBM_PROXY_SERVER_TOMSSLPROX. Note that the application name is different
from the name used in the virtual host section. It uses the word PROXY instead of
HTTP. This is important to know when assigning certificates in the DCM.

c. For Content server certificate required by proxy server, select Require non-expired
and trusted root certificate. This options ensures that the content server must
present a certificate during the SSL handshake that is not expired and is marked as
trusted in the DCM.

Figure 6-45 SSL Proxy tab
Chapter 6. Defending the IFS 151

You could further refine your SSL settings on the SSL Proxy Advanced tab. The settings
on this tab allow you to select the SSL protocols and cipher suites that are supported for
the connection from the proxy server to the content server.

13.Click Apply and then OK. Note that caching has not been enabled yet.

In the remaining steps of the setup, you use the DCM to define the CA trust for and assign a
certificate to the proxy server.

1. From the IBM Web Administration for iSeries GUI, click the Related Links tab and launch
DCM.

2. Click Select a Certificate Store and open the *SYSTEM certificate store.

3. Click Fast Path and then Work with server applications.

4. Select the application QIBM_PROXY_SERVER_TOMSSLPROX and click Work with
Application.

5. Click Define CA Trust List and select the CA certificate of the CA that issued the content
server certificate (the certificate that is assigned on the content server to the content
server’s HTTP server instance).

6. In the Define CA Trust List window, click OK to save the new trust list.

Important: As mentioned earlier, the SSL proxy configuration Require non-expired and
trusted root certificate option requires that the proxy application trusts the CA that issued
the content server’s certificate. This means that the list of enabled CA certificates in the
*SYSTEM store on the proxy server must contain the CA certificate of the content server’s
certificate. Since the content server is typically installed in an intranet environment, it is
likely that the server certificate was issued by a local or private CA rather than a
well-known CA, such as VeriSign. If the local CA is operated on the content server, import
the CA certificate on the proxy server:

1. Send the CA.CACRT file by FTP from the content server directory
/QIBM/UserData/ICSS/Cert/Download/CertAuth to an IFS directory on the proxy server.

2. Using DCM, open the *SYSTEM certificate store on the proxy server.

3. Click Fast Path and then Work with CA certificates.

4. Click Import at the bottom of the CA certificates list, specify the path and file name of
the file sent by FTP, and enter a label name for the certificate to be imported.
152 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

7. Click Cancel to return to the Work with Application window (Figure 6-46).

Figure 6-46 DCM Work with Application

8. Start your proxy server and test your connection using the following URL:

https://www.webco.com

Since the proxy server instance is configured to accept port 443 only and this port is
enabled for SSL in the virtual host context, only HTTPS connections can be established
from the client to the reverse proxy server. If you want to enable both HTTP and HTTPS
connections from the client to the proxy server, add an additional port, such as 80, to the
global configuration context.

The HTTP configuration directives of the SSL proxy in this scenario are shown here, with SSL
proxy-related directives in bold:

Configuration originally created by Create HTTP Server wizard on Mon Sep 20 14:48:42 CEST
2004
LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM
LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
Listen *:443
DocumentRoot /www/tomsslprox/htdocs

Note: You do not need to assign a certificate to the proxy application if the content
server is configured for server authentication only. However, if the content server
requires client authentication, you must assign a certificate to the proxy server
application, since the proxy server acts as a client when connecting to the content
server. Otherwise, the SSL handshake between the content server and proxy server
fails.
Chapter 6. Defending the IFS 153

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes
-MultiViews
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
LogMaint logs/access_log 7 0
LogMaint logs/error_log 7 0
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
SSLProxyEngine On
SSLProxyAppName QIBM_PROXY_SERVER_TOMSSLPROX
ProxyPass / https://10.164.96.84/
ProxyPassReverse / https://10.164.96.84/
<Directory />
 Order Deny,Allow
 Deny From all
</Directory>
<Directory /www/tomsslprox/htdocs>
 Order Allow,Deny
 Allow From all
</Directory>
<VirtualHost *:443>
 SSLEngine On
 SSLAppName QIBM_HTTP_SERVER_TOMSSLPROX
</VirtualHost>

6.5.4 Proxy chaining
A proxy chain uses two or more proxy servers to assist in server and protocol performance
and network security. Proxy chaining is not a type of proxy, but a use of reverse and forward
proxy servers across multiple networks.

In addition to the benefits to security and performance, proxy chaining allows requests from
different protocols to be fulfilled in cases where, without chaining, such requests are not
possible or permitted. For example, a request using HTTP is sent to a server that can only
handle FTP requests. For the request to be processed, it must pass through a server that can
handle both protocols, which is accomplished by using proxy chaining. It allows the request to
pass from a server that cannot fulfill such a request (perhaps due to security or networking
issues or its own limited capabilities) to a server that can.

The first proxy server in a chain checks to make sure a request is valid. If a request is not
valid, or not allowed (blocked by the proxy), it rejects the request. This results in the client
receiving an error or being redirected. If a request is valid, the proxy may check if the
requested information is cached and simply serve it from there. If the requested information is
not in cache, the proxy passes on the request to the next proxy server in the chain.
154 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

This server can also fulfill, forward, redirect, or reject the request. If it forwards the request,
then it too passes on the request to another proxy server. This process is repeated until the
request reaches the last proxy server in the chain. The last server in the chain is required to
handle the request by contacting the content server, using the required protocol, to obtain the
information. The information is relayed back through the chain until it reaches the requesting
client. Each proxy server in the chain may cache the information for future requests.

Reasons for passing requests through a proxy chain vary. For example, you may use proxy
chaining to pass information through multiple networks where a client on one network cannot
communicate directly with a proxy server on a different network, and it needs a second proxy
to relay its requests. You may also use it to cache information in multiple locations or to allow
certain protocols to be used outside a firewall which cannot be allowed through a firewall.

6.6 For more information
Refer to the following resources for additional information:

� IBM Eserver iSeries Wired Network Security: OS/400 V5R1 DCM and Cryptographic
Enhancements, SG24-6168

� AS/400 Internet Security: Developing a Digital Certificate Infrastructure, SG24-5659

� Implementation and Practical Use of LDAP on the IBM Eserver iSeries Server,
SG24-6193

� CERT/CC at Carnegie Mellon University offers an excellent source for security news,
alerts, and papers:

http://www.cert.org

� HTTP Server (powered by Apache) uses module mod_ibm_ssl for all the authentication
and encryption for SSL and TLS. You can find the manual for this module on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzaie/
rzaiemod_ibm_ssl.htm

� For more information about proxy support by the HTTP Server (powered by Apache) see
the Documentation Center. Go to the following Web site and select Documentation:

http://www.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
Chapter 6. Defending the IFS 155

http://www.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://www.cert.org
http://www.cert.org
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzaie/rzaiemod_ibm_ssl.htm

156 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 7. Serving dynamic data

Maintaining static Hypertext Markup Language (HTML) pages can be easy and quite
inexpensive, but static pages cannot cover all of your Web serving needs. Any time the
published content needs to be tailored on the end user’s input, the Web page has to be
generated on the fly. Serving dynamic data from your HTTP server can be accomplished in
several different ways, depending on your needs, your programming skills, and the complexity
of the task at hand. The HTTP Server (powered by Apache) supports the most popular
techniques generally available for this purpose such as:

� Server-side includes (SSI)
� Everything dynamic with Common Gateway Interface (CGI) support
� Net.Data: A ready-made scripting tool

Each of these techniques can be equally fast and powerful if it is properly employed. This
chapter provides an overview of the different techniques and some examples.

7

Note: Notably missing from the above list are Hypertext Preprocessor (PHP) and Perl.

PHP is a server-side, cross-platform, HTML-embedded scripting language. Maybe the
closest comparison to PHP is Net.Data as defined by IBM. Net.Data was created by IBM to
“solve” the need for a server-side scripting language for its HTTP servers. PHP was
created in the open-source community at about the same time to “solve” the need for a
server-side scripting language for the Apache server.

IBM has not brought PHP to your HTTP Server (powered by Apache) for iSeries. That is
why we have included Appendix A, “Bringing PHP to your iSeries server” on page 387, to
demonstrate how you can bring PHP to your iSeries yourself as a CGI running in Portable
Application Solution Environment (OS/400 PASE). The Rochester Development Lab is
aware of this PHP requirement.

Perl too was made available for the iSeries by ingenious individuals. Yet it is also not
directly supported by IBM. For more information about Perl for your iSeries, go to:

� http://www.iseries.ibm.com/tstudio/workshop/tiptools/perl.htm
� http://www.cpan.org/ports/index.html#os400/
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 157

http://www.iseries.ibm.com/tstudio/workshop/tiptools/perl.htm
http://www.cpan.org/ports/index.html#os400/

As your Web publishing needs become more and more advanced, your programs will also
grow in complexity. This may cause you some serviceability headaches. Most of the
limitations you encounter can be overcome with an additional coding effort. Eventually you
reach the point where a more powerful and efficient solution is needed.

Advanced implementations, such as transactional applications and solutions for On Demand
Business, require more powerful, high-level tools such as Tomcat, WebSphere Application
Server, WebSphere Commerce Suite, or equivalent third-party products. Servlets,
JavaServer Pages (JSP), Enterprise JavaBeans (EJB), and other leading-edge Internet
technologies are supported by these products. See Chapter 9, “Web application serving” on
page 191, for more information about Apache support of these advanced technologies.

7.1 Server-side includes
Server-side includes are the simplest way to add dynamic content to a Web site. A set of
directives is embedded in the HTML code and is interpreted by the server before the
document is sent to a client. SSI can be used to trigger a CGI program or return information
about documents or the value of environment variables, as shown in Figure 7-1. In a simple
sense, SSI allows for character substitution from within an HTML document.

Figure 7-1 SSI processing

GET homepage.html

<HTML>
<HEAD>
<TITLE>My homepage</TITLE>
</HEAD>
<BODY>
<CENTER>
<!--#echo var="DATE_LOCAL"-->
</CENTER>
<H1>This is my home page</H1>
</HTML>

Homepage.html

HTTP

<HTML>
<HEAD>
<TITLE>My homepage</TITLE>
</HEAD>
<BODY>
<CENTER>
Wednesday, 14-Nov-2001 16:47:37
</CENTER>
<H1>This is my home page</H1>
</HTML>

DATE_LOCAL= Wednesday, 14-Nov-2001 16:47:37
Client (browser)

iSeries HTTP server
158 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

SSI also supports the execution of simple conditional statements. Therefore, it provides a
reasonably flexible programming environment. The syntax used for SSI directives is:

<--#command parameter="value" -->

This syntax allows SSI directives to remain hidden when the server is not configured for SSI
support.

Table 7-1 lists the SSI commands available on iSeries and their respective parameters. For
additional information, see the Reference section of the HTTP Documentation Center at:

http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm

Table 7-1 SSI commands

Implementation
The implementation requires the following steps as shown in Figure 7-2:

1. From the Server area list, select the context for which SSIs will be enabled. In our
example, we select the root directory (/).

2. In the left pane, under Server Properties, select Dynamic Content and CGI.

3. Select the Server Side Includes tab.

Tip: Special characters inside SSI directives must be preceded by a backslash (\).

Command Description Valid parameters

config Controls various output formats. errmsg, sizefmt, timefmt

echo Prints one of the SSI or application programming interface
(API) variables. Dates are printed using config timefmt.

var, encoding

exec Calls a CGI program. cgi

fsize Prints the size of the specified file according to config
sizefmt.

file, virtual

flastmod Prints the last modification date of the specified file
according to config timefmt.

file, virtual

global Same as the set command. var, value

include Inserts the text of another file. Included files can be nested. (file path)

printenv Prints all existing environment variables and their values.
There are no attributes.

(var name)

set Sets the value of an environment variable. var, value

Note: Each HTML file that is served or configured for SSI must be scanned by the
HTTP Server (powered by Apache). Only configure SSI in those directories where the
SSIs will be used.
Chapter 7. Serving dynamic data 159

http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm
http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm

4. On the Server Side Includes page (Figure 7-2), complete these tasks:

a. Select either Allow server-side files without CGI or Allow server-side files with
CGI program calls inside.

In this example, only SSI include directives in files with the extension .shtml are parsed
and processed. If, for example, SSI directives are also processed for files with an
extension of .html, you must add the file extension to the corresponding table on the
Server Side Includes tab.

b. Click Apply.

c. Click OK.

Figure 7-2 Dynamic Content and CGI: Enabling SSI

5. Restart your server.

To test SSI, add a simple directive like the following example to one of your HTML files:

<center><!--#echo var="DATE_LOCAL" --></center>

The server parses the directive and replaces the SSI command with the value of the
environment variable.

7.2 Everything dynamic with CGI support
CGI is a set of programming specifications used to design programs that produce dynamic
content. CGI programs process user input submitted through a POST or GET method,
returning output to the browser window. CGI programs for the HTTP Server (powered by
Apache) can be written in C++, REXX, ILE C, ILE RPG, or ILE COBOL.

Note: Java CGI is no longer supported with IBM HTTP Server for iSeries. Java CGI was
supported on releases prior to V5R3 with Java Developer Toolkit (JDK) Version 1.1 only.
There is no support for JDK levels other than 1.1. Since JDK 1.1 is no longer shipped with
the 5722-JV1 product in V5R3, Java CGI is no longer supported with IBM HTTP Server
(5722-DG1) in this release.
160 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The iSeries server can even run a CGI application that is written and compiled for AIX®. The
binary output of the compiler is executed directly from OS/400 Portable Application Solutions
Environment (OS/400 PASE). For a detailed example of how to implement an AIX binary as a
CGI, see Appendix A, “Bringing PHP to your iSeries server” on page 387.

CGIs come into play whenever a significant processing load must be employed to generate
dynamic output.

Implementation
The best implementation guide for CGI programming both with the HTTP Server (original)
and HTTP Server (powered by Apache) is HTTP Server for iSeries Programming,
GC41-5435.

For an example of how to configure your HTTP Server (powered by Apache) for a CGI
application, see 7.3, “Net.Data: A ready-made scripting tool” on page 161. For other
resources and Web sites, see 7.4, “For more information” on page 169.

7.3 Net.Data: A ready-made scripting tool
Net.Data is an easy-to-use scripting language developed by IBM and bundled with the IBM
HTTP server (as shown in Table 2-2 on page 20). Net.Data macros are fed to a CGI
interpreter (DB2WWW.PGM) that generates HTML output. The Net.Data macro language
allows you to generate a wide range of dynamic content through embedded dynamic
Structured Query Language (SQL) invocations and program calls. A single HTTP Server
(powered by Apache) can handle many Net.Data macros and applications.

7.3.1 Implementation: Setting up the Net.Data environment
A Net.Data environment consists of the macro processor, a configuration file (known as the
initialization or INI file), the Net.Data macro source script, and an HTTP server. This example
assumes the library and integrated file system (IFS) structure as shown in Figure 7-3.

Figure 7-3 Net.Data: Overview of the configuration objects

 ...
 20 ScriptAlias /cgi-bin/ /QSYS.LIB/TCP52LMAST.LIB/DB2WWW.PGM/
...
 31 <Directory /QSYS.LIB/TCP52LMAST.LIB/>
 32 allow from all
 33 order allow,deny
 34 UseCanonicalName Off
 35 HostNameLookups off
 36 Options +ExecCGI
 37 </Directory>

<ServerRoot>/httpd.conf

Copy

URL
http://as20:8007/cgi-bin/MACRO1/run

Library : QHTTPSVR

DB2WWW.PGM

Library: TCP52LMAST

DB2WWW.PGM

QNETDATA
.FILE

MACRO1
.MBR

INI.FILE

DB

HTML
(Result)
Chapter 7. Serving dynamic data 161

Table 7-2 defines the main configuration features that you can use to configure an HTTP
Server (powered by Apache) to use a Net.Data macro to create dynamic content.

Table 7-2 HTTP Server (powered by Apache) and Net.Data configuration parameters

To set up the Net.Data environment, follow these steps:

1. Create a user library to have a place to keep these files. Enter the Create Library (CRTLIB)
command and create library TCP52LMAST as shown in Figure 7-4.

Figure 7-4 Net.Data: Creating a new library

2. Copy the original macro processor program DB2WWW.PGM from the QHTTPSVR library
to your library, which you just created. Enter the Create Duplicate Object (CRTDUPOBJ) CL
command as shown in Figure 7-5. The primary reason you should do this is to move the
DB2WWW CGI program into a library that you can protect from both the OS/400 point of
view and through HTTP server configuration directives. That is, it is considered a more
secure practice to place all your CGI applications, including IBM DB2WWW.PGM, into a
single protected library.

Parameter Value

Server name PBABASIC07

Server root /tcp52dmast/basicConfig

Document root /tcp52dmast/basicConfig/ITSOco

IP address All

Port 8007

OS/400 Library TCP52LMAST

Maco processor program DB2WWW.PGM

Directory path for alias /QSYS.LIB/TCP52LMAST.LIB/DB2WWW.PGM/

Note: You may have already restored this library if you followed the steps outlined in
Appendix D, “Additional material” on page 421. In this case, you may skip these steps
since we created these objects for you.

Create Library (CRTLIB)

 Type choices, press Enter.

 Library TCP52LMAST Name
 Library type *PROD *PROD, *TEST
 ASP number 1 1-32, *ASPDEV
 ASP device *ASP Name, *ASP, *ASPGRPPRI...
 Text 'description' iSeries TCP/IP and pbApache

Tip: If you apply program temporary fixes (PTFs) for the IBM HTTP Server for iSeries
(5722-DG1), recopy the DB2WWW program from QHTTPSVR to your own library. This
new copy brings any updated code with it.
162 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 7-5 Net.Data: Copying the DB2WWW.PGM macro processor to your library

3. Create the Net.Data initialization file, which will reside in the same library as the macro
processor. Enter the Create Source Physical File (CRTSRCPF) CL command to create file
INI with a DB2WWW member, as shown in Figure 7-6. Note that since all the statements
in the INI file have to be on single lines, we recommend a record length value of 240.

Figure 7-6 Net.Data: Creating the INI initialization file

The initialization file contains your default environment settings such as the path where
macros are stored, environment variables, and logging and tracing preferences.

4. Enter the Start PDM (STRPDM) command to modify the INI file as shown in Figure 7-7.

Figure 7-7 Net.Data: INI file

See the Net.Data Administration and Programming Guide for OS/400 and Net.Data
Reference manuals on the Web for more information about environment settings:

http://www-1.ibm.com/servers/eserver/iseries/software/netdata/docs/doc.htm

 Create Duplicate Object (CRTDUPOBJ)

 Type choices, press Enter.

 From object DB2WWW Name, generic*, *ALL
 From library QHTTPSVR Name, *LIBL, *CURLIB
 Object type *PGM *ALL, *ALRTBL, *AUTL...
 + for more values
 To library TCP52LMAST Name, *SAME, *FROMLIB...
 New object *OBJ Name, *SAME, *OBJ
 From ASP device * Name, *, *CURASPGRP, *SYSBAS
 To ASP device *ASPDEV Name, *ASPDEV, *...

 Create Source Physical File (CRTSRCPF)

 Type choices, press Enter.

 File INI Name
 Library TCP52LMAST Name, *CURLIB
 Record length 240 Number
 Member, if desired DB2WWW Name, *NONE, *FILE
 Text 'description' Net.Data initialization file

 Columns . . . : 1 121 Browse
 SEU==>
 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...
 *************** Beginning of data ******************************
0001.00 MACRO_PATH /QSYS.LIB/TCP52LMAST.LIB/QNETDATA.FILE
0002.00 DTW_PROCESS_REPORT_ON_ERROR = YES
0003.00 DTW_SHOWSQL YES
0004.00 DTW_ERROR_LOG_DIR /TCP52DMAST/LOGS
0005.00 DTW_ERROR_LOG_LEVEL ERROR
0006.00 DTW_TRACE_LOG_DIR /TCP52DMAST/LOGS
0007.00 DTW_TRACE_LOG_LEVEL OFF
0008.00 DTW_TRACE_MERGE_RECORDS NO
 ****************** End of data *********************************
Chapter 7. Serving dynamic data 163

http://www-1.ibm.com/servers/eserver/iseries/software/netdata/docs/doc.htm

5. Macros can be stored on the iSeries server as members of a source physical file in a
library or as stream files (usually with the .d2w or .ndm extension) inside the IFS. The two
solutions are equivalent. Choose one and change the MACRO_PATH statement in your
configuration file shown in Figure 7-7 to reflect your choice. Figure 7-8 lists the code for
the sample macro used in this example.

Figure 7-8 Net.Data: A sample macro

This macro establishes a connection to the local database defined in the Work with Relational
Database Directory Entries (WRKRDBDIRE) display. When the %html(run) block is called,
this connection is used to perform an SQL query on a parts database file, and the output is
returned as a basic HTML table inside a dynamically generated page.

7.3.2 Configuring your HTTP Server (powered by Apache) for CGI
This exercise explains how to enable your HTTP Server (powered by Apache) to support
dynamically generated Web pages. Table 7-2 on page 162 shows the HTTP Server (powered
by Apache) configuration used in this task.

First, you need to create an alias to the library on the iSeries server which contains the CGI
program for Net.Data. This alias is used in the Web client Uniform Resource Locator (URL).
Therefore, the library structure and physical names of directories and files are not revealed to
end users of your Web site.

1. From the Server list, select your server name. From the Server area list, select Global
Configuration as shown in Figure 7-9.

2. In the left pane, under Server Properties, click URL Mapping.

3. In the right panel, select the Aliases tab.

 Columns . . . : 1 121 Edit
 SEU==>
 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
 *************** Beginning of data **
0001.00 %{--------------- SAMPLE MACRO -----------------%}
0002.00 %define{
0003.00 DATABASE="*LOCAL"
0004.00 DTW_HTML_TABLE="YES"
0005.00 %}
0006.00
0007.00 %function(DTW_SQL) MyQuery() {
0008.00 SELECT * FROM TCP52LMAST.ITEM
0009.00 %}
0010.00
0011.00 %HTML(run){
0012.00 <html>
0013.00 <head>
0014.00 <title>Sample macro</title>
0015.00 </head>
0016.00 <body>
0017.00 <center>
0018.00 <h1>Query Results</h1>
0019.00 @MyQuery()
0020.00 </center>
0021.00 </body>
0022.00 </html>
0023.00 %}
 ****************** End of data ***
164 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. On the Aliases tab (Figure 7-9), complete these tasks:

a. Click Add to enter a new URL to host file system mapping.
a. Under Alias type, select Script Alias.
b. Under URL path, type /cgi-bin/.
c. Under Host directory or file, type /QSYS.LIB/TCP52LMAST.LIB/DB2WWW.PGM/.

d. Click Continue.
e. Click OK.

Figure 7-9 Net.Data: Creating the ScriptAlias directive

Next, as shown in Figure 7-10, you tell your server that it is allowed to run CGI programs from
this directory. One way to do this is to create a new context (container) for this directory in
which you will place directives allowing access to the CGI program (DB2WWW.PGM).

1. In the left pane, under Server Properties, click Container Management.

2. In the right panel, select the Directories tab.

Attention: Be careful! The URL path and directory or file names are case sensitive
in this situation.
Chapter 7. Serving dynamic data 165

3. On the Directories page (Figure 7-10), complete these tasks:

a. Under Directory/Directory Match containers, you see two entries in the table. The first
was created automatically when the server was created using the create wizard. The
root directory / is secured by default. The second entry was added by the create
wizard. It allows the server to serve the home page, other public Web pages and image
files.

Click Add to add a new entry to the table.

b. Under the Type column, select Directory. For the Directory path or expression, type
/QSYS.LIB/TCP52LMAST.LIB/. This is the physical path of the library containing the CGI
programs. In this case, it is the Net.Data program DB2WWW.PGM as provided by IBM.

c. Click Continue.
d. Click OK.

Figure 7-10 Net.Data: Creating a new Directory context (or container)

Next you need to tell the server who is allowed to access the CGI programs. Refer to
Figure 7-11 for the following steps.

1. From the Server area list, select the newly created Directory
/QSYS.LIB/TCP52LMAST.LIB/.

2. In the left pane, click Security

3. In the right panel, select the Control Access tab.
166 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. On the Control Access page (Figure 7-11), complete these steps:

a. Under Control access based on where the request is coming from, select Allow then
deny for Order for evaluating access.

b. Select Allow access to all, except the following.

c. Click Apply.

d. Click OK.

Figure 7-11 Net.Data: Control Access

Next you need to tell your server that it is allowed to run CGI programs in this directory. The
following steps explain how to do this:

1. In the Server area, make sure that the directory you are working with is still selected.

2. In the left pane, select Dynamic Content and CGI.

3. Select the General Settings tab.
Chapter 7. Serving dynamic data 167

4. On the General Settings page (Figure 7-12), for Allow CGI programs to be run, select
Enabled.

Figure 7-12 Net.Data: Enabling CGI programs to run

5. Click Apply and then click OK.

When displaying your configuration, you should now see your configuration file and its
directives as shown in Figure 7-13.

Figure 7-13 Net.Data: Directives for enabling CGI and Net.Data

Your server is now set up to support dynamically generated Web pages via a CGI.
168 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

7.3.3 Testing your HTTP Server (powered by Apache) and Net.Data macro
You must stop and start your server to re-read the configuration file. Test the HTTP server by
entering the following URL in your Web client to see the results as shown in Figure 7-14:

http://hamts810:8007/cgi-bin/MACRO1.MBR/run

Figure 7-14 Net.Data: HTML query results of an iSeries database table created by Net.Data

7.4 For more information
Refer to the following resources for more information:

� Net.Data manuals and documentation home page

http://www.ibm.com/eserver/iseries/software/netdata/docs/doc.htm

� Sample CGI programs

http://www.ibm.com/eserver/iseries/software/http/examples/

� Easy400, CGI Web development tools Web site for iSeries

This site includes a link to download the CGIDEV2 ILE-RPG CGI Development Toolkit.

http://www-922.ibm.com/easy400p/easy400p01.html

� IGNITe/400 iSeries On Demand Business user group offers sample programs and tips

http://www.ignite400.org

� Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and
More, SG24-5402

This IBM Redbook has an example CGI application written in RPG IV.
Chapter 7. Serving dynamic data 169

http://www.ignite400.org
http://www.ignite400.org
http://www.ibm.com/eserver/iseries/software/netdata/docs/doc.htm
http://www.ibm.com/eserver/iseries/software/http/examples/
http://www-922.ibm.com/easy400p/easy400p01.html
http://www.ibm.com/eserver/iseries/software/netdata/docs/doc.htm
http://www.ibm.com/eserver/iseries/software/http/examples/

170 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Part 3 Building a Web
application

If you started reading this IBM Redbook from the beginning to this point, you should now have
a good fundamental understanding of the HTTP Server (powered by Apache). And If you
have made it this far, we know now that you are serious about doing more than just providing
a Web site with a bit of dynamic data. You are serious about building a Web application based
upon an On Demand Business infrastructure. In this case, the following chapters were written
for you.

This part takes an in-depth look at the HTTP Server (powered by Apache). It includes:

� The steps that are necessary to implement Web application serving with Java featuring
WebSphere Application Server and the Apache Software Foundation’s (ASF) Tomcat.

� A comparison guide of the strengths and weaknesses of both Web application servers.

� Advanced topics such as how to get the best performance from your HTTP Server
(powered by Apache), an introduction to the Webserver Search Engine, problem
determination, high availability, and national language considerations.

� A running example of extending the core features of your HTTP Server (powered by
Apache) via Apache Portable Runtime (APR) support, which allows you to write your own
modules or port them to the iSeries as Integrated Language Environment (ILE) service
programs.

Indeed, if you are serious about your HTTP server and the service that it provides for your
customers, then you may be interested in these advanced resources too:

� Apache Software Foundation is the “galactic center” of all documentation and information
about the Apache server and all other related projects such as Jakarta Tomcat, Hypertext
Preprocessor (PHP), and so on. To learn more, see:

http://www.apache.org

Part 3
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 171

http://www.apache.org

� The IBM Systems Group Services’ IBM Custom Technology Center is an organization of
more than 70 world class application architects and programmers (one is located in
Rochester, Minnesota, home of your iSeries) and is an extension of the IBM development
laboratories. They specialize in rapid design and architecture, infrastructure development,
software installation and configuration, development of applications across multiple
technologies, and IBM TotalStorage® services. They have worked with over 4000
customers and have more than 400,000 hours of services engagements over the past ten
years. You can find more information on the Web at:

http://www.ibm.com/servers/eserver/services/

� IBM developerWorks® has an extensive collection of programming tips and sample
applications, white papers, education, and pointers to IBM alphaWorks® and IBM
PartnerWorld®. A search of this site for the keyword Apache yielded 493 results. For more
information, see:

http://www.ibm.com/developerworks

� IBM alphaWorks is a place for programmers to meet and share leading-edge applications
and information.

http://www.alphaworks.ibm.com/

� IBM PartnerWorld is a collection of resources for IBM Business Partners.

http://www.ibm.com/partnerworld

� Many excellent third-party Web sites focus on different aspects of the iSeries server. Here
is a partial list.

– Search400.com

http://search400.techtarget.com/

– IGNITe/400

http://www.ignite400.org/

– COMMON

http://www.common.org/

– Midrange Computing Press Online

http://www.mcpressonline.com/

– iSeries Network

http://www.iseriesnetwork.com/

– Eserver Magazine, iSeries edition (formerly iSeries Magazine), which is an IBM
publication

http://eservercomputing.com/iseries/
172 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.common.org/
http://www.mcpressonline.com/
http://www.ibm.com/servers/eserver/services/
http://www.ibm.com/developerworks
http://www.alphaworks.ibm.com/
http://www.ibm.com/partnerworld
http://www.ignite400.org/
http://search400.techtarget.com/
http://www.iseriesnetwork.com/
http://eservercomputing.com/iseries/

Chapter 8. Migration from HTTP Server
(original) to (powered by Apache)

Some HTTP servers running in the iSeries server are the HTTP Server (original). This server
has been supported on the iSeries server since V4R3 of OS/400. However, with V4R5, a new
Web server came to the iSeries server and customers had the option to choose between the
HTTP Server (original) and the HTTP Server (powered by Apache). Now, with i5/OS V5R3,
the only supported Web server is the HTTP Server (powered by Apache). This also means
that your HTTP Server (original) instance will no longer run under i5/OS.

Both servers have similar functions and can coexist and run together on the same iSeries
server. After all, an HTTP server is nothing more than a fancy file server. We use
configuration directives to tell the server which files to serve and which ones to protect.
However, they have some differences. This chapter does not detail these differences (see 1.1,
“HTTP Server (powered by Apache) features” on page 4). Instead, it defines them well
enough so that you can understand the strengths and limitations of migrating a configuration
from the HTTP Server (original) to the HTTP Server (powered by Apache).

The HTTP Server (original) evolved from work being done at the European Laboratory for
Particle Physics (CERN) in Geneva, Switzerland. The Apache server was developed at the
National Center for Supercomputing Application (NCSA) and was based on the NCSA HTTP
daemon (NCSA HTTPd 1.3). If you are familiar to the HTTP Server (original) configuration,
you will find Apache’s configuration a bit different.

8

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 173

8.1 A look at HTTP Server (original) and (powered by Apache)
If you have been serving your domain using another Web server and you want to use the
HTTP Server (powered by Apache), you have three options:

� Create a new HTTP Server (powered by Apache) configuration from scratch
� Migrate the HTTP Server (original) configuration
� Port an Apache configuration from a non-iSeries server

This option, while valid, is not discussed in this chapter. Almost all directives migrate
smoothly to the iSeries server. These are some of the places you should first look to
identify if there is a possible problem:

– The configuration file should be based on Apache Version 2.0. Many other platforms
are still at Version 1.3.

– The syntax of the LoadModule directive will most likely be different. At the very least,
modules on your iSeries server are provided by Integrated Language Environment
(ILE) service programs and generally look like this:

LoadModule header_module /QSYS.LIB/ITSOAPACHE.LIB/MOD_HEADER.SRVPGM

– This also brings up another point that many people have invested a lot of time and
effort to extend the capabilities of their Apache server running on a specific platform.
You must look for those platform-specific extensions to the Apache server and either
port them to the iSeries or find an equivalent replacement.

An example of this may be Perl or Hypertext Preprocessor (PHP) scripts. See
Appendix A, “Bringing PHP to your iSeries server” on page 387, for information about
PHP. For more information about Perl for your iSeries, go to:

• http://www.iseries.ibm.com/tstudio/workshop/tiptools/perl.htm
• http://www.cpan.org/ports/index.html#os400/

Regardless of which path brings you to the HTTP Server (powered by Apache), in the end, of
course, you must test.

Tip: The total move to Apache with i5/OS V5R3 didn’t come by surprise. It has been the
goal of IBM to eventually replace the HTTP Server (original) with the HTTP Server
(powered by Apache) since 07 March 2003, when the following announcement was made,
which you can find on the Web at:

http://www.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html

V5R2 to be the final release to support HTTP Server (original)

IBM plans for V5R2 to be the final release to support HTTP Server (original). IBM HTTP
Server (powered by Apache) is the recommended solution for your Web serving needs.
IBM plans for the HTTP Server (original) to be removed from IBM HTTP Server for
iSeries in a future release. For more information about migrating HTTP Server (original)
configurations to HTTP Server (powered by Apache), visit our migration article:

http://www.ibm.com/servers/eserver/iseries/software/http/product/migrate.html

For long-term thinkers, HTTP Server (powered by Apache) is the better choice.
174 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/servers/eserver/iseries/software/http/product/migrate.html
http://www.cpan.org/ports/index.html#os400/
http://www.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html
http://www.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html
http://www.iseries.ibm.com/tstudio/workshop/tiptools/perl.htm

The HTTP Server (original) can be migrated using the migration wizard provided with the IBM
HTTP Server for iSeries. The success of migrating the HTTP Server (original) configuration
file depends on the server directives used in the original configuration file. Most directives can
be migrated cleanly. Few directives are not migrated because they are no longer supported.
Maybe the best way to think about the migration wizard is that it is a tool to help you. Like any
tool, it is your ultimate responsibility to end up with a clean migration.

You will notice that for either option (a new HTTP Server (powered by Apache) configuration
or a migration of the HTTP Server (original)), you must test thoroughly the new HTTP
configuration file. You can perform the test without any HTTP Server (original) interruption
because the migration utility does not remove or modify the HTTP Server (original)
configuration file. Both servers, the original and migrated, can be active simultaneously.
However they must listen on different ports or Internet Protocol (IP) addresses.

One of the most important differences between the two servers is the Apache concept of
context. All server directives are related to a context and have meaning only within that
context. Some contexts are:

� General settings
� VirtualHost
� Location
� Directory

You must understand the Apache contexts to understand the output of the migration tool.
Refer to Chapter 4, “Quick guide to Apache contexts and request routing” on page 59, for
additional information.

There are also differences related to the server directives supported by each HTTP server.

8.1.1 Directives and services not supported
Some directives are no longer supported. The HTTP Server (powered by Apache) does not
support:

� Log reporting and Web usage mining

However, the Real Time Server Statistics that are now available with the HTTP Server
(powered by Apache) provide a similar function.

� Platform for Internet Content Selection (PICS) support

� The Server API as provided with the HTTP Server (original). The HTTP Server (powered
by Apache) uses Apache Portable Runtime (APR) application programming interfaces
(APIs). See Chapter 12, “Apache Portable Runtime: Extending your core functionality” on
page 311.

� The NameTrans directive used by WebSphere Application Server (which is also not
needed)

In addition, the PUT and DELETE methods used by the HTTP Server (original) require
WebDAV configuration on the HTTP Server (powered by Apache).
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 175

8.1.2 Equivalent directives
Most of the HTTP Server (original) directives have an equivalent directive in the HTTP Server
(powered by Apache) and the migration utility migrates those directives cleanly. However
some functions require additional configurations. Table 8-1 lists the most commonly used
original directives and their Apache equivalent.

Table 8-1 Mapping HTTP Server (original) to HTTP Server (powered by Apache) directives

8.1.3 Functional differences
The HTTP Server (powered by Apache) has some functional differences from the HTTP
Server (original) in the area of server-side includes (SSI):

� The HTTP Server (powered by Apache) ignores the cmntmsg attribute of the configuration
command.

� The HTTP Server (powered by Apache) does not allow extra text after a tag value.

8.1.4 New HTTP Server (powered by Apache) directives
The HTTP Server (powered by Apache) includes a set of new server directives. That is, you
and the migration tool can take advantage of these directives to enhance the functionality,
performance, and scalability of any migrated HTTP Server (original) instance. Table 8-2
describes some of these new server directives.

Table 8-2 New HTTP Server (powered by Apache) directives

HTTP Server (original) directives HTTP Server (powered by Apache) directives

Pass Alias and AliasMatch.

Note: The migration wizard mostly uses AliasMatch as the
first choice in migrating a Pass directive.

Exec ScriptAlias and ScriptAliasMatch

Note: The migration wizard mostly uses ScriptAliasMatch as
the first choice in migrating an Exec directive.

Map MapMatch

Fail Deny in <location>

Apache directive Description Purpose

AccessFileName Specifies name of ACL file Security

AllowOverride ACL values overriding others Security

<Directory> Defines attributes for directories Security

<DirectoryMatch> Same, but uses regular expression Server configuration
and virtual host

DocumentRoot Defines the default directory from which all Web
content must be served from

Server configuration
and virtual host

<Files> Defines attributes for files Security

<FilesMatch> Same as above Security

<Limit> Group access control based on method All
176 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

8.2 An example migration
If you want to migrate an HTTP Server (original) instance, you can do it using the migration
wizard. This wizard migrates the server directives found in your HTTP Server (original) but
without adding any new functionality. You can use this migration utility and leave the migrated
server as it was migrated or you can enhance it using new server directives.

The migration process includes the following steps:

1. Understand the initial situation of the HTTP Server (original) configuration.

2. Follow the migration steps as explained in 8.2.2, “Migration steps” on page 178.

3. Test your migration as explained in 8.3, “Testing your migration” on page 188.

4. Fix any bugs (see Chapter 13, “Problem determination: When things do not go as
planned” on page 323).

5. Repeat these steps for each directive until you are finished or create a brand new HTTP
Server (powered by Apache) configuration.

Testing is one of the most important tasks when migrating from an HTTP Server (original).
Without testing, you cannot ensure the functionality of the migrated server.

You can perform testing without any HTTP Server (original) interruption because the
migration utility does not remove or modify the HTTP Server (original) configuration file. Both
servers, the original and migrated, can be active simultaneously under OS/400 V5R2.
However, you must run them in different ports or IP addresses. Under i5/OS V5R3, the HTTP
Server (original) no longer starts.

<LimitExcept> Opposite of <Limit> All

LoadModule Enables modules compiled in but not in use Support new functions

MapMatch To migrate Map directives from HTTP Server
(original)

Uniform Resource
Locator (URL) mapping

NameVirtualHost Specifies address for name-based virtual host
names

Virtual hosts

ServerAlias Virtual host names Virtual host

ServerRoot Directory where server is installed General setting

UseCanonicalName Allows use of short names Dynamic virtual host

<VirtualHost> Group directives based on host Virtual host

Apache directive Description Purpose

Tip: Due to the differences in the way the HTTP Server (powered by Apache) server
processes the configuration file and directives compared to the HTTP Server (original),
you should clean your source configuration file before migration. For example, when
the HTTP Server (original) processes the configuration file, it stops at the first match. If
you have a directive that is less specific (Pass /* /webdocs/default/*) than another one
later in the file (Pass /help/* /webdocs/help/*), the second one is never processed. With
the HTTP Server (powered by Apache) server, both Pass statements are migrated and
processed. This can lead to unwanted results.
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 177

8.2.1 Initial situation: HTTP Server (original) configuration
To show the migration process flow, we selected the DEFAULT server defined by the CONFIG
configuration file (Example 8-1).

Example 8-1 HTTP Server (original) configuration

Pass / /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html
Pass /sample/* /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/*
Pass /QIBM/ProdData/OS400/SQL/Samples/
IconPath /QIBM/HTTPSVR/Icons/
AddIcon text.gif text text/*
AddIcon html.gif html text/html
AddIcon binary.gif bin application/*
AddIcon compress.gif Z application/x-compress
AddIcon compress.gif gzip application/x-gzip
AddIcon image.gif img image/*
AddIcon movie.gif vid video/*
AddIcon sound.gif au audio/*
AddType .java text/plain binary 1.0
AddType .html text/html 8bit 1.0
AddType .htm text/html 8bit 1.0
AddType .gif image/gif binary
AddType .bmp image/bmp binary 1.0

8.2.2 Migration steps
To migrate the HTTP Server (original) to an HTTP Server (powered by Apache), follow these
steps:

1. Click the Setup, Manage, or Advanced tab.

2. In the left pane, under Common Tasks and Wizards, click Migrate Original Server to
Apache.

3. In the right panel, the Migrate Original to Apache wizard opens (see Figure 8-1). Complete
these tasks:

a. Select the original server that you want to migrate by either choosing the HTTP server
(original) or Named configuration option.

b. Select the appropriate server name or configuration name from the list. For this
example, we selected CONFIG which is the name of the configuration file for the
DEFAULT server.

c. Click Next.

Tip: The main difference between the two options for selecting a configuration is that
the first option shows only HTTP instances that are defined on this system. That is,
you see the instances in the IBM Web Administration for iSeries interface that are
configured on a system prior to V5R3. Starting from V5R3, instances do not exist
anymore. Only configuration files are available for migration. The Named
configuration option allows you to select configuration members that are stored in
library QUSRSYS in the file QATMHTTPC. The latter option allows you to transfer a
configuration member from one server and perform the migration on another server.
178 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 8-1 Migration: Selecting the original server

4. In the next panel (Figure 8-2), specify the new HTTP Server (powered by Apache) name.
For this example, we kept the default name WEBSERVER and added a meaningful
description. Click Next.

Figure 8-2 Migration: Specifying the new HTTP Server (powered by Apache) name
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 179

5. In the next panel (Figure 8-3), enter the server root for the new server. In this example, we
used the default /www/webserver. Click Next.

Figure 8-3 Migration: Specifying the server root for the new server
180 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. With the HTTP Server (original) identified and the HTTP Server (powered by Apache)
attributes defined, it is time to migrate the configuration.

The migration utility mentions some basic differences between both HTTP servers. It also
highlights the message that the HTTP Server (original) configuration file is not modified in
any way as you can see in Figure 8-4. Click Next.

Figure 8-4 Migration: Process
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 181

At this point, the migration utility has finished analyzing the original named configuration. It
allows you to review a summary of the number of directives that were found in the HTTP
Server (original). It also enables you to review the number of Apache directives that were
used to provide the same functionality. Figure 8-5 shows an example of this report.

Figure 8-5 Migration: Summary report of migration of original to HTTP Server (powered by Apache)

Note: If your HTTP Server (original) configuration contains Map directives, an
additional page is shown.

This option gives you the choice to have the migration wizard migrate all request routing
directives including the map directive. The migrator converts the map directive into a
MapMatch directive, which is known only on the iSeries. To use directives that are
common to Apache configurations, you may want to select No at the question whether
you want to migrate using MapMatch directives. In this case, you have to manually
migrate all request routing directives.
182 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

As indicated in Figure 8-5, you can see the link “Click here tor a detailed summary of the
migration process.” It takes you to the details behind the success or failure as found by the
migration utility. The migration utility defines the success of the migrated server directives
within the following categories:

– Basic directives
– Request routing
– Language Settings directives
– CGI directives
– Directory directives
– HTTP methods
– Logging
– System managements
– Directives not migrated

The details of the report may look as shown in Example 8-2.

Example 8-2 Report details

0 Basic directives migrated.
HTTP server (original) directives
HTTP server (powered by Apache) directives
Listen *:80
DirectoryIndex welcome.html index.html

--

3 Request Routing directives migrated.
HTTP server (original) directives
Pass / /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html
Pass /sample/* /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/*
Pass /QIBM/ProdData/OS400/SQL/Samples/
HTTP server (powered by Apache) directives
AliasMatch ^/$ /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html
Directory /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html/
Directory /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/
FilesMatch ^Welcome\.html$
Allow From all
Allow From all
AliasMatch ^/sample/(.*) /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/$1
Allow From all
AliasMatch ^/QIBM/ProdData/OS400/SQL/Samples/$ /QIBM/ProdData/OS400/SQL/Samples/
Directory /QIBM/ProdData/OS400/SQL/Samples/
Allow From all

--

5 Language Settings directives migrated.
HTTP server (original) directives
AddType .java text/plain binary 1.0
AddType .html text/html 8bit 1.0
AddType .htm text/html 8bit 1.0
AddType .gif image/gif binary
AddType .bmp image/bmp binary 1.0
HTTP server (powered by Apache) directives
AddType text/plain .java
AddType text/html .html
AddType text/html .htm
AddType image/gif .gif
AddType image/bmp .bmp
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 183

--

0 CGI Settings directives migrated.
HTTP server (original) directives
HTTP server (powered by Apache) directives
CGIConvMode %%MIXED/MIXED%%

--

9 Directory directives migrated.
HTTP server (original) directives
IconPath /QIBM/HTTPSVR/Icons/
AddIcon text.gif text text/*
AddIcon html.gif html text/html
AddIcon binary.gif bin application/*
AddIcon compress.gif Z application/x-compress
AddIcon compress.gif gzip application/x-gzip
AddIcon image.gif img image/*
AddIcon movie.gif vid video/*
AddIcon sound.gif au audio/*
HTTP server (powered by Apache) directives
HeaderName README
AddIconByType "/QIBM/HTTPSVR/Icons/text.gif" text/*
AddAltByType "text" text/*
AddIconByType "/QIBM/HTTPSVR/Icons/html.gif" text/html
AddAltByType "html" text/html
AddIconByType "/QIBM/HTTPSVR/Icons/binary.gif" application/*
AddAltByType "bin" application/*
AddIconByType "/QIBM/HTTPSVR/Icons/compress.gif" application/x-compress
AddAltByType "Z" application/x-compress
AddIconByType "/QIBM/HTTPSVR/Icons/compress.gif" application/x-gzip
AddAltByType "gzip" application/x-gzip
AddIconByType "/QIBM/HTTPSVR/Icons/image.gif" image/*
AddAltByType "img" image/*
AddIconByType "/QIBM/HTTPSVR/Icons/movie.gif" video/*
AddAltByType "vid" video/*
AddIconByType "/QIBM/HTTPSVR/Icons/sound.gif" audio/*
AddAltByType "au" audio/*

The directives not supported by the Apache server, if any, are also included in the
migration summary.

Click Next.
184 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

7. Now you see summary page as shown in Figure 8-6. Click Finish to generate the
migrated server configuration.

Figure 8-6 Migrate Original to Apache
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 185

8. The Manage Apache server "WEBSERVER" panel opens as shown in Figure 8-7. As
shown, you can also see the version of Apache installed here.

Figure 8-7 Manage Apache server WEBSERVER

8.2.3 Result: HTTP Server (powered by Apache) configuration
The migrated file included the HTTP Server (powered by Apache) directives shown in
Example 8-3. To see the configuration on your own system, select any option under Server
Properties in the Manage Apache server WEBSERVER as shown in Figure 8-7 and click the
Preview button in the lower right corner of the panel.
186 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Example 8-3 Directives in the configuration file

HTTP server: WEBSERVER
Selected file: /www/webserver/conf/httpd.conf

 1 LogFormat "%h %l %u %t \"%r\" %>s %b" common
 2 LiveLocalCache Off
 3 <Location />
 4 <LimitExcept GET HEAD OPTIONS POST TRACE>
 5 Order Allow,Deny
 6 Deny From all
 7 </LimitExcept>
 8 </Location>
 9 Options -ExecCGI -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes
-MultiViews
 10 DefaultType www/unknown
 11 Listen *:80
 12 ErrorLog Off
 13 MaxKeepAliveRequests 5
 14 TimeOut 120
 15 KeepAliveTimeout 4
 + AccessFileName .htaccess
 16 DirectoryIndex welcome.html index.html
 17 AddType text/plain .java
 18 AddType image/bmp .bmp
 19 AddType image/gif .gif
 20 AddType text/html .htm
 21 AddType text/html .html
 22 CGIConvMode %%MIXED/MIXED%%
 23 IndexOptions -DescriptionWidth -FancyIndexing -FoldersFirst -IconHeight
-IconsAreLinks -IconWidth -IgnoreCase -IgnoreClient -NameWidth -NameMinWidth
-ScanHTMLTitles -SelectiveDirAccess -ShowSmallFileBytes -ShowOwner -SuppressColumnSorting
-SuppressDescription -SuppressHTMLPreamble -SuppressIcon -SuppressLastModified
-SuppressRules -SuppressSize -TrackModified -VersionSort
 24 HeaderName README
 25 AddIconByType "/QIBM/HTTPSVR/Icons/text.gif" text/*
 26 AddIconByType "/QIBM/HTTPSVR/Icons/sound.gif" audio/*
 27 AddIconByType "/QIBM/HTTPSVR/Icons/movie.gif" video/*
 28 AddIconByType "/QIBM/HTTPSVR/Icons/image.gif" image/*
 29 AddIconByType "/QIBM/HTTPSVR/Icons/compress.gif" application/x-gzip
 30 AddIconByType "/QIBM/HTTPSVR/Icons/compress.gif" application/x-compress
 31 AddIconByType "/QIBM/HTTPSVR/Icons/binary.gif" application/*
 32 AddIconByType "/QIBM/HTTPSVR/Icons/html.gif" text/html
 33 AddAltByType "text" text/*
 34 AddAltByType "au" audio/*
 35 AddAltByType "vid" video/*
 36 AddAltByType "img" image/*
 37 AddAltByType "gzip" application/x-gzip
 38 AddAltByType "Z" application/x-compress
 39 AddAltByType "bin" application/*
 40 AddAltByType "html" text/html
 41 <Directory />
 42 Order Allow,Deny
 43 Deny From all
 44 </Directory>
 45 <Directory /QIBM/ProdData/OS400/SQL/Samples/>
 46 Allow From all
 47 </Directory>
 48 <Directory /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/>
 49 Allow From all
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 187

 50 <FilesMatch ^Welcome\.html$>
 51 Allow From all
 52 </FilesMatch>
 53 </Directory>
 54 <Directory /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html/>
 55 Allow From all
 56 </Directory>
 57 AliasMatch ^/$ /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/Welcome.html
 58 AliasMatch ^/sample/(.*) /QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/$1
 59 AliasMatch ^/QIBM/ProdData/OS400/SQL/Samples/$ /QIBM/ProdData/OS400/SQL/Samples/

Now it’s up to you to decide if you want to use this configuration. Be sure to test, test, and test
again.

As shown in the previous example, the migrated HTTP Server (powered by Apache)
configuration file contains some directives that you may not be able to decipher. The option
always exists for you to create, from scratch, a new HTTP Server (powered by Apache)
configuration file. You may find it easier to understand and, therefore, easier to extend in the
future as your Web application grows.

8.3 Testing your migration
After a successful migration, you must test your new HTTP Server (powered by Apache)
configuration. Before you start the new server, you need to change either the IP address or
the port used by the HTTP server because the migration utility does not change this setting.
Both servers are using the same IP address and port. The easy way is to change the port in
the Apache server. Of course, you can always end the HTTP Server (original) instance for the
duration of your test if this is feasible.

If you have any problems with the server starting or other failures, review Chapter 13,
“Problem determination: When things do not go as planned” on page 323.

You can perform testing of your Web site and application at many different levels:

� Functionality

– Does the new server faithfully send all the static information such as Hypertext Markup
Language (HTML), graphic images, and other media?

– Does the new server faithfully create dynamic data to be displayed within the HTML via
Common Gateway Interface (CGI), Net.Data, and SSI?

– Did the migration of WebSphere Application Server directives allow Web application
serving from your new server?

� Availability

Stress the new server environment to see if you can break it. Sometimes “timing windows”
in Web applications that normally are not seen due to the performance characteristics of
the HTTP Server (original) may be found when the same application is served from your
HTTP Server (powered by Apache).

� Performance

– In general, you should expect your new HTTP Server (powered by Apache) to perform
at about the same level as the HTTP Server (original) or better. Measure this. If a
portion of your Web application is not performing at about the same level, determine
why.
188 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

– It is possible that your migrated configuration file may not perform as well as though
you had built the configuration from scratch. This is because the migration wizard may
be forced to explicitly map original configuration directives to one or more Apache
configuration directives in an attempt to faithfully reproduce function. This, in turn, may
affect performance. In some cases, you may want to rewrite portions of migrated
Apache configuration files after you have a better understanding of the ramifications of
your actions.

– You may also want to take the opportunity to improve the performance of your new
HTTP Server (powered by Apache) Web application. See Chapter 10, “Getting the best
performance from HTTP Server (powered by Apache)” on page 223, for more
information and guidance. Specifically two features that are only available with the
HTTP Server (powered by Apache) stand out that could, depending on your Web
application, improve your performance. One is Fast Response Cache Accelerator
(FRCA) (see 10.6, “Fast Response Cache Accelerator” on page 281). The other is data
compression (see 10.4, “Increasing throughput with compression” on page 240).

� Security

– Test all forms of authentication and authorization. See 6.2, “Basic authentication” on
page 103.

– Test your new servers’ handling of digital certificates – both client and server. See the
sections starting with 6.4, “Encrypting your data with SSL and TLS” on page 127.

– Test all forms of proxy processing with your new server. See 6.5, “Proxy server:
Protecting direct access” on page 142.

– Verify that access to i5/OS resources is performed under the expected user profile.

Tip: After the migration is completed, check the KeepAliveTimeout value. The
corresponding directive for the HTTP Server (original) server is PersistTimeout. Under
the HTTP Server (original), the default value for this directive was 4 seconds. After the
migration, the KeepAliveTimeout is also set to 4 seconds. In many situations, this can
cause problems. You should set this value to at least 60 seconds. We recommend that
you set the value to 300 seconds.

Note: The HTTP Server (original) supported two methods for defining protection
setups. One was called a named protection and allowed an administrator to group a set
of protection directives under a name. This name was then assigned to a protected
resource. The second method was called an inline protection setup. This approach
required all protection directives to be specified for each protected resource even if they
were the same for all resources. The HTTP Server (powered by Apache) supports only
the equivalent to the HTTP Server (original) inline protection setup. Therefore, the
migration wizard converts named protection configurations to individual protection
directives for each protected resource (context).
Chapter 8. Migration from HTTP Server (original) to (powered by Apache) 189

190 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 9. Web application serving

The Web is changing every aspect of our lives, but no area is undergoing as rapid and
significant a change as the way businesses operate. As businesses incorporate Internet
technology into their core business processes, they start to achieve real business value.

Today, large and small companies are using the Web to communicate with their partners, to
connect to their back-end data systems, and to transact commerce. This is On Demand
Business, where the strength and reliability of traditional IT meet the Internet.

But this On Demand Business world is supported by more than static Hypertext Markup
Language (HTML) pages and images files. To use the Web for business, static HTML pages
are not enough. Special applications are required to process a user’s input and integrate the
Web server with other information systems and data. The programs that extend the Web
server beyond static content are called Web applications. Usually, Web applications use the
data supplied by the HTML form, process the data, and then return the result as a Web page.
The data processing can be achieved by a wide range of application environments and
application programming languages.

Depending on the Web presence required for your environment, you can:

� Serve static pages for Web presence using HTTP Server (powered by Apache)

� Use the HTTP Server (powered by Apache) with Common Gateway Interface (CGI),
Net.Data, or other third-party products for data access

For more information, see Chapter 7, “Serving dynamic data” on page 157.

� Have a Java application running with WebSphere Application Server or Apache Software
Foundation (ASF) Jakarta Tomcat for a more powerful On Demand Business presence

� Install one of several available editions of the IBM WebSphere Application Server to
support applications based on Java 2 Enterprise Edition (J2EE)

9

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 191

As shown in Figure 9-1, there are many options to create, serve, and manage one On
Demand Business application using the iSeries server. The iSeries server aggressively
supports the transformation of business applications to an On Demand Business model,
while minimizing disruption within the enterprise environment. It has business-proven values
(reliability, security, scalability, low cost of ownership) that support the latest enabling
technologies for On Demand Business. In combination, these two qualities make the iSeries
server an excellent choice for extending existing applications and deploying new solutions.

Figure 9-1 iSeries On Demand Business environments

LOB
db

IBM Eserver iSeries

Base OS/400 servers

TCP/IP suite and networking protocols

Integrated file system (IFS) provides access to
OS/400 objects through QSYS.LIB and NFS,
QDLS, QFileSvr.400, QLANSrv, QNetWare,
QNTC, QOpenSys, QOPT, "root", and UDFS

LDAP
BOOTP
RADIUS
DHCP
Dynamic DNS

SMTP
Telnet
FTP
TFTP
REXEC

RouteD (RIP)
Quality of Service
(QoS)
SNMP
SNTP

VPN
LPD
IPP

Web servers, Domino, and third party
IBM HTTP Server for iSeries (5722-DG1)

HTTP Server (original)
HTTP Server (powered by Apache)

Domino native HTTP server
Third-party HTTP servers

WebSphere Host Integration
Host On-Demand
Host Publisher
Host Access Transformation
Server (HATS)

WebSphere Development Studio
Client

WebFacing Tool
iSeries Access family

HATS LE
iSeries Access for Web
Host Publisher

Third-party solutions

Web-to-Host Integration

WebSphere Application Server
ASF Jakarta Tomcat
Domino for iSeries
WebSphere Commerce
Third party solutions

Web Application ServersData Access
CGI-bin (supports ILE RPG,
COBOL, C, CL, Java and
PASE)
Net.Data
WebSphere Host Int: Host
Access Library
Third party solutions

Browser

Business Application
ILE RPG, COBOL, C, CL and Java

web
dbco

nn
ec

to
rs

NetServer: Windows based file/app serving
Network Printing Support
Integrated DB2 UDB for iSeries to provide
native, SQL, ODBC, and JDBC db support
Built in security (SSL and TLS)

IFS
files
192 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9.1 Web application servers for the iSeries server
This section helps to identify the technical differences between WebSphere Application
Server and Apache Software Foundation’s Jakarta Tomcat Web application servers.

WebSphere Application Server Version 5.0 and 5.1
WebSphere Application Server Version 5.0 and 5.1 are available in three editions:

� IBM WebSphere Application Server 5.0 and 5.1 for iSeries (Base Edition): This edition
ships as a Licensed Program Offering (LPO). It provides support for Java servlets,
JavaServer Pages (JSP), Java Message Service (JMS), and Enterprise JavaBeans
(EJBs). It also supports core Web Services standards such as Extensible Markup
Language (XML), Simple Object Access Protocol (SOAP), Web Service Description
Language (WSDL), and Web Services Invocation Framework (WSIF) for developing
dynamic solutions for On Demand Business.

� IBM WebSphere Application Server Network Deployment 5.0 and 5.1 for iSeries
(Network Deployment Edition): This edition ships as an LPO. It delivers world-class
caching, high availability, and industry-leading Web services support on top of the base
WebSphere Application Server foundation.

� IBM WebSphere Application Server 5.0 and 5.1 – Express for iSeries: This edition
offers a low-cost, easy to use, out-of-the box solution that supports simple, dynamic Web
sites based on the Java Servlets, JSPs, and Web services technologies. In addition, it is
now available at no additional charge with i5/OS V5R3M0 and later releases.

WebSphere Application Server Version 3.5 and 4.0
The WebSphere Application Server is a Java-based servlet engine that is built on top of the
native Java Virtual Machine (JVM) on the iSeries server. It provides Java servlet application
programming interface (API) support, which is defined by Sun Microsystems. WebSphere
Application Server for iSeries Versions 3.5 and 4.0 have these editions:

� Advanced Single Server Edition (Version 4.0 only): This edition lets you use Java
servlets, JSP, and XML to quickly transform static Web sites into vital sources of dynamic
Web content. It also provides a high-performance EJB server to implement EJB
components that incorporate business logic.

� Advanced Edition (Versions 3.5 and 4.0): This edition supports the same features as the
Advanced Single Server. It also supports multiple machine topologies, distributed
transactions, and transaction processing.

� Standard Edition (Version 3.5 only): This edition supports Java servlets, JSP, and XML.

WebSphere provides the application server, which includes:

� A servlet engine for running servlets and JSPs and, in the case of Advanced Edition, the
container

The container is where Enterprise JavaBeans are deployed.

� An administrative server that is used to configure the servlets and JSPs in the servlet
engine and the EJBs in the container

� An administrative console that is used to communicate with the administrative server

End of Service: The end-of-service date for WebSphere Application Server Advanced
Edition for iSeries V3.5.x was 31 December 2002. V3.5.x is not supported after this date.
WebSphere Application Server Advanced Edition for iSeries V3.5.x is only supported on
OS/400 V4R5 and V5R1. V3.5.x is not supported on OS/400 beyond V5R1.
Chapter 9. Web application serving 193

For additional information about WebSphere Application Server, see:

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

Apache Software Foundation’s Jakarta Tomcat
HTTP Server (powered by Apache) includes an industry-standard Java servlet and JSP
engine based on technology from the ASF Jakarta Tomcat open source code base.
Lightweight and easy-to-use software extends the HTTP Server (powered by Apache). The
iSeries server supports version 3.2.4 of ASF Jakarta Tomcat at V5R1, V5R2, and V5R3.

For additional information about ASF Jakarta Tomcat, see 9.2, “Apache Software
Foundation’s Jakarta Tomcat on iSeries” on page 197.

9.1.1 Comparing WebSphere Application Server and ASF Jakarta Tomcat
There are some technical differences between the application servers. Most of them relate to
the components they support. Table 9-1 shows some of these differences.

Table 9-1 Web application servers: Versions and support

IBM WebSphere Application Server

V 3.5 Standard
and Advanced

V4.0 Single Server
and Advanced

5.0 and 5.0
Express

5.1 and 5.1
Express

Tomcat 3.2.4

Servlets 2.2 + IBM
extensions

2.2 + IBM
extensions

2.3 + IBM
extensions

2.3 + IBM
extensions

2.2

JSP 1.1 1.1 1.1 & 1.2 1.2 1.1

JDK 1.2 and 1.3 1.3 1.3.1 1.4 1.2 and 1.3

EJB 1.0 (Advanced
only)

1.1 1.1 and 2.0 (not
for Express)

2.0 (not for
Express)

Not supported

XML Supported Supported Supported Supported Not provided directly as
part of 5722-DG1, but is
available as part of the
IBM Toolbox for Java

Connection
pooling

Supported Supported Supported Supported Not supported

Session
support

IBM extension
to Servlet 2.2

IBM extension to
Servlet 2.2

IBM extension
to Servlet 2.3

IBM extension
to Servlet 2.3

Not supported. Sessions,
as defined in servlet 2.2,
are supported by ASF
Jakarta Tomcat.

J2EE No Yes Yes Yes No

Note: Although Tomcat 5 is not officially supported by IBM at V5R1, V5R2, or V5R3, we
provide the steps that you can use in Appendix B, “Bringing Tomcat Version 5.5 to your
iSeries server” on page 409.
194 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

9.1.2 When to use WebSphere Application Server versus ASF Jakarta Tomcat
Now that we identified some of the components supported by WebSphere Application Server
and ASF Jakarta Tomcat, let’s see how to choose one of the Web application servers to serve
our solution for On Demand Business.

IBM’s strategic Web application server is WebSphere Application Server. The latest version of
WebSphere Application Server is Version 5.0. It includes three editions for iSeries customers:

� WebSphere Application Server V5.0 for iSeries (Base Edition)

� WebSphere Application Server Network Deployment V5.0 for iSeries (Network
Deployment Edition)

� WebSphere Application Server Express for iSeries

These three editions of WebSphere Application Server V5 support servlets, JSP, EJB, and
much more. Customers who require a robust and scalable Web application server select
WebSphere Application Server. WebSphere Application Server is a chargeable product.

ASF Jakarta Tomcat on iSeries is the Web servlet and JSP container engine. This servlet
engine is free of charge and is included with the IBM HTTP Server for iSeries. Table 2-2 on
page 20 for details. The iSeries server supports ASF Jakarta Tomcat Version 3.2.4.

When to use WebSphere Application Server 4.0 Single Server Edition
Use the Single Server Edition when:

� You need to deploy solutions for On Demand Business that are J2EE compliant.
� Your application requires full Web services support.
� Your application benefits from EJB reloads.
� Your application requires Extensible Stylesheet Language (XSL) support.

When to use WebSphere Application Server 4.0 Advanced Edition
This is the same as 4.0 Standard Edition plus. Use it when:

� Your environment requires load balancing.

� You need real-time information about the On Demand Business application’s behavior in
terms of response time and access, because this edition includes the component
Resource Analyzer.

� The application requires some degree of partitioning.

When to use WebSphere Application Server – Express for iSeries
5.0 or 5.1
Use WebSphere Application Server – Express for iSeries Version 5.1 when:

� You are looking to deploy your first Web-based application on iSeries or to deploy simple
Web-based applications.

� You are looking to deploy Web-based applications developed with WebSphere
Development Studio Client for iSeries.

� You have currently deployed applications in WebSphere Application Server Version 3.02
or Version 3.5, Standard Edition for AS/400, or the ASF Tomcat Web application server for
iSeries.
Chapter 9. Web application serving 195

When to use WebSphere Application Server V5.0 or 5.1 (Base Edition)
Use WebSphere Application Server V5 (Base Edition) when:

� You require full J2EE support.
� You need support for Java Servlets, JSPs, Java Message Service (JMS), and EJBs.
� Your environment uses core Web services standards such as XML, SOAP, WSDL, and

WSIF for developing dynamic solutions for On Demand Business.

When to use WebSphere Application Server Network Deployment
V5.0 or 5.1
Use this when you need all of the requirements as stated for the (Base Edition) and:

� You need caching support.
� You require high availability.
� You need industry leading Web services support on top of the base WebSphere

Application Server foundation.

When to use ASF Jakarta Tomcat
Some iSeries customers want a basic, no-cost Web application server that supports servlets
and JSP. Relying on IBM HTTP Server (powered by Apache) as its Web server, ASF Jakarta
Tomcat provides a basic Web application server for iSeries customers. Use ASF Jakarta
Tomcat when:

� Your application is based on servlets, JSP, and XML files.
� Your application does not require EJB support.
� Your application does not require any database connection manager mechanism.
� Your application does not require any specific security mechanism, for example Secure

Sockets Layer (SSL).
� Your solution for On Demand Business does not require a load balancing implementation.
� Your solution for On Demand Business does not require scalability.

ASF Jakarta Tomcat is the newest component in the solution for On Demand Business
provided by the iSeries server. In the following section, you learn more about this new
member.

For a detailed functional comparison of each of these WebSphere Application Server
editions, see Chapter 5 in WebSphere for the IBM Eserver iSeries Server Buying and
Selling Guide, REDP-3646.

For more information about WebSphere Application Server for iSeries, go to:

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

For WebSphere Application Server for Linux on iSeries, see:

http://www.ibm.com/servers/eserver/iseries/linux/websphere

Note: All three versions of WebSphere Application Server Version 5.0 and 5.1 have new
and added features that are too numerous to list. We recommend that you go to the
following Web site and review the documentation for these products:

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

After carefully reviewing this information, you can make your decision based on what you
need for your business and environment. You should always try to deploy the latest
WebSphere Application Server version to benefit from the latest enhancement.
196 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
http://www.ibm.com/servers/eserver/iseries/linux/websphere
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

9.2 Apache Software Foundation’s Jakarta Tomcat on iSeries
ASF Jakarta Tomcat is a servlet engine container that supports servlets, JSP, and Web
Application Archive (WAR) files. This servlet engine is developed and released under the
Apache Software Foundation license. It is integrated in the iSeries server by the IBM HTTP
Server for iSeries base code (see Table 2-2 on page 20 for the packaging details). ASF
Jakarta Tomcat requires a Java Runtime Environment (JRE) that has conformity with JRE 1.1
or later, including any Java 2 platform system.

The iSeries server supports Version 3.2.4 on V5R1, V5R2 and V5R3. We provide an example
of how to set up Tomcat 5.5 on your V5R3 iSeries server in Appendix B, “Bringing Tomcat
Version 5.5 to your iSeries server” on page 409.

For ASF Jakarta Tomcat to work with the HTTP Server (powered by Apache), it needs an
agent that resides in the HTTP server and sends it a servlet request. This agent is the Web
server plug-in, jk_module. It allows the communication between the HTTP Server (powered
by Apache) and the ASF Tomcat servlet engine. It must be included in the HTTP configuration
file with the LoadModule directive:

LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Although the ASF Tomcat servlet engine is integrated into HTTP Server (powered by
Apache), this does not mean that the servlet engine needs to run in the same process as the
HTTP server. ASF Jakarta Tomcat can be configured to run:

� In-process: ASF Jakarta Tomcat and HTTP Server (powered by Apache) run in the same
process and communicate through a Java Native Interface (JNI).

� Out-of-process: ASF Jakarta Tomcat and the HTTP Server (powered by Apache) run in
separate process (even on separate systems) and communicate through Transmission
Control Protocol/Internet Protocol (TCP/IP) sockets. The ASF Tomcat server process runs
in the QSYSWRK subsystem.

Running in-process or out-of-process implies some differences as shown in Table 9-2.

Table 9-2 Differences between running Tomcat in-process and out-of-process

Note: If you want to go directly to an example of application serving using ASF Jakarta
Tomcat, see 9.3.2, “In-process Tomcat configuration” on page 203.

In-process Out-of-process

Uses the jk_module module with the Java invocation
API to communicate with the HTTP server.

Uses the jk_module to communicate with the
HTTP server.

The HTTP server and ASF Tomcat servlet engine
communicate through a JNI.

The HTTP server and ASF Jakarta Tomcat
communicate through TCP/IP sockets.

Does not require a new protocol. Requires a new protocol to communicate
(ajp12 and ajp13).

ASF Tomcat server runs in the same JVM as the
HTTP server.

ASF Tomcat server runs in its own JVM.

Uses the same security implementation configured
by the HTTP server.

Uses its own container managed security
implementation.

Works with the SSL configuration of the HTTP
server.

The communication between the HTTP server
and ASF Jakarta Tomcat does not support
SSL.

This is only
supported by
HTTP Server
(powered by
Apache).
Chapter 9. Web application serving 197

Before you start either the in-process or out-of-process configurations, identify the information
listed in Table 9-3 since it is required during the ASF Jakarta Tomcat configuration process.
This table also helps to identify some of the differences between running Tomcat in-process
and out-of-process.

Table 9-3 ASF Jakarta Tomcat required parameters for both in-process and out-of-process

9.2.1 ASF Jakarta Tomcat directory structure
This servlet engine runs under its own directory structure. This directory structure is used by
the HTTP server since it is included into the HTTP configuration file. The directory structure
can be located in the root or QOpenSys file systems. Table 9-4 shows the directory structure
used by ASF Jakarta Tomcat.

Table 9-4 ASF Jakarta Tomcat directory structure

Parameter In-process Out-of-process

ASF Tomcat server Not required Any name for the servlet engine

ASF Tomcat home
directory

Usually the HTTP server root Any directory; the default is
/ASFTomcat/server_name

Servlet engine
configuration file

/HTTP_home/conf/server.xml /Tomcat_home/conf/server.xml

Java version (JDK) 1.2 or 1.3 1.2 or 1.3

URLs (Mount
points)

Uniform Resource Locator
(URL) paths for your application

URL paths for your application

Application
contexts

Link between URL and your
application directory; similar to
pass or alias directive used by
the HTTP server

Link between URL and your application
directory; similar to pass or alias directive
used by the HTTP server

IP address Not required The Internet Protocol (IP) address used by
the servlet engine to communicate with the
HTTP server

Port Not required The port used by the servlet engine to
communicate with the HTTP server

Server type Not required The protocol used by the servlet engine to
communicate with the HTTP server, AJP12
or AJP13

Server userid Not required The user ID used to start the servlet engine

ASF Tomcat directory Description

tomcat_home The tomcat_home directory is the base directory for ASF Tomcat.
The tomcat_home directory can be located in the root or QOpenSys
file systems. For an in-process ASF Tomcat configuration, the
default tomcat_home directory is set to the HTTP server directory
(/www/server_name/). For an out-of-process ASF Tomcat
configuration, the default tomcat-home directory is set to
/ASFTomcat/tomcat_server_name/. Within the tomcat_home
directory, there are subdirectories for logs and configuration
information.

tomcat_home/webapps This directory contains WAR files if you have them. All WAR files are
expanded and subdirectories are added as contexts.
198 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9.2.2 ASF Jakarta Tomcat directives
The ASF Jakarta Tomcat directives are used by the HTTP server to redirect the request of
servlets, JSP, and WAR files to the servlet engine. Before using any of these directives, the
jk_module module must be loaded. The directives are:

� JkAsfTomcat: This directive allows ASF Jakarta Tomcat to be turned off without deleting
particular ASF Jakarta Tomcat directives from the HTTP Server (powered by Apache)
configuration file. When this directive is set to off, it appears to the user as though ASF
Jakarta Tomcat was never enabled.

� JkLogFile: The JkLogFile directive is used to describe the full path name of the jk_module
log file. The log file describes the flows of header and data between the HTTP Server
(powered by Apache) and the ASF Tomcat servlet engine. It does not contain information
relative to what happens after a request is forwarded to the servlet engine. The specified
log file is never purged or wrapped. The file may need to be periodically purged by the
administrator.

� JkLogLevel: The JkLogLevel directive is used to describe the detail of logging that should
occur to the log file defined by JkLogFile. The possible values for this directive are:

– debug
– info
– error
– emerg

� JkMount: The JkMount directive specifies which Uniform Resource Identifier (URI)
contexts are sent to a ASF Jakarta Tomcat worker.

tomcat_home/webapps/ROOT This directory is required by ASF Tomcat. This directory is required
to support the servlet 1.1 specification.

tomcat_home/webapps/app1 This directory is known as a document base directory. You may
have several document base directories under the webapps
directory. These represent and map a directory structure to a
servlet or JSP application. The subdirectory app1 is your
application directory.

tomcat_home/webapps/app1/
WEB-INF

This directory contains the web.xml file for the application. The
web.xml file contains the URL patterns and attributes for your
servlets.

tomcat_home/webapps/app1/
WEB-INF/classes

This directory contains any Java class files and associated
resources that are required for your application. This directory is
searched prior to the tomcat_home/webapps/app1/WEB-INF/lib
directory for any servlet .class file that is specified in the URL.

tomcat_home/webapps/app1/
WEB-INF/lib

This directory contains any JAR files and associated resources that
are required for your application.

tomcat_home/conf This directory contains the server.xml and workers.properties
configuration files.

tomcat_home/logs This directory contains all log files.

tomcat_home/work This directory is automatically generated by ASF Tomcat as a place
to store intermediate files.

java/lib This directory is created as a place to put .jar and .class files that
you want to add to the class path.

ASF Tomcat directory Description
Chapter 9. Web application serving 199

� JkMountCopy: The JkMountCopy directive indicates whether the base server mount
points should be copied to the virtual server. Any mount points defined outside
<VirtualHost> </VirtualHost> are inherited by the virtual host.

� JkWorkersFile: The JkWorkersFile directive is used to define the name of a file that
contains configuration information (that describes how jk_module attaches to the ASF
Tomcat servlet engine). There is no default. This directive must be specified or ASF
Jakarta Tomcat will not function. The typical file name is workers.properties.

These directives are added into the HTTP configuration file when the ASF Jakarta Tomcat
configuration is created. The directives may look like the following example:

LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM
...
JkWorkersFile /tomcat_home/conf/workers.properties
JkLogFile /http_serverhome/logs/jk.log
JkLogLevel error
JkMount /orderentry/* remote

The workers.properties file
The worker is the ASF Jakarta Tomcat instance that runs to serve servlets and JSP requests
coming from the Web server or, in our case, coming from the HTTP Server (powered by
Apache). This worker can run in-process or out-of process. It is specified in the JkWorkersFile
directive and tells the HTTP Server (powered by Apache) how the ASF Jakarta Tomcat
instance runs. This file contains entries of the following form:

worker.list=<a comma or space separated list of worker name>

Consider the following examples:

worker.list=local, remote
worker.list=local remote

When starting, the Web server plug-in (jk_module) instantiates the workers whose names
appear in the worker.list property. Each named worker should also have a few entries to
provide additional information. Such things as the worker type, port, and other related
information to the ASF Jakarta Tomcat process. The available workers types are:

� ajp12: This worker forwards requests to the out-of-process ASF Jakarta Tomcat process
using the ajp12 protocol.

� ajp13: This worker forwards requests to the out-of-process ASF Jakarta Tomcat process
using the ajp13 protocol.

� jni: This worker forwards requests to the in-process ASF Jakarta Tomcat process using
Java Native Interface (JNI).

The differences between the ajp12 and ajp13 protocols are:

� The ajp13 protocol is a binary protocol and tries to compress some of the requested data.
� The ajp13 protocol reuses open sockets and leaves them open for future requests.
� The ajp13 protocol has special treatment for SSL information.

Defining workers of a certain type should be done with the following property format:

worker.worker name.type=worker type

Consider this example for the ASF Jakarta Tomcat in-process mode:

worker.local.type=jni

Here local is the name of this worker.
200 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Each of these workers has its own group of properties that define the ASF Jakarta Tomcat
attributes such as ports, host names, classpaths, and so on. The attributes are different if
running in-process or out-of-process and if using ajp12 or ajp13 types. Depending on your
ASF Jakarta Tomcat run mode, the workers.properties file should have entries like the ones
shown here.

The following workers.property file specifies the in-process mode, with Java 1.2 and Tomcat
home directory /itso/itso07:

worker.list=local
worker.local.type=jni
worker.local.cmd_line=-config
worker.local.cmd_line=/itso/itso07/conf/server.xml
worker.local.sysprops=java.version=1.2
worker.local.sysprops=tomcat.home=/itso/itso07
worker.inprocess.stdout=/itso/itso07/logs/jvmstdout.txt
worker.inprocess.stderr=/itso/itso07/logs/jvmstderr.txt
worker.local.class_path=/QIBM/ProdData/HTTPA/java/lib/webserver.jar

The following workers.property file specifies out-of-process using ajp13 protocol, on port
8009, and running in the local host in the iSeries server:

worker.list=remote
worker.remote.type=ajp13
worker.remote.port=8009
worker.remote.host=localhost

When you create the ASF Tomcat servlet engine, using the ASF Jakarta Tomcat wizard
provided with the HTTP Server (powered by Apache) server, those entries are created in the
workers.properties file for you. At this point, this information is only supplied as a reference.

If you want to learn more about the workers.property file and its properties, refer to the
Tomcat Workers How To on the Apache Software Foundation’s Web site at:

http://jakarta.apache.org/tomcat/tomcat-3.2-doc/Tomcat-Workers-HowTo.html

9.2.3 ASF Jakarta Tomcat authorities
To run ASF Jakarta Tomcat, there are some authority requirements that the user running the
server must accomplish. The security considerations are related to the way the ASF Tomcat
servlet engine runs, either in-process or out-of-process.

This information is kept current in the Documentation Center’s document “User profiles and
required authorities for the HTTP Server (powered by Apache)”. To find this document, see
the following Web site:

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

When you reach this site, select the document for the version you are using, either V5R1 or
V5R2. Inside the IBM HTTP Server for iSeries Documentation Center, click HTTP Server
(powered by Apache) →Reference →User profiles and required authorities.
Chapter 9. Web application serving 201

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://jakarta.apache.org/tomcat/tomcat-3.2-doc/Tomcat-Workers-HowTo.html
http://jakarta.apache.org/tomcat/tomcat-3.2-doc/Tomcat-Workers-HowTo.html
http://jakarta.apache.org/tomcat/tomcat-3.2-doc/Tomcat-Workers-HowTo.html

9.2.4 ASF Jakarta Tomcat log files
ASF Jakarta Tomcat has its own set of logs files used to track day-by-day operations and
error messages for problem determination. Each time the ASF Tomcat servlet engine is
started, a set of log files is generated. They are all specified on the configuration file
server.xml. The files are located under the directory structure /ASFTomcat/server_name/logs,
used by ASF Jakarta Tomcat. Under this directory structure, you see the files shown in
Table 9-5.

Table 9-5 ASF Jakarta Tomcat log files

It is important to note that the jk.log file is not erased or regenerated when the ASF Tomcat
engine starts. Messages are appended to this file and the size of this file can grow quite large
if errors are logged. You should periodically monitor the size of this file and reduce its size. By
default, the jk.log is set to the logs directory under the HTTP server_home
(/www/server_name/logs/).

9.3 In-process implementation with ASF Jakarta Tomcat
This section serves a simple servlet using an in-process ASF Jakarta Tomcat configuration.

9.3.1 Creating HTTP Server (powered by Apache)
Use the Create New HTTP Server wizard to create a new HTTP Server (powered by Apache)
that will be used for your in-process Tomcat configuration. During the course of the wizard, it
asks you for information. Use the values specified in Table 9-6.

Log file Description

jasper.log This log file contains messages resulting from trying to start or run JSPs.

servlet.log This log file contains messages generated as a result of a servlet running in the ASF
Tomcat servlet engine. When a servlet is initialized, a ServletConfig object is provided
to the servlet. Contained within the ServletConfig object is a ServletContext object
that provides methods for a servlet to communicate to the Servlet container, which is
Tomcat in this case. In the ServletContext object is a log method that allows Web
applications to log to the servlet.log file.

tomcat.log This log file contains ASF Tomcat servlet engine messages.

jvmstderr.txt This log file can contain messages from any Java code that does a
System.err.println().

jvmstdout.txt This log file can contain messages from any Java code that does a
System.out.println().

jk.log This file contains messages generated by jk_module.
202 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Table 9-6 In-process Tomcat: Create New HTTP Server wizard required parameters

With the information you provide, the Create New HTTP Server wizard creates the basic
HTTP configuration file to serve static pages from your document root. The confirmation page
for values specified in Table 9-6 should appear similar to the example in Figure 9-2.

Figure 9-2 In-process Tomcat: Create New HTTP Server wizard confirmation page

Your HTTP Server (powered by Apache) is now ready to be tailored for ASF Jakarta Tomcat.

9.3.2 In-process Tomcat configuration
The ASF Tomcat servlet engine can be configured to run in-process:

1. As shown in Figure 9-3 in the Server list, make sure your server name is selected. From
the Server area list, select Global configuration.

2. In the left pane, select Servlet and JSP Enablement.

3. In the first Servlet and JSP Enablement panel (Figure 9-3), click Next to start the wizard.

HTTP Server wizard parameter Value

Server name PBATCIN01

Server root /tcp52d01/asfTomcat

Document root /tcp52d01/asfTomcat/htdocs

On which IP address and TCP/IP port do you want your server to
listen?

IP address: all
Port: 8301

Do you want your new server to use an access log? Yes
Chapter 9. Web application serving 203

Figure 9-3 In-process Tomcat: Servlet and JSP Enablement wizard

4. As shown in Figure 9-4, select I want to use a servlet or Java Server Page (JSP), and I
either already have them or will provide them later. Click Next.

Figure 9-4 In-process Tomcat: Servlet and JSP Enablement wizard using your own servlet

Tip: An easy way to start the ASF Jakarta Tomcat configuration, directory structure,
and activation process is to select I want a sample ASF Tomcat in-process servlet
engine configured for me. This option creates an in-process configuration for two
sample applications: a sample Calculator servlet and a sample Snoop JSP.
204 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. As shown in Figure 9-5, complete these tasks:

a. Select I want to use a servlet. I either already have a class or jar file containing
the servlet or will provide it later.

b. The Server class name field appears. Type the name of the sample servlet class.
Replace the default MyServlet with CalculatorExample.

c. Click Next.

Figure 9-5 In-process Tomcat: Servlet and JSP Enablement wizard naming your servlet

6. As shown in Figure 9-6, click Finish. This page (and the next one) gives you good
information about the URL to access your servlet and where in the integrated file system
(IFS) to place it. You may want to take note of this information since we will use it in the
next step.

Figure 9-6 In-process Tomcat: Servlet and JSP Enablement wizard clicking Finish

7. Click OK on the confirmation page that follows.

8. To make your servlet name simpler than CalculatorExample, you can change the name
used to invoke it. In this case, you can either use the ASF Tomcat Setup Task or ASF
Tomcat Settings found in the left pane of the configuration options.

– ASF Tomcat Setup Task: This multi-form task guides you through the various Apache
configuration settings needed for using the ASF Tomcat servlet engine within a HTTP
Chapter 9. Web application serving 205

server (powered by Apache). This is almost like a wizard that takes you through the
process of changing the configuration options for your ASF Jakarta Tomcat.

– ASF Tomcat Settings: This single form allows you a single place in which to change
the configuration options for your ASF Jakarta Tomcat.

We use the ASF Tomcat Settings because they provide an all-in-one form for
configuration.

a. As shown in Figure 9-7, in the left pane, select ASF Tomcat Settings.

b. In the right panel, scroll down until you find the Application contexts table. Click
Configure.

Figure 9-7 In-process Tomcat: ASF Tomcat settings
206 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

c. In the ASF Tomcat Application Configuration form (Figure 9-8), follow these steps:

i. Select the row that contains the Servlet classname of CalculatorExample.
ii. Replace the URL pattern of /calculatorexample with the shorter /calc.
iii. Click Continue.
iv. Click OK.

Figure 9-8 In-process Tomcat: ASF Tomcat Settings updating URL patterns

d. In the ASF Tomcat Settings form, click OK.

9. You have finished setting ASF Tomcat in the configuration file. Now continue with these
steps:

a. Locate the CalculatorExample.class file in the /QIBM/ProdData/HTTPA/admin
directory.

b. Copy this file to the /tcp52d01/asfTomcat/webapps/app1/WEB-INF/classes directory.
Chapter 9. Web application serving 207

10.Start your HTTP Server (powered by Apache) and run the servlet:

a. Start your server PBATCIN01.
b. Enter the following URL in your browser:

http://as20:8301/app1/calc

This opens the CalculatorExample servlet application as shown in Figure 9-9.

Figure 9-9 In-process Tomcat: CalculatorExample.class file running

9.4 Out-of-process implementation with ASF Jakarta Tomcat
This section shows how to serve a simple servlet using an out-of-process ASF Jakarta
Tomcat configuration. The steps to configure ASF Jakarta Tomcat for out-of-process are:

1. Create the ASF Tomcat server.
2. Create the link between the HTTP and ASF Tomcat servers.
3. Test the out-of-process ASF Tomcat server.

This section expects that you have created a fairly standard HTTP Server (powered by
Apache) with the characteristics specified in Table 9-7 or that you will use one of your own.

Table 9-7 In-process Tomcat: Create New HTTP Server wizard required parameters

HTTP Server wizard parameter Value

Server name PBATCOUT01

Server root /tcp52d01/asfTomcatOut

Document root /tcp52d01/asfTomcatOut/htdocs

On which IP address and TCP/IP port do you want your server to
listen?

IP address: all
Port: 8401

Do you want your new server to use an access log? Yes
208 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

We serve the CalculatorExample.class servlet using this ASF Tomcat server. Before you start
the configuration process, identify some data as shown in Table 9-8. This information is used
to configure the ASF Tomcat server. It is also used to modify your HTTP Server (powered by
Apache) to redirect certain URL patterns to the out-of-process ASF Tomcat server.

Table 9-8 ASF Jakarta Tomcat out-of-process parameters

9.4.1 Creating the ASF Tomcat server
Using the out-of-process approach, you must create the ASF Tomcat server. This server is
the one that receives the servlet or JSP request, processes it, and sends the response back
to the HTTP server. The communication between the HTTP and ASF Tomcat server is
through TCP/IP sockets. For this communication, you need to identify the IP address, port,
and protocol both servers will use to communicate. This is the IP address and port the ASF
Tomcat server works on. It is not related to the IP address and port used by the HTTP server
to receive the user’s request.

The following steps explain how to create an out-of-process ASF Tomcat server. Use the
values specified in Table 9-8 for this configuration.

1. Start the administrative GUI and click the Setup tab as shown in Figure 9-10.

2. In the left pane, under Tasks and Wizards, select Create ASF Tomcat Server.

Parameter Value

ASF Tomcat server name tomcat01

ASF Tomcat home directory /tcp52d01/asfTomcatOut/TomcatHome

Server userid QTMHHTTP

Java version (JDK) 1.2

IP address:port and protocol *:8501 ajp13

URL path /myapp

Application base directory webapps/myapp

URL mount point /myapp/*

Servlet classname CalculatorExample

URL patterns /calc
Chapter 9. Web application serving 209

3. In the Out-of-Process Engine Creation panel (Figure 9-10), in the ASF Tomcat server
name field, type your ASF Tomcat server name. In this example, we enter tomcat01. This
is the name of the ASF Tomcat server process. This is also the name of the job that will
start in the QSYSWRK subsystem when the ASF Tomcat server is started.

Click Next.

Figure 9-10 Out-of-process Tomcat: Creating an ASF Tomcat Server
210 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. The Out-of-Process Engine Configuration page opens as shown in Figure 9-11. Configure
the user profile used to start the ASF Jakarta Tomcat process, the Java version used to
start the server, and the home directory where ASF Jakarta Tomcat looks for property files
and Web application files.

a. Enter the user profile you will use to start the ASF Tomcat server. For this example, we
keep the default Server userid of QTMHHTTP.

b. Select the Java version this server will work with. In this example, we use Java version
(JDK) 1.2.

c. Enter the ASF Jakarta Tomcat home for your environment. For this example, we
change the ASF Jakarta Tomcat home to be /tcp52d01/asfTomcatOut/TomcatHome.

d. Leave the defaults for the Java classpath entries.

e. Click Next.

Figure 9-11 Out-of-process Tomcat: Engine configuration
Chapter 9. Web application serving 211

5. The Out-of-Process Communication Settings page (Figure 9-12) opens. Follow these
steps:

a. Type the IP address the ASF Tomcat server will listen on. We enter All addresses.

b. Type the port number on which the ASF Tomcat server will listen. We type port 8501.

c. Select the server type that the ASF Jakarta Tomcat will use to communicate with the
HTTP server. We select Binary (AJP13).

d. Click Next (not shown).

Figure 9-12 Out-of-process Tomcat: Communication settings

Note: The default value is normally 8009. Since this is a test system, we change the
port to something unique for this shared iSeries server.
212 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. The Out-of-Process Application Context Definition panel (Figure 9-13) opens. Follow
these steps:

a. Click Add to add a new row to the Application contexts table.

b. Enter your URL path. For this example, we use /myapp.

c. The Application base directory specifies the directory where the servlets and JSP are
located. For this example, we use webapps/myapp. Under this directory, the ASF Jakarta
Tomcat out-of-process wizard creates some files and directories required by ASF
Jakarta Tomcat.

d. Click Continue.

Figure 9-13 Out-of-process Tomcat: URL path and application base directory configuration

7. The page shown in Figure 9-14 opens. Click Configure.

Figure 9-14 Out-of-process Tomcat: Missing web.xml configuration file

Note: If this is your first ASF Tomcat server, you see a message indicating that the
web.xml file does not exist. This is normal. Continue with the next step.
Chapter 9. Web application serving 213

8. The ASF Tomcat Application Configuration page (Figure 9-15) opens. Follow these steps:

a. Click Add to add a new row to the Servlet definitions table.

b. Under Servlet classname, enter your Servlet classname. For this example, we use
/CalculatorExample.

c. Under URL patterns, enter your URL path. For this example, we enter /calc.

d. Click Continue. You can add any number of servlets here.

e. Click OK (not shown). This closes the window and returns you to the Out-of-Process
Application Context Definition window.

f. Click Next (not shown) to continue with the wizard.

Figure 9-15 Out-of-process Tomcat: ASF Tomcat Application Configuration
214 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9. The Out-of-Process Summary page (Figure 9-16) opens. Complete these steps:

a. Click Finish to create the out-of-process Tomcat server.

b. You receive a message that indicates that your ASF Tomcat servlet engine TOMCAT01
has been successfully created. Click OK to continue.

Figure 9-16 Out-of-process Tomcat: Summary
Chapter 9. Web application serving 215

Here is what the wizard has done for you. Under your ASF Tomcat home directory
/tcp52d01/asfTomcatOut/TomcatHome, some directories and files were created as shown
in Figure 9-17. The following actions were performed:

a. Created the ASF Tomcat home directory /TomcatHome
b. Created the /conf configuration directory
c. Created the web.xml file
d. Created the /logs directory
e. Created the /webapps directory
f. Created the /myapp directory
g. Created the /WEB-INF directory
h. Created the /classes directory where the CalculatorExample.class file will be placed

10.Place your CalculatorExample.class file into the /TCP52D01/asfTomcatOut/TomcatHome/
webapps/myapp/WEB-INF/classes directory.

Figure 9-17 Out-of-process Tomcat: Directory structure

9.4.2 Creating the link between the HTTP and ASF Tomcat servers
The ASF Jakarta Tomcat and the HTTP Server (powered by Apache) configurations are now
both created. Now you must include the ASF Tomcat server directives that will cause the
servlet and JSP request made to the HTTP Server (powered by Apache) to be redirected to
the ASF Tomcat engine.

1. Start the administrative GUI and click the Manage tab as shown in Figure 9-18.

2. From the Server list, select the HTTP server you want to work with. For this example, we
select PBATCOUT01.

3. In the left pane, under Server Properties, select ASF Tomcat Setup task.

a

b

c

d

e
f

g
h

216 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. In the Apache Enablement panel on the right (Figure 9-18), complete these tasks:

a. Select Enable servlets for this HTTP Server.

b. In the Workers definition file field, enter the directory path where the workers file should
be located. In this example, we use the directory suggested by the wizard, which is the
configuration directory of the HTTP server.

c. Click Next.

Figure 9-18 Out-of-process Tomcat: Apache enablement
Chapter 9. Web application serving 217

5. The Workers Definition page (Figure 9-19) opens. Follow these steps:

a. Deselect the Enable an “in-process” servlet engine check box.

b. Select the Enable “out-of-process” servlet engine connections check box.

c. Click Add to add a row to the Out-of-process workers table.

d. In the Worker name field, type a name. For this example, we enter remote.

e. In the Worker type field, select the communications protocol version that will be used to
communicate between the HTTP Server (powered by Apache) and the Tomcat server.
For this example, we select Binary (AJP13). The server type should be the same as
you selected for the ASF Tomcat server engine creation. See Figure 9-12 on page 212.

f. In the Hostname:Port field, enter the IP address and port the on which Tomcat server
listens. For this example, we enter localhost for the IP address and 8501 for the port.
This value must be the same as the one that was used in Figure 9-12 on page 212.

g. Click Continue.

h. Click Next (not shown).

Figure 9-19 Out-of-process Tomcat: Configuring the Workers Definition file
218 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. The URL to Worker Mapping page (Figure 9-20) opens. Here you create the link between
the URL path and the ASF Tomcat server servlet engine.

a. Click Add to add a new row in the URL mappings table.

b. In the URL (Mount point) field, enter the URL path used by the HTTP server to identify
a servlet or JSP request and route the request to the ASF Tomcat server. For this
example, we use /myapp/*. Therefore, each time the HTTP server receives a request
from http://hostname:port/myapp/*, it sends the request to the ASF Tomcat server.

c. In the ASF Tomcat worker field, select the out-of-process worker that this HTTP server
will work with. In this case, we select remote (localhost:8501).

d. Click Continue.

e. Click Next (not shown).

Figure 9-20 Out-of-process Tomcat: URL to worker mapping

7. The Configuration Summary page appears. Review the information and click Finish.

8. Click OK to continue.
Chapter 9. Web application serving 219

The ASF Tomcat Setup task wizard creates the workers.properties file under the HTTP home
directory as shown in Figure 9-21.

Figure 9-21 Out-of-process Tomcat: Workers.properties file

9.4.3 Testing the out-of-process ASF Tomcat server
Your configuration is now complete. Both the ASF Tomcat server and the HTTP server are
configured to serve the On Demand Business application. Before you start the HTTP server
instance and the ASF Jakarta Tomcat process, verify the following items:

� The ASF Jakarta Tomcat directory structure has the correct authorities for the user profile
that will start the server. In our case, this is QTMHHTTP.

� The servlets (.class files) are located in the /TCP52D01/asfTomcatOut/TomcatHome/
webapps/myapp/WEB-INF/classes directory.

� The user profile used to start the ASF Tomcat server has *READ authority to the servlets
and JSP.

Now, let’s see how the ASF Tomcat server works. First, you must activate the servers and
then test them.

To activate the HTTP Server (powered by Apache), start the administrative GUI and follow
these steps:

1. Click the Manage tab.
2. From the Server list, select PBATCOUT01.
3. Click the Start icon.

To activate the ASF Tomcat server:

1. From the Server list, select Tomcat01 - ASF Tomcat.
2. Click the Start icon.

To test the server, open a Web browser and enter:

http://hostname:8401/myapp/calc

 Browse : /TCP52D01/asfTomcatOut/conf/workers.properties
 Record : 1 of 10 by 18 Column : 1 76 by 131
 Control :

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+.
 ************Beginning of data**************

ASF Tomcat workers definition file for IBM HTTP server (powered by Apache)
Thu Jul 10 19:33:59 UTC 2003

worker.list=remote

worker.remote.type=ajp13
worker.remote.host=localhost
worker.remote.port=8501
 ************End of Data********************
220 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

You should see the CalculatorExample servlet running as shown in Figure 9-22.

Figure 9-22 Out-of-process Tomcat: CalculatorExample servlet in action

If you experience any problems running the application, see Chapter 13, “Problem
determination: When things do not go as planned” on page 323.

For more information
When your application has many JSP and servlets files, consider packaging them in a WAR
file. Then you use the ASF Jakarta Tomcat out-of-process configuration to include a new URL
path to point the WAR file.

For additional information about WAR files, go to the following Web site and enter WAR for the
search criteria:

http://java.sun.com/products/

For additional information about how to include the WAR file in the ASF Tomcat servlet
engine, see the iSeries HTTP documentation center at:

http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm
Chapter 9. Web application serving 221

http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm
http://java.sun.com/products/
http://java.sun.com/products/
http://java.sun.com/products/
http://java.sun.com/products/
http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm

222 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 10. Getting the best performance
from HTTP Server (powered by
Apache)

The HTTP Server (powered by Apache) provides excellent performance for Web serving. The
iSeries server has held the number three spot on the SPECweb99 benchmark and the
number two spot on the SPECweb99 Secure Sockets Layer (SSL) benchmark. This is a
significant validation of the overall systems performance of the entire iSeries server. It is the
iSeries’ balanced ability to scale and run enormous On Demand Business workloads that is
the basis for these (and other) benchmark successes. Of course benchmark rankings should
be only one of the considerations for selecting a server.

Our ability to run enormous On Demand Business workloads is due to the integration of the
SSL and Transport Layer Security (TLS) component 5722-AC3 and the HTTP Server
(powered by Apache) integration with OS/400. It is also a result of the pure power of the
iSeries’ 64-bit RISC POWER™ processors, which allow the iSeries to climb near the top of
these benchmarks.

SPECweb99 is a registered trademark of the Standard Performance Evaluation Corporation
(SPEC). For details, see:

� http://www.specbench.org/osg/web99/
� http://www.specbench.org/osg/web99ssl/

Performance in a Web server environment is influenced by many components. Understanding
the components can help you to react quickly when a performance problem occurs at a
crucial time. It can also help you define what exactly you can expect from your iSeries server
and from your environment.

10

Tip: The redbook AS/400 HTTP Server Performance and Capacity Planning, SG24-5645,
is based upon the HTTP Server (original) (not the HTTP Server (powered by Apache)) and
V4R4 of OS/400. Yet, this redbook is still very useful because it examines the wider
integration of the HTTP server with OS/400. After all, OS/400 work management has not
changed all that much since V4R4, and an HTTP server is just a “fancy file server”.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 223

http://www.specbench.org/osg/web99/
http://www.specbench.org/osg/web99ssl/

Several factors can be out of your control, such as network traffic (Internet or intranet), router
capacity, client speeds, and so on, that influence the overall performance environment.

This chapter applies to companies that plan to use the HTTP Server (powered by Apache) on
the iSeries server and who, from the beginning, want to tune their Web server using the
correct features and components for their environment.

There are three major components of a Web server environment as shown in Figure 10-1.
Each has its own performance requirement and limitations. The Web components identify:

� Client: The client with a Web browser represents the client component. Usually you do not
have direct control over this component.

� Network: The network is where routers, proxy caching, communications components, and
so on play an important role. This can represent the Internet, your own intranet, or both.

� Server: The iSeries server represents the server. Here, the performance of the iSeries
server (hardware and OS/400), the HTTP server, and optionally the Web application
server and the Web all work together to determine the overall server behavior in terms of
performance. In general, Figure 9-1 on page 192 shows a high-level view of the layers that
may be involved on your iSeries server.

Figure 10-1 Three Web serving performance components: Client, network, and server

A problem in any of these areas may impact the performance of your Web application.

The focus in this chapter is on the iSeries server. The client and network components directly
impact the Web server performance. We briefly describe each component’s impact on the
overall performance. The first section, 10.1, “iSeries Web server performance components”
on page 226, concentrates on the iSeries server’s behavior.

The client
The client typically contributes up to 25% of the end-to-end Web application response time.
The client performance relies on the following resources:

� Processor speed: Slower clients may experience performance degradation when the
Web site requires image, forms, and Java applet download and execution.

� Memory: Memory is an important factor inside the client because many Web-related
tasks use large amounts of memory to complete. If the client does not have enough
memory, the user may perceive performance problems because of the client configuration.

� Hardware: Each piece of hardware is important. Hard disk and communication adapters
are important when performance is an issue. Keep in mind that clients are not updated as
fast as IT technologies change.

iSeries server
Client with a
Web browser

NETWORK
224 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

� Browser: Since Web browsers are the main interface in Web server, you must update
browsers frequently. Some Web servers, customer applications, and Web application
servers rely on browser capabilities. Most of the time you need to update browser levels
due to security vulnerabilities.

The network
Usually the network has more impact on overall performance than other components. The
network usually contributes up to 50% of the total response time. This is because a wide
variety of factors such as network traffic, bandwidth, and speed of communication lines.
These factors can be understood in more detail by identifying some network components:

� Routers
� LAN topology
� Link speeds
� Packet filters
� Proxy and proxy caching
� Socks servers
� Compression of the data

With many components involved, you can spend a lot of time trying to gain a better network
response time using tools to measure the behavior and never come up with an exact value.
This is because the components involved in a network are dynamic components from which
you can only expect average measurement and not exact values. Many of those components
can be completely outside your zone of responsibility (for example, the Internet).

The server
Server behavior is impacted by several factors including application, resources, and database
components. Each scenario has its own components. Do your best to create a Web
application with the most current information technologies. The database access should be
done with the most up-to-date utilities to data access. The Web application server and the
Web server itself should be configured using the best performance practices. Figure 10-2
shows server components involved in most of the On Demand Business implementations.

Figure 10-2 Web server components

All of these components can impact server performance, because most of the time, a client
request requires processing in each one of those components.

You must analyze other iSeries internal features (for example memory, bus, and disk) for your
Web application too. If the iSeries server itself does not have the internal resources to handle
the requirements, performance will be impacted. Other applications running on the same
iSeries can affect overall system performance too and you must take them into account.

Client with a
Web browser

Network

Security Features

Web Server

Application Server

Database Server
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 225

10.1 iSeries Web server performance components
Performance of your HTTP Server (powered by Apache) is not defined by a single “silver
bullet”. It is composed of a series of configuration and design options that all work together.
Figure 10-3 presents an overview of the many components that can affect the overall
performance of your Web application.

If you are creating a Web application that can have many active SSL or TLS encrypted
sessions starting and stopping per unit time, this can be a drain on your main iSeries
PowerPC® processor or processors. As an example, most e-commerce Web sites and
client-banking applications have this characteristic. It is specifically for this asymmetric public
and private key exchange that IBM provides some extremely powerful hardware
cryptographic adapters for you to use on the iSeries server (and other IBM Eserver
platforms). For more information, see 10.7, “Cryptographic coprocessors” on page 300.

In Figure 10-3, you immediately notice that Fast Response Cache Accelerator (FRCA) is a
task that runs completely below OS/400’s Machine Interface (MI). This allows FRCA to
perform efficiently as a System Licensed Internal Code (SLIC) task, which avoids the costly
overhead of switching to a user-level server thread such as the HTTP Server (powered by
Apache). FRCA can serve Web content either in the form of a local cache for static content or
in the form of a reverse proxy cache for dynamic content. The effect is an extremely powerful
“HTTP aware” cache running in SLIC. For more information about FRCA, see 10.6, “Fast
Response Cache Accelerator” on page 281.

The Network File Cache (NFC) is another component of OS/400 that was introduced with
V5R2. The NFC provides the capability to efficiently store and retrieve cached files. It is like a
mini-file system (open, read, write, close) for SLIC tasks and is directly used by FRCA. See
“Network File Cache” on page 287 for information about how to configure the NFC for FRCA.

Using the HTTP Server (powered by Apache), you can improve the Web server performance
at two different levels:

� Using global parameters that allow you to configure the attributes used by all the HTTP
servers in your iSeries server. See 10.2, “Web server: Global performance values” on
page 227.

� Using specific parameters based on the type of data the client is requesting. These
specific parameters generally revolve around the concept configuration directives that are
place in specific contexts (containers) to provide performance benefits for all files or a type
of file. One example is local caches. Another is using mod_deflate to compress the data
before it is sent across the Transmission Control Protocol/Internet Protocol (TCP/IP)
network. See 10.3, “Web server: Specific performance values” on page 235.

An HTTP server, by itself, is nothing more than a fancy file server. In an On Demand
Business, however, your HTTP server becomes the focal point for all Web transactions. Often
dynamic content is requested of and served from a Web application. And, to avoid the costly
consumption of Central Processing Unit (CPU) and memory, these Web applications often
maintain their own application cache.

Tip: Unique to the iSeries, HTTP server statistics are being saved into collection services
in V5R2. The advantage on the iSeries server is that these reports give you a more holistic
view of system performance. For more information, see 13.2.6, “Collection Services
performance data” on page 345.
226 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The Triggered Cache Manager (TCM) server is not a cache, but, like the name suggests, a
cache manager. The role of the TCM is to wait for programmatic triggers (most likely as the
result of an update in your Line of Business (LOB) database), which indicate that one or more
Web pages, that are dynamically dependent on that updated data, must be updated. TCM
then proactively regenerates those Web pages and places them in the iSeries integrated file
system (IFS) (which can be thought of as a local cache for TCM) to be served as a local static
file. Until the raw data in the LOB database changes again, the dynamic content is served at
static file speeds by the iSeries HTTP server. The important point is that TCM only needs to
update the content of the IFS if and when the raw data is updated in the LOB database. See
10.5, “Triggered Cache Manager” on page 259, for more information about this component of
IBM HTTP Server for iSeries.

Also directly related to the performance of a Web server is its scalability. That is, your Web
application’s ability to handle large volumes of Web traffic. To this end, the iSeries server
provides a set of application programming interfaces (APIs). See Chapter 14, “High
availability” on page 355.

Figure 10-3 shows the Web server components that are available to improve performance
using the HTTP Server (powered by Apache).

Figure 10-3 iSeries Web server performance components

Another feature that was introduced to OS/400 V5R2 and i5/OS V5R3 is the Real Time
Server Statistics feature. It can help you tune the HTTP server by providing real-time
information, such as number of transactions, cache utilization, and so on. You can find details
about this function in 10.8, “Real Time Server Statistics” on page 301.

10.2 Web server: Global performance values
Global parameters determine the behavior of the Web server in general. These parameters
are checked each time the server receives a client request. Some of these global parameters
directly impact your Web server performance. Others are attributes of the Web server itself.

FRCA

IFS
files

Web application

appl
cache

LOB
DB

Browser

Specific performance values
Local cache options

Copy into memory
Keep file descriptor open
Memory map of file

HostNameLookups
Logging
CGI settings

local
cache

HTTP Server (powered by Apache)

Local cache
Reverse
proxy cache

Triggered Cache Manager

MI

File

Network File Cache FRCA TCP/IPFRCA

Global performance values
Time-outs
TCP buffers
Denial of Service

mod_deflate (compression)

Hardware assist for
SSL/TLS handshake
cryptography
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 227

Each time the Web server receives a client request, the setting of these global configuration
parameters can affect how the request is processed.

10.2.1 Threads and asynchronous I/O
The HTTP Server (powered by Apache) has its own multi-process model. Each HTTP server
starts two (or three) processes under the QHTTPSVR subsystem:

� The manager process
� The primary process
� The backup process, when configured with the HotBackup directive

Each child process maintains its own thread pool independently.

This setting is one of the most important attributes of the HTTP Server (powered by Apache).
This setting allows you to specify how many threads each child process is allowed to use. The
default value is the same as the value for the maximum number of threads found on the
Global Server Settings form. The directive is ThreadsPerChild.

That is, you can set this parameter at the Global Server Setting to be the default value at
startup for all your Web servers as shown in Figure 10-4. Then you have the option to
override this Global Server Setting for each HTTP Server (powered by Apache).

You can only configure the maximum number of threads that the server opens at startup. The
HTTP Server (powered by Apache) always starts with the maximum number of configured
threads.

When no threads are available, the Web server response time, from the client point of view, is
impacted since the request takes longer because of the lack of available threads. Setting this
number too low impacts the server performance since the client request cannot be processed
until the Web server finds an available thread. But setting the maximum number of threads
too high, in general, requires more system resources to keep those threads available for use.
There is no optimum value for this setting.

With the HTTP Server (powered by Apache) implementation, the HTTP Server processes
communications requests asynchronously. In this asynchronous input/output (I/O) model,
threads are only involved in processing when work is to be done. Threads are dispatched to
perform work as required. When not performing work, the threads are returned to a pool of
available threads making the server process more efficient and improving performance by
using the thread resources better. Asynchronous I/O also makes the server more scalable to
support a high number of users especially when combined with persistent connections. We
recommend that you keep the default value of on (or enabled). The directive is AsyncIO.

Setting the maximum number of threads for all HTTP servers
This parameter is configured on the Global Server Settings display for all your HTTP servers
as shown in Figure 10-4. To set the maximum number of threads, follow these steps:

1. From the IBM Web Administration for iSeries interface, select the Advanced tab and then
the Settings subtab.

2. In the left pane, under Global Settings, select Global Server Settings.

Tip: Asynchronous I/O is one of many enhancements to the standard Apache server as
delivered to IBM Rochester by the Apache Software Foundation (ASF). This is just one of
the many reasons that the parenthetical phrase (powered by Apache) means integration.
228 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3. In the right panel, for Number of threads, type the maximum number of threads in the
Maximum field.

Figure 10-4 Global Server Settings: Setting the maximum number of threads for all HTTP servers

Setting the maximum number of threads for a single HTTP server
You can also set the maximum number of threads and the option to use asynchronous I/O for
each individual HTTP Server (powered by Apache) as shown in Figure 10-5. Follow these
steps:

1. Select the Manage tab.

2. Make sure you select the server you want to manage. For Server area, select Global
configuration.

3. In the left pane, under Server Properties, select System Resources.

4. Click the Advanced tab.

5. In the right panel, change the Number of threads to process requests to override the
Global Server Settings. Click OK.

10.2.2 Process control: HotBackup
The HotBackup directive is used to specify whether a hot backup server should be started at
server startup time. With the hot backup server active, if the primary server job abnormally
terminates, the hot backup immediately takes over, acts as the primary, and continues
servicing requests. A new hot backup is automatically created, in the background, within one
minute.

If the primary server process failure is not due to the network, all user connections remain
active during the hot backup takeover and the end users do not detect the loss of a server.
However, some HTTP requests in transient may be lost. If the failure is due to the loss of
network, the server must be restarted. With HotBackup off, only one multi-threaded server
child process is started.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 229

You can configure this setting as explained here and shown in Figure 10-5:

1. Select the Manage tab.

2. For Server, select the server you want to manage. For Server area, select Global
configuration.

3. In the left pane, under Server Properties, select System Resources.

4. Click the Advanced tab.

5. On the Advanced page, select the Initialize a backup process to take over in the event
of server process failure option. Click OK.

Figure 10-5 HotBackup and threads configuration

You can also override the default value found in the Global Server Settings form for the
directive ThreadsPerChild by specifying the number of threads that each child process is
allowed to use.

10.2.3 Logging
Logging is another setting that impacts server performance. Simply stated, as you request a
higher logging level, a greater load is placed on the server to write more information in the log
file. For example, if the logging level is set to Debug and the Web server experiences a
problem, messages written to the error log file increase and the Web server performance may
decrease.

Tip: An example of a loss of network may be if one of two interfaces on the iSeries fail. The
routes bound to the failing interface cause all the connections across that interface to fail. A
good solution to this potential problem is to configure a virtual Internet Protocol (IP)
address (or a circuitless connection) that is an IP interface defined on the system without
being associated with a physical hardware adapter. These addresses can always be active
on the system. For example, if one of two physical interfaces fail, then all network traffic
can be re-routed through the active interface. The applications and HTTP server will never
know of the problem. For more information about using virtual IP addresses, see iSeries IP
Networks: Dynamic!, SG24-6718.

1

230 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

You can configure this parameter for every HTTP server and for each virtual context within the
HTTP server. If the HTTP server has a different Error Log file for every virtual host context,
consider that a file descriptor is opened for each log file. Opening too many descriptors can
impact system performance.

For more information about logging with the HTTP Server (powered by Apache), see 13.2.3,
“Server logs” on page 331.

10.2.4 HostNameLookups
The HostNameLookups directive enables Domain Name System (DNS) lookups so the host
names can be logged (and passed to Common Gateway Interface (CGI) and server-side
includes (SSI) in the REMOTE_HOST environment variable). That is, it causes your HTTP
server to do a reverse lookup to convert an IP address into a host name and domain. This
may make it easier to track the usage of your Web site (by geography, for example) or to
determine problems.

The default for this directive is off to save on network traffic for those sites that do not truly
need the reverse lookup. Heavily loaded sites should leave this directive set to off, since DNS
lookups can take a considerable amount of time and resource.

You can configure this setting using the HostNameLookups directive. To configure this
directive, in the left pane under Server Properties, click General Server Configuration. Then
in the right panel, click the General Settings tab.

10.2.5 KeepAliveTimeout
The KeepAliveTimeout setting is used to control whether the Web server works with
persistent connections. Persistent connections enable a single TCP connection to be used for
multiple HTTP requests. Normally, each HTTP request is made over a separate connection.
Reusing a connection reduces the overhead, thereby improving performance for that client.

When the server runs with persistent connections, the KeepAliveTimeout setting determines
the number of seconds that the server waits for subsequent requests before closing the
connection. If this value is too low, the server can be impacted in terms of performance since
connections can close frequently. If this value is too high, the Web server can have many
connections open and the server can run out of resources. In this case, using asynchronous
I/O can alleviate (but not eliminate) the problem of running out of resources.

You can configure this global setting as explained here (see Figure 10-6):

1. Select the Manage tab.

2. For Server, select the server you want to manage. For Server area, select Global
configuration.

3. In the left pane, under Server Properties, select System Resources.

4. In the right panel, click the HTTP Connections tab.

Tip: When migrating an HTTP Server (original) instance to an HTTP Server (powered by
Apache) instance, the value of the KeepAliveTimeout is set to 4 seconds by the migration
utility. This may cause problems for many environments. We recommend that you set the
value to 300 seconds after the migration completed.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 231

5. All the parameters on the HTTP Connections page (Figure 10-6) relate to
KeepAliveTimeout. Click OK.

Figure 10-6 KeepAliveTimeout directive

This value applies to each client request. If the Web server you are working with is used on
the Internet, keep in mind that, since this is a communication setting, the value you select
here can be correct for some environments but not for others. We recommend that you leave
the default value unless you know your environment and have reason to make a change. One
reason may be that you know that persistent connections are not supported all the way
between the client. And you also know that your server or the majority of browsers that
connect to your site do not support persistent connections.

10.2.6 TCP buffer size
The TCP buffer size attribute provides a limit on the number of outgoing bytes that are
buffered by TCP. After this limit is reached, attempts to send additional bytes may result in the
application blocking until the number of outgoing buffered bytes drops below this limit causing
a negative impact in the Web server performance. The default value for this setting is zero.
This means the Web server uses the TCP value configured in the iSeries server for the TCP
send buffer size (TCPSNDBUF) parameter in the Change TCP/IP Attributes (CHGTCPA)
command. The default value for TCPSNDBUF is 102400.

You can configure this setting as explained here (see Figure 10-5 on page 230):

1. Select the Manage tab.

2. For Server, select the server you want to manage. For Server area, select Global
configuration.

3. In the left pane, under Server Properties, select System Resources.

4. In the right panel, click the Advanced tab.

5. In the TCP buffer size field, type the TCP buffer size. The value for the TCP buffer size is
best left as the default of 0, unless application-specific reasons exist for your server. Click
OK.
232 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

10.2.7 Denial of service
The denial of service attribute is equally both a performance setting and a security setting.
This setting allows you to identify the possibility of an attack based on the data frame size.
The HTTP server may identify an attack because the frame size differs from the one it
expects. Although this setting impacts the server performance as each request is tracked, it
allows you to prevent a more dangerous performance degradation when dealing with a type
of attack that may intentionally slow down or even completely paralyze your server. The HTTP
Server (powered by Apache) includes the following attributes to prevent a denial of service
attack:

� Maximum message body size: Allows you to limit the size of an HTTP request message
body within the context the directive is given (server, per-directory, per-file, or
per-location). The default value is zero, which indicates that no maximum is size specified.
The directive is LimitRequestBody.

� Maximum XML message body size: Allows you to limit the size of an Extensible Markup
Language (XML)-based request body. The default value is 1000000 bytes. The directive is
LimitXMLRequestBody.

� Maximum header fields: Allows you to modify the limit on the number of request header
fields allowed in an HTTP request. The default value is 100. The directive is
LimitRequestFields.

� Maximum header field size: Allows you to limit the size for an HTTP request header field
below the default size compiled with the server. The default value is 8190. The directive is
LimitRequestFieldSize.

� Maximum HTTP request-line: Allows you to limit the size for a client’s HTTP request line
below the default size compiled with the server. The default value is 8190. The directive is
LimitRequestLine.

You can configure the denial of service settings as explained here (see Figure 10-7):

1. Select the Manage tab.

2. For Server, select the server you want to manage. For Server area, select Global
configuration.

3. In the left pane, under Server Properties, select System Resources.

4. Click the Denial of Service tab.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 233

5. On the Denial of Service page (Figure 10-7), enter the values for your environment. Click
OK.

Figure 10-7 Denial of Service page

See Chapter 6, “Defending the IFS” on page 101, for additional information.

10.2.8 CGI initialization at server startup
CGI initialization Uniform Resource Locator (URL) support offers the capability to start and
initialize CGI programs, such as Net.Data or other CGI programs, at server startup time. This
can significantly improve performance.

To activate this feature, you have to define prestarted CGI helper jobs (StartCGI directive)
with a corresponding user under which the job will run. Then you must add entries for the
particular CGI programs (CgiInitialUrl directive) that should be started. The entry consists of
the fully qualified physical path of the CGI program along with the user ID. The user ID must
refer to an entry in the CGI helper job section. The server does not start if the directive
CgiInitialUrl is configured without the directive StartCgi. You can set the same definitions for
threaded CGI jobs.

Perform the following steps to configure CGI initialization at server startup time.

1. Select the Manage tab from the IBM Web Administration for iSeries interface.

2. For Server, select the server that you want to manage. For Server area, select Global
configuration.

3. In the left pane, under Server Properties, select Dynamic Content and CGI.

4. Click the Server Startup tab.

Tip: This built-in protection against various denial of service attacks is one of the many
integrated extensions in the standard Apache Web server. Again, it is one of the reasons
for the (powered by Apache) parenthetical phrase in the HTTP Server (powered by
Apache) formal name of the server on the iSeries server.
234 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. On the Server Startup page (Figure 10-8), complete these tasks:

a. Under Prestarted CGI helper jobs, click Add.

b. Select the type of job and enter the number of jobs to be pre-started as well as the user
under which the jobs run. Click Continue to add this entry.

c. Under the Prestarted CGI programs section, click Add.

d. Enter the path of the CGI program in IFS naming format and select the user under
which the program will be run. Click Continue.

e. Click OK to save the new configuration.

Figure 10-8 Dynamic Content and CGI: Server Startup tab

6. Restart the server to activate the changes.

10.3 Web server: Specific performance values
Specific performance values are the settings that you can use to improve Web server
performance based on the type of data the server is going to serve. From a lifetime point of
view, all data is dynamic. It is just that some data is more dynamic than others.

To illustrate this point, you may declare that your home page is static, considering it is made
up of Hypertext Markup Language (HTML), Java script, and GIFs. Even your home page
changes from time to time. When it does, you want it (and all the other popular places in your
Web site) to be cached for the best performance. All Web content is dynamic, in this sense.

To ease our understanding, we define content that does not change that often as static.
Content that changes based on database information and user input is called dynamic.

In the end, however, the best way any Web server can improve its performance is by caching
the content before it is requested. For this purpose, the HTTP Server (powered by Apache)
supports these caching mechanisms:

� HTTP Server (powered by Apache) local cache
� HTTP Server (powered by Apache) proxy cache
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 235

� Fast Response Cache Accelerator
� Triggered Cache Manager

The HTTP Server (powered by Apache) local cache mechanism is generally used with static
data. TCM is used to improve performance for dynamic data. FRCA, on the other hand, can
be used to cache both static and dynamic contents. For a review of the components of
performance, including the relationship between the HTTP and TCM servers, FRCA, and the
many caches used by a Web application, see Figure 10-3 on page 227.

In addition to caching, some types of files can be compressed by your HTTP Server (powered
by Apache) before you send through the TCP/IP network. By compressing the files, you are
both allowing more information to be carried by the same size network and, in many cases,
allowing a single transaction to arrive faster. The downside is additional CPU and memory
requirements on both the server and client. For more information, see 10.4, “Increasing
throughput with compression” on page 240.

10.3.1 HTTP Server (powered by Apache) local cache
The local cache is used to cache data in system memory that is more static in nature. Static,
in this case, means the content is not changing based on the user input or database
information. In general, static content includes image files, HTML pages, etc. By keeping this
data loaded in the server’s memory, you can improve server response time for files because
the server can handle the request far more quickly than if it had to read from the file system.
The HTTP Server (powered by Apache) allows you to configure which files will be preloaded
in the server’s memory at server startup and the amount of memory used for this purpose.

The local cache implementation is a two-stage process:

1. Define the memory size for the files to be cached.
2. Define the cache method.

The local cache implementation uses one main storage space for all the local cache files, so
the memory size you define is used for all the cache files. This includes both the files that are
cached at server startup time and any changed or new files cached due to dynamic caching
(see “What to cache?” on page 237). The server directive to identify the memory size is
CacheLocalSizeLimit.

Files can be cached at server startup using any of these three methods:

� Copy into memory
� Keep file descriptor open
� Memory map of file

Tip: Recall that TCM is not a cache but a cache manager. In effect, the TCM helps you to
be proactive in the update of HTML Web pages that you traditionally thought to be dynamic
and place them where your HTTP Server (powered by Apache) serves them from the IFS
as static content.

Tip: By default, the QHTTPSVR subsystem runs in system pool 1. Memory allocated by
the CacheLocalSizeLimit directive is from this pool. To verify which pool is used by the
QHTTPSVR subsystem, enter the 5250 Display Subsystem Description (DSPSBSD)
command:

DSPSBSD SBSD(QHTTPSVR/QHTTPSVR) OUTPUT(*)

Enter option 2 (Pool definitions).
236 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Copy into memory
The copy into memory method allows you to define the file or files that will be pre-loaded in
the iSeries memory, in the memory pool used by the HTTP server at Web server start up. The
memory size can be set up according to your application requirements. There is no limit for
the memory size used to preload the files. The limitation relies on the iSeries memory
capabilities.

The server directive used to cache files using this method is CacheLocalFile.

Keep file descriptor open
The Keep the file descriptor open method allows you to define ASCII file or files whose
descriptors are cached at server startup. Here, files are not copied into memory (they do not
allocate large amount of memory) and yet provide similar performance. Files cached with this
method remain open, shared read, while the server is active.

The server directive used to cache files using this method is CacheLocalFD.

Memory map of file
The memory map of the file method is similar to the copy into memory method. The difference
here is that this method uses a memory pointer to specify files that should be cached at
startup, which means that files are not copied into memory.

The server directive used to cache files using this method is CacheLocalFileMmap.

What to cache?
A powerful pair of options gives your HTTP Server (powered by Apache) server the ability to:

� Dynamically update the (static) files that were placed in the local cache at server startup
time. The default value is on (or enabled).

This directive (LiveLocalCache) checks to see if the file is updated in the IFS each time it
is requested. If it is not updated, the file is served from the cache. If it is updated, then the
entry for this file in the local cache is marked invalid and the file is served from the IFS for
all subsequent requests. You restart your server to load it back in the local cache.

If LiveLocalCache is off, then your HTTP Server (powered by Apache) server does not
check to see whether the file has changed in the IFS.

Clearly, LiveLocalCache off gives you the best performance for your Web server at the
expense of denying you the ability to update a particular file. LiveLocalCache off is useful
in a directory of all GIFs, for example, that rarely change.

Tip: If the file is updated, then the local cached entry for this file is marked invalid and the
file is served from the IFS for all subsequent requests. Only restarting your HTTP Server
(powered by Apache) causes the file to be placed back into the local cache.

FRCA local cache has an interesting feature. Assume that a file located in the IFS is
cached in the NFC by FRCA. If that file is updated in the IFS, it is also automatically
updated in the NFC and the new content is served by FRCA. For details, see 10.6, “Fast
Response Cache Accelerator” on page 281.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 237

� Dynamically add new (static) files to the local cache based on demand. The default value
is off (or disabled).

This directive (DynamicCache) allows dynamic caching of (static) files. There is overhead
involved in determining whether a file being served should be added to the cache that
impacts all the files being served from your Web server. Because of this, we recommend
that you use this directive for sites that generally have less than 1000 files.

Or, to put this another way, if you have less than a 1000 static files to serve and you have
not done an analysis as to which files to populate your local cache at server startup time,
then you may try using DynamicCache on. But, it is always better to identify all the files
you want to add to the local cache at server startup time since this is far more efficient.

The dynamic cache only adds files to the local cache as long as there is still room as
defined by the directive CacheLocalSizeLimit. If the local cache is full, no more files are
added to the cache.

Example configuration of a local cache
The cache file methods are usually configured through the Administration graphical user
interface (GUI). To configure, for example, all the GIF files in your document root to be cached
at server startup, follow the steps as explained here and shown in Figure 10-9.

1. Start the IBM Web Administration for iSeries interface, and select the Manage tab.

2. From the Server list, select the server you want to manage. From the Server area list,
select Global configuration.

3. In the left pane, under Server Properties, select System Resources.

4. Click the Caching tab.

5. On the Caching page, complete these steps:

a. In the Maximum storage size field, type the memory size that you want to configure for
the files to cache. Remember that this size is the main storage size used by all the files
that you decide to preload into memory. For this example, we use the default 2000.

b. Under the Files to cache when server is started table, click Add.

c. In the File path and name column, enter the file path for the static data the Web server
will cache at server startup. For this example, we cache the images (*.gif) files of the
document root /www/tomitso1/htdocs/images/*.gif.

d. In the Cache method column, select the mechanism used to cache the files. For this
example, we select Copy into memory.

e. Click Continue to save the new entry to the list of files to be cached at server startup.

f. Click OK.
238 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 10-9 Web server cache configuration

One Web server configuration can have many cache entries, since one specific environment
can require a different cache method for a group of files. Each directory may have different
static files that are requested frequently. To improve the server response time of those
frequently access files, we decide to preload those files in memory when the server starts.

You can configure the Web server cache entries only from the global settings attributes. You
cannot configure this directive for any other context than the HTTP general context.

Using HTTP server trace to see how the local cache is populated at startup
Starting your Web server with the -vv (very verbose) trace (see 13.2.5, “HTTP server trace”
on page 341, for details about how to start and dump the -vv trace information) causes the
HTTP Server (powered by Apache) to document how many files are added to the local cache.

You can then search the HTTP server trace scanning for the text “cache”. At the beginning of
the trace information, you see many entries reading and interpreting the cache directives
found in the configuration file. Later, you see trace entries similar to this example:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+
 000000AB:274632 total number of cache FCs = 51, FDs = 0, FRCAs = 2, and MMAPs = 0.
 000000AB:274688 total allocated cache size: LOCAL = 0 80877, FRCA = 0 17435.

The first line indicates that the total number of files cached by copy (FCs) was 51, file
descriptors (FDs) was 0, FRCA was 2 (see 10.6, “Fast Response Cache Accelerator” on
page 281), and files cached as memory mapped (MMAPs) was 0. The second line indicates
the total local cache memory consumed by these cached items is 80,877 bytes.

10.3.2 HTTP Server (powered by Apache) proxy cache
When the HTTP Server (powered by Apache) is acting as either a forward proxy or reverse
proxy it can cache the results of the content received from the remote HTTP server. This can
provide significant performance benefits for multiple Web clients who are all requesting the
same document.

2

Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 239

See 6.5, “Proxy server: Protecting direct access” on page 142, for more information about
both the forward and reverse proxy configurations. You should also see 10.6, “Fast Response
Cache Accelerator” on page 281, which demonstrates another method to configure a reverse
proxy cache.

10.4 Increasing throughput with compression
Data compression is another mechanism that can be used to improve performance. The
HTTP server module that provides compression support is the mod_deflate module. It is a
powerful module that allows you to compress, by configuration, files that are served from your
HTTP Server (powered by Apache). mod_deflate is Apache’s open source equivalent to
mod_gzip. Compressing the data before it is sent by your HTTP Server (powered by Apache)
can dramatically save on network delays caused by bandwidth restrictions. The data is
uncompressed at the remote client’s Web browser. mod_deflate is useful in networks where
individual network links are saturated with traffic or the end user is connected via modem.

As an anecdotal example, the /index.html home page that is served from our NetObjects
Fusion generated sample Web application that we use in this redbook is compressed by
mod_deflate from 10867 to 2002 bytes. Another example shows the HTML output of a
Net.Data macro is compressed from 10631 to 2869 bytes. Some files do not compress as
well. Examples are JPEGs, PDFs, and files that are already compressed. mod_deflate allows
you to configure which types of files are compressed and which are not.

Also, some documents are not supported by browsers in compressed form, such as
JavaScript (.js). In such cases, they must be excluded. They may work in the future, but for
now, it can make more problems than benefits.

And, of course, nothing is for free. This processing takes additional CPU and memory on your
iSeries server as well as the remote client browser. You must determine if the savings in the
size of the documents that you are sending through the network outweigh the performance
impact on the server and client.

Compression was initially added to 5722-DG1 at V5R1 and V5R2 via PTFs. One PTF
contains zlib and the other PTF contains the mod_deflate module plug-in:

� V5R1: PTFs SI09287 and SI09223
� V5R2: PTFs SI09286 and SI09224

Initial compression support did not support the configuration via the administration GUI.
However, the GUI configuration support was added with the following group PTFs for V5R1
and V5R2.

� V5R1 with group PTF SF99156 level 17 (December 2003)
� V5R2 with group PTF SF99098 level 13 (December 2003)

The GUI configuration support for V5R3 is implemented in the base code.

You can find more information about zlib on the Web at the following site, which announces
that zlib is “A Massively Spiffy Yet Delicately Unobtrusive Compression Library”:

http://www.gzip.org/zlib/

Important: zlib support is provided as a service program (*SRVPGM) in
QHTTPSVR/QZLIBZLIB. Just as mod_deflate uses this service program to compress data,
your applications can too. The IBM Rochester lab brought zlib to the iSeries to support
mod_deflate and not your application. That is, IBM does not support use of this service
program.
240 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.gzip.org/zlib/

10.4.1 Compression considerations
You can configure compression individually for input and output traffic. Filters are used to
define the kind of traffic that should be compressed or decompressed. The only valid filter
name that is provided by the HTTP Server (powered by Apache) is DEFLATE. The DEFLATE
filter uses gzip for compression. However, you can write your own compression utilities that
can be plugged into the HTTP server configuration. These compression utilities are
accessible by a filter name of your choice.

Typically, you set up your HTTP server to compress only outbound traffic, because the
amount of data sent to a browser is much higher than the request data received from a
browser. The benefit of reducing the size of data sent from the server to the browser
outweighs the overhead that compression introduces for the CPU. One reason not to use
mod_deflate for inbound traffic is that many browsers do not support compression of HTTP
requests.

Carefully plan for the Multipurpose Internet Mail Extensions (MIME) or file types you want to
compress. As indicated earlier, if you configure the server to compress all outbound traffic,
the server would also compress files, such as JPEG files, that are already compressed. This
can cause more overhead than performance gain.

The IBM Web Administration for iSeries interface GUI provides three configuration tabs under
the category Compression. They provide the configuration options that are described in the
following sections.

Input filters
Input filters can be defined for the global configuration, directory, and virtual host contexts.
They determine how data received from the browser is handled. You have the option to
activate decompression for all traffic received within a specific context or traffic (files) that has
a certain extension. As mentioned previously, this option is not used often due to the lack of
HTTP request compression support for most browsers.

Output filters
As for input filters, output filters can also be defined for the global configuration, directory, and
virtual host contexts. However, output filters provide more configuration flexibility. You can
enable compression for an entire context, for certain browser versions, for certain file
extensions, or for certain MIME types.

Advanced
Using the Advanced tab, you can control the logging of compression information and
fine-tune the compression behavior of the mod_deflate module. In addition, there are several
more configuration tabs that can impact compression, but are not directly related to the
mod_deflate module.

10.4.2 Example configurations
Here are three sample configurations that provide you with a simple starting point for
configuration and use of mod_deflate:

� Compressing everything in a context
� Compressing only HTML files for specific Web browsers
� Compressing only a few MIME types in a context using AddOutputFilterByType
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 241

Compressing everything in a context
The first configuration example sets up the server to compress outbound traffic for all files that
are served from a specific context (/www/tomitso1/datasheets/). In this case, the context (IFS
directory) contains only HTML and text files.

1. From the IBM Web Administration for iSeries interface, click Manage.

2. From the Server list, select the server that you want to configure.

3. From the Server area list, select the context for which you want to configure compression.

4. In the left pane under Server Properties, click Compression.

5. In the Compression panel (Figure 10-10), select the Output Filters tab.

Figure 10-10 Compression: Output Filters tab

6. On the Output Filters page (Figure 10-11), complete these tasks:

a. Scroll down to the Set output filter section. Click Add to add a new entry.

b. Enter the filter name DEFLATE. This is the only valid filter name that you can enter and
that has an impact on compression unless you have written your own compression
module with your own filter name. The DEFLATE name refers to the gzip compression
library.

c. Click Continue.

d. Click OK to save your settings.

Note: If the selected directory also contain files, such as JPEG files, the CPU overhead for
compression may outweigh the benefit of reduced data traffic. In this case, compress only
certain types of files as described in “Compressing only a few MIME types in a context” on
page 250.
242 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 10-11 Compression: Output Filters tab Set output filter section

7. Restart your server to activate the changes. From now on, all files that are served out of
the context /www/tomitso1/datasheets are compressed when sent to the client.

Example 10-1 shows the key directives that are needed to support compression using the
mod_deflate module in the httpd.conf file in bold. These directives were added by the IBM
Web Administration for iSeries interface. Most of the other directives that do not directly affect
this example were removed.

Example 10-1 mod_deflate: Minimal configuration directives

Configuration originally created by Create HTTP Server wizard on Wed Sep 22 15:54:41 CEST
2004
LoadModule deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
Listen *:8001
DocumentRoot /www/tomitso1/htdocs
...
<Directory />
 Order Deny,Allow
 Deny From all
</Directory>
<Directory /www/tomitso1/datasheets>
 Order Allow,Deny
 Allow From all
 SetOutputFilter DEFLATE
</Directory>
<Directory /www/tomitso1/htdocs>
 Order Allow,Deny
 Allow From all
</Directory>
Alias /datasheets/ /www/tomitso1/datasheets/

Compressing only HTML files for specific Web browsers
Some versions of Web browsers cannot handle the compression of mod_deflate. In addition,
it is not always good to try to compress graphic files and other files of certain types. The
following example provides a good starting example that compresses only files of type HTML
for all incoming URLs as defined by the <Location /> directive. Example 10-2 highlights the
key directives that we added to a standard httpd.conf file. Most of the other directives that do
not directly affect this example were removed.

Tip: You use RemoveOutputFilter DEFLATE to turn off mod_deflate in a subcontext.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 243

This example uses the recommended configuration found on the Web at:

http://httpd.apache.org/docs-2.0/mod/mod_deflate.html#recommended

Example 10-2 mod_deflate: Recommended configuration directives from ASF

Configuration originally created by Apache Setup Wizard Wed Apr 30 15:38:30 UTC 2003
LoadModule deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
Listen *:8000
DocumentRoot /tcp52d00/basicconfig/itsoco
ServerRoot /tcp52d00/basicconfig
...
<Location />
Insert filter
SetOutputFilter DEFLATE
Netscape 4.x has some problems...
BrowserMatch ^Mozilla/4 gzip-only-text/html
Netscape 4.06-4.08 have some more problems
BrowserMatch ^Mozilla/4\.0[678] no-gzip
MSIE masquerades as Netscape, but it is fine
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html
Do not compress images
SetEnvIfNoCase Request_URI \.(gif|jpe?g|png)$ no-gzip dont-vary
Make sure proxies do not deliver the wrong content
Header append Vary User-Agent env=!dont-vary
</Location>
...
<Directory />
 Order Deny,Allow
 Deny From all
</Directory>
<Directory /tcp52d00/basicconfig/itsoco>
 Order Allow,Deny
 Allow From all
</Directory>

You can find this example at the Apache Web site. It uses BrowserMatch directives that were
introduced with the mod_browser module. However, the BrowserMatch directives were
declared obsolete with Apache 1.2 and higher. A replacement for the BrowserMatch directive
is the SetEnvIf directive of the mod_setenvif module. The HTTP Server (powered by Apache)
still accepts the BrowserMatch directive when manually configured, but the IBM Web
Administration for iSeries interface supports only the SetEnvIf directive in the GUI.

The following steps explain how to implement the previous example using the IBM Web
Administration for iSeries interface. This time, the directives apply to a directory context
instead of a location context.

Tip: The configuration example at the httpd.apache.org Web site requires minor
modification for it to work in the HTTP Server (powered by Apache). The original syntax at
httpd.apache.org was:

Don't compress images
SetEnvIfNoCase Request_URI \
\.(?:gif|jpe?g|png)$ no-gzip dont-vary

We modified the SetEnvIfNoCase directive to this one line syntax (shown in
Example 10-2):

Do not compress images
SetEnvIfNoCase Request_URI \.(gif|jpe?g|png)$ no-gzip dont-vary
244 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://httpd.apache.org/docs-2.0/mod/mod_deflate.html#recommended

1. From the IBM Web Administration for iSeries interface, click Manage.

2. From the Server list, select the server you want to configure.

3. From the Server area list, select the context for which you want to configure compression.

4. In the left pane under Server Properties, click Compression.

5. In the Compression panel, select the Output Filters tab.

6. On the Output Filters page, complete these steps:

a. Scroll down to the section Set output filter and click Add to add a new entry.

b. Enter the filter name DEFLATE. This is the only valid filter name that you can enter and
that impacts compression unless you have written your own compression module with
your own filter name. The DEFLATE name refers to the gzip compression library.

c. Click Continue.

d. Click OK to save your settings.

Figure 10-12 Compression: Output Filters tab Set output filter section

7. So far, you have configured the directory context to compress all files that are sent to the
client. In the next steps, you will configure the equivalent directives for the BrowserMatch
directives. These directives restrict compression for certain browser types.

In the left navigation pane, under Server Properties, click Request Processing.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 245

8. In the Request Processing panel (Figure 10-12), click the Custom Environment
Variables tab.

Figure 10-13 Request Processing: Custom Environment Variables page
246 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

9. On the Custom Environment Variables page, complete these steps:

a. Scroll down to the end of the table and click Add to add a new entry to the table.

b. Enter the following values into the input fields as shown in Figure 10-14:

• Variable: gzip-only-text/html
• Value: Leave empty
• Attribute: User-Agent
• Attribute value: ^Mozilla/4
• Case sensitive: Select this option

Depending on the Case sensitive checkbox setting, the GUI creates a SetEnvIf or
SetEnvIfNoCase directive.

These values generate the following directive:

SetEnvIf User-Agent ^Mozilla/4 gzip-only-text/html

The directive corresponds to the following BrowserMatch directive:

BrowserMatch ^Mozilla/4 gzip-only-text/html

Figure 10-14 Request Processing: New entry on the Custom Environment Variables page

c. Click Continue.

d. Click Add to add another entry to the environment variables section.

e. Enter the following values for the new entry.

• Variable: no-gzip
• Value: Leave empty
• Attribute: User-Agent
• Attribute value: ^Mozilla/4\.0[678]
• Case sensitive: Select this option

This entry further restricts compression in a way that compression is applied to Mozilla
(Netscape) browser Version 4.06 to 4.08. The directive generated by the GUI is:

SetEnvIf User-Agent ^Mozilla/4\.0[678] no-gzip

f. Click Continue to save the entry.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 247

g. Repeat the previous steps to add the following two entries:

• Variable: !no-gzip
• Value: Leave empty
• Attribute: User-Agent
• Attribute value: \bMSIE
• Case sensitive: Select this option

This entry allows compression for Microsoft Internet Explorer browsers. In fact, it
removes the restriction that was previously introduced with the no-gzip option for all
browsers that report themselves as Mozilla browsers. Also Internet Explorer reports
itself as a Mozilla browser, but adds another value (MSIE) to the user agent string. The
User-Agent variable is selected with the regular expression \bMSIE if the variable
contains somewhere the value MSIE. If it does, compression is allowed via the !no-gzip
parameter.

The second entry removes the restriction for text/html files.

• Variable: !gzip-only-text/html
• Value: Leave empty
• Attribute: User-Agent
• Attribute value: \bMSIE
• Case sensitive: Select this option

The directives generated by the GUI are:

SetEnvIf User-Agent \bMSIE !no-gzip
SetEnvIf User-Agent \bMSIE !gzip-only-text/html

h. Using the following parameter values, add the last two SetEnvIf directives to the HTTP
server configuration:

• Variable: no-gzip
• Value: Leave empty
• Attribute: Request_URI
• Attribute value: \.(gif|jpe?g|png)$
• Case sensitive: Deselect this option

The second directive is required to set the dont-vary variable.

• Variable: dont-vary
• Value: Leave empty
• Attribute: Request_URI
• Attribute value: \.(gif|jpe?g|png)$
• Case sensitive: Deselect this option

The directives generated by the GUI are:

SetEnvIfNoCase Request_URI \.(gif|jpe?g|png)$ no-gzip
SetEnvIfNoCase Request_URI \.(gif|jpe?g|png)$ dont-vary
248 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

After all SetEnvIf and SetEnvIfNoCase directives are defined, the environment
variables section should look like the example in Figure 10-15.

Figure 10-15 Request Routing: Custom Environment Variables

i. Click OK to close the Request Processing window.

10.The last configuration step prevents proxies to incorrectly handle the content. In the left
navigation pane, click HTTP Responses.

11.In the HTTP Responses panel, click the Response Headers tab.

Note: When BrowserMatch directives already exist and you change custom
environment variables via the IBM Web Administration for iSeries interface, the
BrowserMatch directives are automatically converted into SetEnvIf directives.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 249

12.On the Response Headers page (Figure 10-16), follow these steps:

a. Click Add to add a new entry to the Response headers section.

b. Enter the following information:

• Action: Append
• Header name: Vary
• Value: User-Agent
• Environment variable: !dont-vary

c. Click Continue.

d. Click OK to save your settings.

Figure 10-16 HTTP Responses panel

13.Restart the server to activate the new configuration.

Compressing only a few MIME types in a context
Using AddOutputFilterByType seems to be the preferred way to handle the idiosyncrasies of
the many different Web browsers on the Internet. You can use a more complex example as
demonstrated earlier. However, complexity invites the opportunity for error, either as part of
your configuration or from the Web client’s ability (or lack of ability) to handle a certain MIME
type. For example, you may want to test to see which versions of Netscape can handle
compressed PDFs over an SSL-encrypted session.

In this configuration scenario, only content of the following MIME types are compressed:

� text/html
� text/plain
� text/xml

Perform the following steps to activate outbound compression for these MIME types.

1. From the IBM Web Administration for iSeries interface, click the Manage tab.

2. From the Server list, select the server you want to configure.

3. From the Server area list, select the context you for which want to configure compression.
250 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. In the left pane under Server Properties, click Compression.

5. In the Compression panel, select the Output Filters tab.

6. On the Output Filters page (Figure 10-17), complete these steps:

a. Scroll down to the Add output filter by MIME type section and click Add to add a new
entry.

b. Enter the following information to enable compression for the text/html MIME type:

• MIME type: text/html
• Filter name: DEFLATE

c. Click Continue.

Figure 10-17 Compression: Adding an output filter by MIME type on the Output Filters page

d. Click Add again to add the entry for the MIME type text/plain:

• MIME type: text/plain
• Filter name: DEFLATE

e. Click Continue.

f. Click Add again to add the entry for the MIME type text/xml:

• MIME type: text/xml
• Filter name: DEFLATE

g. Click Continue.

h. Click OK.

7. Restart the server to activate the new configuration.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 251

Example 10-3 shows the key directives needed to support MIME type-based compression
using the mod_deflate module in the httpd.conf file in bold. These directives were added by
the IBM Web Administration for iSeries interface. Most of the other directives that do not
directly affect this example were removed.

Example 10-3 mod_deflate: Minimal configuration directives

Configuration originally created by Create HTTP Server wizard on Wed Sep 22 15:54:41 CEST
2004
 2 LoadModule deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
 3 Listen *:8001
 4 DocumentRoot /www/tomitso1/htdocs
...
 24 <Directory /www/tomitso1/prodinfo>
 25 Order Allow,Deny
 26 Allow From all
 27 AddOutputFilterByType DEFLATE text/html
 28 AddOutputFilterByType DEFLATE text/plain
 29 AddOutputFilterByType DEFLATE text/xml
 30 </Directory>

This example uses mod_deflate to compress all the files served from the directory
/www/tomitso1/prodinfo (and all subdirectories) of the MIME types listed.

10.4.3 Logging
You can see information about how mod_deflate is performing by using:

� Custom deflate log file
� Communications trace
� HTTP server trace

Custom deflate log file
You can create a special deflate log file to capture the effectiveness of mod_deflate. This first
configuration example simply reports the ratio of the output stream versus the input stream.
Perform the following steps to define the custom log for compression.

1. From the IBM Web Administration for iSeries interface, click the Manage tab.

2. From the Server list, select the server you want to configure.

3. From the Server area list, select the Global configuration context.

4. In the left pane under Server Properties, click Compression.

5. In the Compression panel, select the Advanced tab.

6. On the Advanced page (Figure 10-18), complete these steps:

a. In the Deflate filter note section select the following:

• Filter note type: Ratio
• Filter note name: compratio

The specified parameter generates the following directive:

DeflateFilterNote Ratio compratio

The directive on its own does not cause any log entries to be written. Additional log
options need to be configured to create the desired log.

b. Click OK to save the configuration.
252 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 10-18 Compression: Advanced page Deflate filter note

7. In left navigation pane, click Logging.

8. In the Logging panel, click the Custom Formats tab.

9. On the Custom Formats page (Figure 10-19), complete these tasks:

a. Under Log formats, click Add to add a new log format entry.

b. Enter the following information:

• Format name: deflate
• Log format: %r %b (%{compratio}n)

c. Click Continue.

d. Click Apply to save the new entry.

Figure 10-19 Logging: Custom Formats page

10.Click the Custom Logs tab.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 253

11.On the Custom Logs page (Figure 10-20), complete these steps:

a. Under Custom logs, click Add.

b. Enter the following information:

• Log: logs/deflate_log
• Attributes / Log format: deflate

c. You can also define additional attributes for log maintenance.

The Log format attribute relates to the custom format name that you defined in
Figure 10-19.

Figure 10-20 Logging: Custom Logs page

d. Click Continue.

e. Click OK to save the configuration.

12.Restart the server, access pages that are configured to be compressed, and open the
deflate_log file to see how the log format looks like.

Example 10-4 shows the directives that were added to your Global configuration server
context.

Example 10-4 mod_deflate: Simple deflate_log to report ratio of output stream to input stream

DeflateFilterNote Ratio compratio
LogFormat "%r %b (%{compratio}n)" deflate
CustomLog logs/deflate_log deflate

A portion of the deflate_log is shown in Example 10-5. After HTTP/1.1 are two numbers. The
first is the number of bytes sent for this request. The second in parentheses is the ratio, which
you can think of as a percentage.

The first line reads 2020 (18). This was for the file index.html, which in our application was
originally 10 876 bytes. That is, mod_deflate caused that file to compress to a file that is
approximately 18% of its original size.
254 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

For another example, consider the third line that reads 337 (101). This GIF file’s original size
is 314 bytes. mod_deflate, in this case, actually expanded the size of the file.

Another good example is the last line that reads 21057 (96). This JPEG file’s original size is
21 705 bytes. mod_deflate in this case barely reduced the size of this JPEG file.

Example 10-5 mod_deflate: Simple deflate_log

"GET / HTTP/1.1" 2020 (18)
"GET /clearpixel.gif HTTP/1.1" 52 (79)
"GET /Background.gif HTTP/1.1" 337 (101)
"GET /Home_Hp3.gif HTTP/1.1" 337 (17)
"GET /Projects_Np1.gif HTTP/1.1" 260 (13)
"GET /People_Np1.gif HTTP/1.1" 252 (13)
"GET /Services_Np1.gif HTTP/1.1" 259 (13)
"GET /Products_Np1.gif HTTP/1.1" 264 (14)
"GET /SiteMap_Np1.gif HTTP/1.1" 270 (14)
"GET /Downloads_Np1.gif HTTP/1.1" 281 (14)
"GET /BuiltByNOF.gif HTTP/1.1" 1130 (67)
"GET /Home_NBanner.GIF HTTP/1.1" 671 (31)
"GET /Ss02043.JPG HTTP/1.1" 21057 (96)

Example 10-6 shows another more complex format that provides more information and more
accurate results.

Example 10-6 mod_deflate: Accurate deflate_log to report ratio of output stream to input stream

DeflateFilterNote Input instream
DeflateFilterNote Output outstream
DeflateFilterNote Ratio compratio
LogFormat "%r %{outstream}n/%{instream}n (%{compratio}n)" deflate
CustomLog logs/deflate_log deflate

As shown in Example 10-7, the deflate_log now produces more information. Three numbers
are present after the HTTP/1.1 text. The first number represents the number of bytes output
by mod_deflate. The second is the number of bytes as input to mod_deflate. And the third in
parenthesis is the ratio.

Example 10-7 mod_deflate: More accurate deflate_log

"GET /People/people.html HTTP/1.1" 2069/15190 (13)
"GET /Background.gif HTTP/1.1" -/- (-)
"GET /clearpixel.gif HTTP/1.1" -/- (-)
"GET /Home_Np1.gif HTTP/1.1" -/- (-)
"GET /Products_Np1.gif HTTP/1.1" -/- (-)
"GET /Projects_Np1.gif HTTP/1.1" -/- (-)
"GET /SiteMap_Np1.gif HTTP/1.1" -/- (-)
"GET /Downloads_Np1.gif HTTP/1.1" -/- (-)
"GET /Services_Np1.gif HTTP/1.1" -/- (-)
"GET /a_SatelliteDataIcon_4.gif HTTP/1.1" -/- (-)
"GET /People_Hp3.gif HTTP/1.1" 331/1820 (18)
"GET /BuiltByNOF.gif HTTP/1.1" -/- (-)
"GET /People_NBanner.GIF HTTP/1.1" 727/2159 (33)

Restriction: The LogFormat and CustomLog directives can be defined through the IBM
Web Administration for iSeries interface as explained earlier. However, the Advanced tab of
the Compression page does not allow you to add more than one DeflateFilterNote
directive. Therefore, if you want to set up the more complex compression logging scenario
as shown in Figure 10-6, you have to edit the configuration file and enter the
DeflateFilterNote directives manually.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 255

"GET /DataIcon.GIF HTTP/1.1" 162/175 (92)
"GET /People/a_ArrowLine.gif HTTP/1.1" 99/1620 (6)
"GET /Employees_Ns1.gif HTTP/1.1" 340/1821 (18)

Communications trace
Using the iSeries communications trace, you can see the HTTP headers that are affected by
the use of the mod_deflate module. See 13.2.9, “Communications trace” on page 353, for
information about how to start, stop, print, and then delete an iSeries communications trace.

Example 10-8 shows an example of the HTTP get request from a Web client to the HTTP
Server (powered by Apache) that accepts compression for the file /index.html using
mod_deflate. The HTTP header ACCEPT-ENCODING is highlighted in bold.

Example 10-8 HTTP get: Request showing ACCEPT-ENCODING of GZIP and DEFLATE

E..A.@.}..*..*......*.@+T***.***
P..**..GET /INDEX.HTML HTTP/1.1*
*..ACCEPT: */*..REFERER: HTTP://A*
S20:8000/SITEMAP/SITEMAP.HTML..A
CCEPT-LANGUAGE: EN-US,ES-CO;Q=0.
5..ACCEPT-ENCODING: GZIP, DEFLAT
E..USER-AGENT: MOZILLA/4.0 (COMP
ATIBLE; MSIE 6.0; WINDOWS NT 5.1
; .NET CLR 1.1.4322)..HOST: AS20
:8000..CONNECTION: KEEP-ALIVE...
..L. *

As shown in Example 10-9 here is the reply from the HTTP Server (powered by Apache).
Some comments related to the headers that we have highlighted in bold.

� CONTENT-ENCODING: GZIP: This header tells the client how the information was
encoded.

� CONTENT-LENGTH: 2020: This header is found on all replies. The interesting point is
that the original /index.html file was 10867 bytes. This suggests a five-fold decrease in the
size of the document.

Example 10-9 HTTP reply: Content headers indicating that the data was compressed

E....@.@.8.......*..@.**.**+T***
*P.****..HTTP/1.1 200 OK..DATE: T*
UE, 24 JUN 2003 15:29:52 GMT..SE
RVER: APACHE..LAST-MODIFIED: FRI
, 29 MAR 2002 01:56:13 GMT..ETAG
: "1F601-2A73-35082940"..ACCEPT-
RANGES: BYTES..VARY: ACCEPT-ENCO
DING,USER-AGENT..CONTENT-ENCODIN
G: GZIP..CONTENT-LENGTH: 2020..K
EEP-ALIVE: TIMEOUT=300, MAX=95..
CONNECTION: KEEP-ALIVE..CONTENT-
TYPE: TEXT/HTML; CHARSET=WINDOWS
-1252.............*Z¢S*8..***.G*
*****.*@HG.R*-*;****LVJ*K*.H****.*
*:******|.L:IOX.****;**S$.?U*.*V**

Tip: In Example 10-7, some of the lines show “-/- (-)” for the effects of mod_deflate on
the file being served. This is written to the log file when the if-modified-since rule sends a
304 (not modified) response.
256 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

.*R.***.*P*O*.!*Z***V**%*.2***
*O.!****_**P**O**U**=**C**A*_*****
******<*..*AGHZ=*JJ*.**LZ*'*GD*T6*
...

HTTP server trace
You can turn on the HTTP server trace by using option -vv (verbose) to capture details about
the processing of each file by mod_deflate. See 13.2.5, “HTTP server trace” on page 341.

By repetitively searching for Zlib in the spooled file created by the HTTP server trace, we
found the statements shown in Figure 10-10. It is interesting to note that last line in
Example 10-10 for URL /cgi-bin/MACRO1.MBR/run is the output of a Net.Data macro that
was also compressed to about 25% of its original size.

Example 10-10 mod_deflate logging which files were compressed and to what size

000000ED:233144 Zlib: compressed 10867 to 2002 : URL /index.html.
000000EC:057400 Zlib: compressed 6751 to 1290 : URL /Products/products.html.
000000EB:114480 Zlib: compressed 15190 to 2069 : URL /People/people.html.
000000EB:265264 Zlib: compressed 10631 to 2869 : URL /cgi-bin/MACRO1.MBR/run.

10.4.4 Controlling the compression environment
In addition to the directives that control the kind of traffic that is going to be compressed or
decompressed, you can configure directives that control the compression behavior of the
mod_deflate module. The HTTP Server (powered by Apache) provides default values for
these directives. Here is a brief description of the available directives:

� DeflateBufferSize: Specifies the size in bytes, kilobytes, megabytes, or gigabytes of the
fragments that zlib should compress at one time. The default value is 8096 bytes.

� DeflateCompressionLevel: Specifies the level of compression to be used. The higher the
value is, the greater the compression is. Higher compression levels require additional CPU
time. The default level value specifies a level of compression that does not significantly
increase CPU time on most systems. The default level value is 6.

� DeflateMemLevel: Specifies how much memory should be used by zlib for compression,
in 16K increments. A value of 1 equates to 16K, while a value of 8 equates to 128K. The
default value is 9 (144K).

� DeflateWindowSize: Specifies the zlib compression window size (the history buffer) in
16K increments. A value of 9 equates to 144K, while a value of 15 equates to 240K.
Generally, the higher the window size is, the higher the compression ratio and greater
usage of memory are. The default value is 15 (240K).

Tip: A communications trace is a good tool for problem determination with mod_deflate.
For example, if your Internet Explorer browser is configured for proxy, it may not be sending
the accept-encoding HTTP header. The reason is most likely that your Web client is
configured to use HTTP/1.0 for the proxy connection, which does not support deflate. A
communications trace shows that the Web client is not sending in the accept-encoding
HTTP header.

To configure your Internet Explorer Web client to use HTTP/1.1 for the proxy connections,
select Tools →Internet Options. Click the Advanced tab and select Use HTTP 1.1
through proxy connections. If you select this options, you see the accept-encoding
header in your communications trace.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 257

Using the IBM Web Administration for iSeries interface, you can modify these directives by
performing the following steps:

1. Select your server and the context for which you want to configure compression.

2. From the left navigation pane, click Compression.

3. On the Compression panel, click the Advanced tab.

4. On the Advanced page (Figure 10-21), modify the performance related compression
directives. Click OK to save the changes.

Figure 10-21 Compression: Advanced tab

5. Restart the server to activate the new settings.

10.4.5 For more information
There is documentation on the Apache Web site about mod_deflate that has information
specific to setting up for compression. That site offers the best place to look for details:

http://httpd.apache.org/docs-2.0/mod/mod_deflate.html

The HTTP Documentation site has some documentation on the use of mod_deflate. See:

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

Note: Modifying these directives can have a positive or negative impact on performance
and CPU load. The default values shipped with the system fit most environments. If you
need to modify the compression environment, familiarize yourself with the compression
module and the impact these directives have. You can find more information at:

� http://httpd.apache.org/docs-2.0/mod/mod_deflate.html
� http://www.gzip.org/zlib/zlib_docs.html
258 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://httpd.apache.org/docs-2.0/mod/mod_deflate.html
http://www.gzip.org/zlib/zlib_docs.html
http://httpd.apache.org/docs-2.0/mod/mod_deflate.html
http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

For more information about log formats, go to:

http://httpd.apache.org/docs-2.0/en/mod/mod_log_config.html#formats

10.5 Triggered Cache Manager
As demonstrated in Figure 10-3 on page 227, each time the client requests a page, the HTTP
request must go through this process:

1. It goes through the network and passes each communication component such as firewall,
routers, proxies, and so on.

2. It goes through the HTTP Server (powered by Apache) to identify that the request must be
redirected to an application server.

3. The application server must in turn call the application.

4. The application processing the request may have to rely on many LOB database queries
(or any other required tasks) to generate the dynamic content of the HTML page.

5. Even after the HTML is generated, this response must flow all the way back down the line.

If a different client or even the same client requests the information again, the whole process
must be repeated. Even if the application has an application cache that can reduce the
number of queries into the LOB database, the amount of processing required to get to the
object stored in the application cache can be extremely large.

If you extend this environment to one with hundreds or even thousands of clients, CPU cycles
(alone) required to process the requests increase considerably. At this point, it can be better if
the implementation included a mechanism to serve client requests without going through the
whole process every time.

In this implementation, create the dynamic content in a proactive fashion and copy it to the
iSeries IFS or perhaps a router with a cache mechanism. Either way, now when the client
sends the request, dynamic content is already cached in the iSeries IFS or router. In this way,
the request can be processed with less demand on server resources and the response time
for the client improved.

TCM is a component in the iSeries server that was created exactly for this purpose. This
component is packaged in the IBM HTTP Server, 5722-DG1 Option 1. See Table 2-2 on
page 20 for the details about how 5722-DG1 is packaged.

The TCM is a TCP server. It may be used in conjunction with Web servers and Web
document caching agents to keep Web sites running at peak performance.

TCM is:

� A cache manager, not a cache or cache server

� Based on trigger messages

This means you must set up application triggers for the server to work. These messages
are sent to the TCM via the HTTP/1.0 protocol.

� A stand-alone server that can work with multiple types of caching mechanisms, for
example caching routers, proxy caches, and so on

It is useful in the environment we describe here for the HTTP Server (powered by
Apache), but it can be used for the HTTP Server (original), Domino, or WebSphere
Application Server environments as well.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 259

http://httpd.apache.org/docs-2.0/en/mod/mod_log_config.html#formats

TCM is proactive (based upon updates to an LOB database) in the update of Web content.
TCM causes the Web content to be dynamically regenerated and then placed in a location
(usually the iSeries IFS) that was configured to be served as static content by your Web
server. The TCM is most effective for a Web site that has a large number of requests for
content that is somewhat constant, but changes frequently.

One of IBM’s first uses of the TCM concept was to drive the 1996 Summer Olympic Games
Web site. Think of a downhill skiing results page (mostly HTML) that is composed of hundreds
of dynamic items including names, times, scores, and so on for a particular event. If, for every
request of that page, the application server had to re-run all the database queries to
dynamically calculate the content. That level of activity had the potential to bog down the
server with many repetitive actions. If only when the application LOB data was updated with
new results, then the application server was used to update a standard results page to be
served from a “static” portion of your Web site. This tremendously reduced the burden on the
application server.

10.5.1 TCM system requirements
The TCM server requires the following components to run:

� TCP/IP Connectivity Utilities, 5722-TC1 licensed program
� IBM Developer Kit for Java, 5722-JV1 licensed program

� IBM HTTP Server, 5722-DG1 licensed program
� Triggered Cache Manager, 5722-DG1 option 1
� The latest 5722-DG1 group PTF:

– V5R1: SF99156
– V5R2: SF99098
– V5R3: SF99099

The TCM server runs under its own user profile, which is QTCM.

The TCM configuration process should be done using the GUI. Do not edit the TCM
configuration files directly. Configuration APIs are also available if you want to create your
own configuration utility. See the following section.

Note: TCM does not require IBM Developer Kit for Java, 5722-JV1. It uses Java
support shipped with OS/400. Currently the Start TCP/IP Server (STRTCPSVR)
command erroneously checks for 5722-JV1. A V5R1 PTF (SI02889 for product
5722-SS1) corrects this problem. This level of support is built into OS/400 starting with
V5R2.

Note: If you plan on using TCM with WebSphere Application Server (as the configured
Data Source), then you need a special 5722-DG1 PTF:

� V5R1: SI09801
� V5R2: SI09799

This fix is integrated into i5/OS V5R3 of 5722-DG1.
260 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

10.5.2 TCM documentation
The following documents provide greater detail about the workings of TCM:

� A complete list of APIs to allow you to configure TCM in HTTP Server for iSeries
Programming, GC41-5435. The configuration GUI that IBM provides for you as part of
5722-DG1 option 1 uses these APIs. Most likely, you do not have to use these APIs.

� Articles in the iSeries Information Center about TCM:

http://publib.boulder.ibm.com/iseries/v5r3/ic2924/index.htm

Then search for TCM.

– Triggered Cache Manager: An overview of TCM

Follow these links: e-business and Web serving →HTTP
Server →Concepts →Triggered Cache Manager

– Trigger Messages: A description of the types and formats of the trigger messages that
are sent to the TCM server. These messages use the HTTP/1.0 protocol.

Follow these links: e-business and Web serving →HTTP
Server →Concepts →Trigger messages

– Set up Triggered Cache Manager

Follow these links: e-business and Web serving →HTTP
Server →Tasks →Triggered Cache Manager →Set up Triggered Cache Manager

This article demonstrates how to use the default configuration that is shipped with TCM
on the iSeries server. Depending on how your Web application is configured, this may
be an easy way to see TCM working quickly.

This article also has a custom configuration example that leads you through all the
options available when configuring TCM on the iSeries server.

10.5.3 TCM directory structure and authorization
The TCM server has its own directory structure (Table 10-1), which is used to keep
configuration and log files and various other data files required by the server.

Table 10-1 TCM directory structure

The user profile QTCM requires *RWX data authorities and *ALL object authorities to the
/QIBM/UserData/TCM directory and all files within it.

Note: You can find a working example using a subset of all the complexity that is
offered by a full implementation of TCM in 10.5.5, “Configuring a working TCM
example” on page 264.

Directory Description

/QIBM/UserData/TCM/instance/ This is the TCM root directory. Under this directory, the TCM
server configuration process creates the directory used by each
TCM server.

/QIBM/UserData/TCM/instance/
server_name

This is the root directory of your server_name TCM server.

/QIBM/UserData/TCM/instance/
server_name/daedalus.ini

This is the TCM configuration file.

Tip: You should use only the configuration GUI or the APIs to alter the configuration files.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 261

http://publib.boulder.ibm.com/iseries/v5r3/ic2924/index.htm

10.5.4 How the TCM server works
The steps involved before and during the TCM process are explained here:

1. Your HTTP server is configured to serve static content from a subdirectory in the IFS. The
content in this subdirectory is undefined at this point. These files may be missing or
contain old data.

2. Monitor for data changes.

Either your application or possibly a DB2® Universal Database™ (DB2 UDB) database
trigger can be used to determine that data was changed. And, this is not just any data, but
data upon which one or more dynamic Web pages depends.

3. Send a trigger message to the TCM trigger handler with the information about the data
that was changed.

Trigger request handlers perform the fundamental operations of a TCM server and are the
key server feature. When a server starts, it creates a request handler for each description.
The descriptions tell the server which type of trigger handler to create, the resources it
must use, the process rules it must follow, and other various settings required for the
particular type of defined handler. Trigger messages sent to a TCM server must address
one of the request trigger handlers.

For example, TCM defines a standard trigger handler for administration named admin. As
another example, if you configure a trigger handler by the name of PRODUCTLIST, the
name created by TCM at startup is TRH_PRODUCTLIST.

TCM supports two types of trigger handlers:

– Update Cache: Tells the TCM server to create a trigger request handler that performs
basic data transfers. It transfers (or copies) data from a data source to one or more
cache targets. A description of this type contains:

• A reference to a data source description, describing where data is located and how
to obtain it.

• References to one or more cache target descriptions, describing where the caches
are located and how to work with them.

• References to one or more acknowledgment target descriptions, describing where
to send completion messages.

• Various other settings required for trigger request handlers.

Tip: It is beyond the scope of this IBM Redbook to explain how to write an application to
create trigger messages. Here are some suggestions:

� Write a sockets client application that connects to the TCM server at the default port
of 7049 and establish a connection. You have to simulate the HTTP/1.0 protocol,
which is similar to the simulation we do by Telnet in this section. On the iSeries
server, you can do this in any programming language.

� Write a Java application and take advantage of the java.net.HttpURLConnection and
java.net.URL class files.

Tip: The easier choice is to use Update Cache. The data source is the Web
application (WebSphere Application Server or Net.Data are two examples). The
cache target is a subdirectory in the IFS.
262 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

– Publish: Tells the TCM server to create a trigger request handler that performs
document publishing. A publish handler receives a list of document fragment names as
input. It fetches each fragment from the configured data source, passes them through a
dependency parser to update the object dependency graph, assembles the fragments
into documents that can be served, and transfers (or copies) the fragments and
documents to one or more cache targets. A description of this type contains everything
an Update Cache type has as well as:

• A reference to an Object Dependency Graph (ODG) description, describing where
persistent publishing data may be stored

TCM determines which pages need to be updated by consulting an ODG. This
ODG is a data repository used to store dependency relationships for the pages the
server handle. Therefore, when the data changes, TCM finds out what pages
depend on the changed data. After all of the pages that are affected by the change
are located, they are removed from cache and restored with the newly updated
content. This then allows the dynamic update of the caching without restarting the
server.

• A reference to a rule set description, describing how to process document
fragments and servable documents and files

• Various other settings

4. Allow TCM to request the dynamic page from the data source.

When a TCM server needs to retrieve data (HTML documents, images, and video clips, for
example) it uses information from a data source description to determine where the data is
located and how to obtain it.

TCM supports two types of data sources:

– File System: Tells the TCM server it must use a file system to retrieve data. The server
retrieves data by reading files from the iSeries IFS. A description of this type contains a
directory path serving as the root to data files.

– HTTP Server: Tells the TCM server it must communicate with a Web server to retrieve
data. The TCM server retrieves data by using HTTP to request files from a Web server.
A description of this type contains information about the system hosting the Web
server, the TCP port the server is using, the URL path for the data files, and other
required settings.

5. Allow TCM to update the dynamic page content stored in the IFS or other cache targets.

When a TCM server needs to manage data in a cache, it uses information from a cache
target description to determine where the cache is located and how to work with it. A
description may list one or more targets. Each listed target is managed in a similar
manner.

TCM supports three types of cache targets:

Tip: This option allows you to retrieve a file that is physically in the same iSeries
server as is the TCM server. Using tools such as Network File System (NFS) or
QFileSvr.400, the file can be physically located anywhere in your TCP/IP network.

Tip: The HTTP server can be located anywhere in your TCP/IP network since it is
referenced using a fully qualified URL. This includes sending the request to an
HTTP server running on the same iSeries server that is running your TCM server.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 263

– HTTP Server: Tells the TCM server that it must communicate with a Web server to
manage cache data. The server manages cache data by using HTTP to get, put, and
delete files from a Web server. A description of this type contains a list of systems
hosting Web servers, the TCP port the servers are using, the URL path for the cache
data files, and other required settings.

– Router: Tells the TCM server that it must communicate with a router to manage cache
data. The server manages cache data by using special protocols, such as External
Cache Communication Protocol (ECCP) or Web Cache Control Protocol (WCCP), to
work with files in the router’s Web document cache. A description of this type contains
a list of routers hosting Web document caches, the TCP port the routers are using, and
various other settings.

– File System: Tells the TCM server that it must use a file system to manage cache data.
The server manages cache data by reading, writing, and deleting files in iSeries IFS. A
description of this type contains directory paths serving as roots to data files.

This is the easiest method because TCM simply writes file into the IFS on your iSeries
server. This is also the most practical solution. In this case the IFS can be thought of as
a cache target for TCM. Remember, that TCM is not a cache, but a cache manager.

There are multiple scenarios where you can use TCM. One for example can be an HTTP
server with one TCM server. Another example is multiple HTTP servers with multiple TCM
servers. Or there can be a combination between HTTP and TCM servers. All scenarios occur
on one or many iSeries servers.

10.5.5 Configuring a working TCM example
This section documents a TCM server working in cooperation with an existing Web
application. The steps that are involved are:

1. Define the environment.
2. Create and configure the HTTP Server (powered by Apache).
3. Create and configure the TCM server.
4. Test the TCM server.
5. Test interaction between TCM and HTTP Server (powered by Apache).

Tip: While TCM on the iSeries server provides the mechanism to get, put, and
delete files to a remote (or local) Web server, a complete solution for this option
must include a CGI application running on the target HTTP server. IBM does not
provide any example CGI applications. You are the one who must write this CGI
application to handle the POST data.

Tip: The only routers we know that support this are the IBM Model 2212 and 2216
network routers via the ECCP protocol.

Tip: This option allows you to place a file into the IFS on the same iSeries server
that the TCM server is. Using such tools as NFS or QFileSvr.400, you can physically
move the file to anywhere in your TCP/IP network.
264 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Defining the environment
For an example of the power of TCM, we provide a fairly simple Web application as shown in
Figure 10-22 on page 266. An HTTP Server (powered by Apache) named PBATCM00 serves
both:

� Primarily static content from the iSeries IFS under the DocumentRoot of
/tcp52d00/TCM/ITSOco. Specifically, a file in <DocumentRoot>/Products/products.html is
also configured to be served as static content even though TCM is dynamically updating
the products.html file whenever it receives a specially coded trigger message.

� A single dynamic page that is generated by an SQL select query against a table in an LOB
database file. The URL to evoke the Net.Data application is:

http://as20:8700/cgi-bin/MACRO1.MBR/run

A TCM server named TCMserv00 waits for a trigger message via the HTTP/1.0 protocol.
When it receives this trigger message, it updates the static IFS file products.html from the
dynamic content found in the LOB database table.

The following steps explain how this works. Each step corresponds to the number in
Figure 10-22.

1. Both the TCM and HTTP Server (powered by Apache) servers are configured and started.
The content of <DocumentRoot>/Products/products.html is undefined at this stage. That
is, a file may be either missing or have old data in it from the last time it was updated.

2. A trigger message is sent to the TCMserv00 TCM server’s Trigger Handler
PRODUCTLIST. This message was most likely generated by an update to an SQL table
that caused the static HTML in the products.html file to become out-of-date. Some events
may include:

– A database trigger, coded as part of the LOB database, detects that a table is updated.
– An application running on the iSeries directly updates the LOB database.
– An event occurs, such as the HTTP Server (powered by Apache) server has started.

The protocol for the trigger message is HTTP Version 1.0. The syntax of the trigger
message is:

-update -from /MACRO1.MBR/run -to /products.html

Notice the following explanation:

– -update: Indicates that this trigger message is to update a cache target
– -from: Defines the data source
– -to: Defines the cache target

3. The TCM server behaves as an HTTP client and prepares an HTTP GET request for the
URL:

http://as20:8700/cgi-bin/MACRO1.MBR/run

This URL is generated based on the TCM server’s configuration (see Figure 10-22 for all
the configuration values used in this scenario) and the text /MACRO1.MBR/run, which
immediately followed the -from parameter. In this case, the URL is:

http://<Host>:<TCP Port>/<Root Directory>/MACRO1.MBR/run

4. The HTTP Server (powered by Apache) PBATCM00 is configured to evoke a Net.Data
macro that dynamically generates HTML and returns it to the client.

Tip: In general, the URL http://as20:8700/cgi-bin/MACRO1.MBR/run is a hidden way
into your Web application. Normally your (non-TCM) Web clients do not link this URL in
any HTML page.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 265

5. The HTML result of the Net.Data macro invocation is returned to the TCM server by the
HTTP Server (powered by Apache).

6. The TCM server then writes the HTML results as a file to the iSeries IFS:

/tcp52d00/TCM/ITSOco/Products/products.html

The path and name of this file are generated based on the TCM server’s configuration
(see Figure 10-22) and the text /products.html, which immediately followed the -to
parameter on the trigger message. In this case, the path and name are:

<Target Directory>/products.html

7. The next and all subsequent requests for the URL
http://as20:8700/Products/products.html are served as static HTML content by the
HTTP Server (powered by Apache) PBATCM00.

Figure 10-22 TCM: The environment defined

After you understand all the pieces of the configuration, the actual configuration steps are
quite simple and straight forward.

Tip: You may be inclined to also use the HTTP Server (powered by Apache) local
cache to further cache the resultant HTML file. But, HTTP Server (powered by Apache)
local cache with dynamic update simply invalidates the local cache entry (forcing the
HTTP server to go to the IFS anyway) and does not recache the file. And, worse, the
dynamic update option for the local cache causes the HTTP Server (powered by
Apache) to always check to see if the file is updated. This causes extra I/O operations,
slowing down your HTTP server. See “What to cache?” on page 237 for more details
about the local cache options.

FRCA local cache does work in this environment. This is because FRCA local cache
automatically updates the contents of the NFC when a static file in the IFS changes.
See 10.6.2, “How FRCA local cache works” on page 283.

TCP/IP

IFS
files

Web application

LOB
DB

Browser

HTTP Server (powered by Apache)

MI

Server: PBATCM00
Listen: *:8700
ServerRoot: /tcp52d00/TCM
DocumentRoot: /tcp52d00/TCM/ITSOco

Type: Net.Data as PBATCM00's CGI
URL to evoke SQL query of LOB DB:
http://as20:8700/cgi-bin/MACRO1.MBR/run

Triggered Cache Manager
TCM Server: TCMserv00
Listen: *:7049
Host: as20.itsoroch.ibm.com
Data Source: GenerateProductList

TCP Port: 8700
Root Directory: /cgi-bin

Cache Target: TargetProductList
Target Directory:
/tcp52d00/TCM/ITSOco/Products

Trigger Handler:PRODUCTLIST

Trigger message via HTTP/1.0:
-update -from /MACRO1.MBR/run -to /products.html

<DocumentRoot>/Products/products.html

2

3

45

6

7

266 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Creating and configuring the HTTP Server (powered by Apache)
You must now create an HTTP Server (powered by Apache) with the characteristics defined
in Table 10-2.

Table 10-2 TCM: HTTP Server (powered by Apache) used to serve Web application

Example 10-11 shows the final configuration file for the PBATCM00 HTTP Server (powered
by Apache). This is a fairly standard configuration. Most of the work that this server does is to:

� Serve static files from the DocumentRoot /tcp52d00/tcm/itsoco and all subdirectories. One
of the subdirectories that we are interested in is /tcp52d00/tcm/itsoco/products because
this is where TCM will place the HTML results file named products.html.

� Using the ScriptAlias directive and the directives found within the <Directory
/qsys.lib/tcp52lmast.lib/> content, allow this HTTP Server to evoke a Net.Data macro that
does an SQL select into a table.

Example 10-11 TCM: Configuration file for PBATCM00 HTTP Server (powered by Apache)

Configuration originally created by Apache Setup Wizard Tue May 27 21:30:43 UTC 2003
ScriptAlias /cgi-bin/ /qsys.lib/tcp52lmast.lib/db2www.pgm/
Listen *:8700
DocumentRoot /tcp52d00/tcm/itsoco
ServerRoot /tcp52d00/tcm
DefaultType text/plain
Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes
-MultiViews
ErrorLog logs/error_log
LogLevel Warn
DirectoryIndex index.html
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Order Deny,Allow
 Deny From all
</Directory>
<Directory /tcp52d00/tcm/itsoco>
 Order Allow,Deny
 Allow From all

Parameter Value

Server name PBATCM00

Server root /tcp52d00/TCM

Document root /tcp52d00/TCM/ITSOco

IP address All

Port 8700

ScriptAlias /cgi-bin/ /qsys.lib/tcp52lmast.lib/db2www.pgm/
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 267

</Directory>
<Directory /qsys.lib/tcp52lmast.lib/>
 Order Allow,Deny
 Allow From all
 Options +ExecCGI
</Directory>

Creating and configuring the TCM server
Follow these steps to create a new TCM server named TCMserv00. After a new server is
created, it may be custom configured and managed using the other forms available from the
navigation frame.

1. From the IBM Web Administration for iSeries interface, click the Advanced tab and then
the TCM subtab.

2. In the left pane, click Create server.

3. In the right panel, for Server Name, enter your TCM server name. In our example, this is
TCMserv00. Leave the other parameters as the defaults. Click Create.

Figure 10-23 TCM: Creating the server TCMserv00
268 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. As shown in Figure 10-24, in the left pane, select your TCM server from the list. All the
configuration settings that you specify are then applied to this TCM server so make sure
that you select the correct ones.

Figure 10-24 TCM: Selecting your TCM server by name

Now that the TCM server TCMserv00 is created, simply use the left pane to configure this
server one object at a time. TCM allows for a flexible configuration with many named
objects that can be used and reused by many different trigger monitors. Our path is
simple.

Tip: You may have to refresh your Web client view of this frame to see your new TCM
server. In Internet Explorer, press F5.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 269

5. As shown in Figure 10-25, click Basic settings to change any of the basic settings for the
TCM server. For this example, we do not make any changes. At any point, you can click
the help icon which is a little question mark (?) in a circle.

Figure 10-25 TCM: Changing the basic settings

Tip: One of the interesting parameters is the number of threads. It specifies the number
of concurrent threads that are spawned by the TCM server when it communicates with
remote clients and servers. TCM operates as a multi-threaded server application. It is
also queue-based because it uses messages between the threads to request work and
manage work load. It is possible on a busy iSeries that a single or group of HTTP client
requests for a dynamic page can take some time. As TCM waits for the HTML response
from the Data Source, more work can queue up.

You can monitor these queues and the work involved to help you determine if changing
this number to something bigger can help you for your Web application. See step b on
page 277 for an example of determining the status of all the TCM queues.
270 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. As shown in Figure 10-26, click Hosts to define configuration settings used to describe
computer systems that host servers of interest to a TCM server. Computer systems (such
as an iSeries server) may host a number of different server types. When a TCM server
needs to communicate with another server, it reads a host description to obtain the IP
address or host name of the system hosting the server. Again, use the help icon for more
details.

7. In our case, we can use the default LOCALHOST since the host servers we will use are all
on the same server. But, we create a host description for our local system. To do this, click
Create New Description and enter your iSeries host name. Click Create.

Figure 10-26 TCM: Creating a host description

Tip: You must list host names that can be resolved to IP addresses. That is, do not
specify host names that do not exist.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 271

8. Click Data sources to describe a data source to a TCM server. When the TCM server
needs to retrieve data, it uses information from a data source description to determine
where the data is located and how to obtain it.

TCM supports two types of data sources: file system and HTTP server. In our scenario, we
use an HTTP Server as a data source.

9. Click Create New Description.

10.Complete the following steps (see Figure 10-27):

a. In the Name field, type the name of your data source. In our case, we enter
GenerateProductList.

b. For the Type, select HTTP Server.

c. Click Next to see the rest of the parameters needed for this data source.

d. For Host, select as20.itsoroch.ibm.com, which was created earlier.

e. For TCP Port (1-65535), type 8700, which is the port on which our HTTP Server
(powered by Apache) Web application is listening.

f. For the Root Directory, type /cgi-bin, which is a sort of prefix used to create the
Uniform Resource Identifier (URI) for the data source. This can be “/”, but it requires
every trigger message to be longer.

g. Click Create.

Figure 10-27 TCM: Creating a data source description

11.Click Cache targets to configuration settings used to describe data caches to a TCM
server. TCM supports three types of cache targets: HTTP server, router, and file system.
In our scenario, we use the file system as the cache target.

12.Click Create New Description.
272 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

13.Complete the following steps (see Figure 10-28):

a. In the Name field, type the name of your cache target. In this case, we enter
TargetProductList.

b. For Type, select File System.

c. Click Next to see the rest of the parameters needed for this cache target.

d. For Directory, type /tcp52d00/TCM/ITSOco/Products, which is sort of a prefix for the
path in the IFS to place the result file. This can be “/”, but it requires every trigger
message to be longer.

e. Click Create.

Figure 10-28 TCM: Creating a cache target description

14.In the left pane, Acknowledgement targets are descriptions of configuration settings used
to describe where a TCM server sends completion messages after handling requests.
When a TCM server completes a request, it may optionally send completion messages to
inform someone (or something) that it handled a request. It uses information from an
acknowledgment target description to determine where to send such messages. A
description may list one or more targets. Each listed target is sent identical messages.

For this example, we do not specify an Acknowledgement target.

Click Trigger handlers to describe internal trigger request handlers for a TCM server.
TCM supports two types of trigger handlers: publish and update cache. In our scenario,
we use update cache.

15.Click Create New Description.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 273

16.Complete the following steps (see Figure 10-29):

a. In the Name field, type the name that you will use for your trigger handler. In our case,
we enter PRODUCTLIST.

b. For Type, select Update Cache.

c. Click Next to see the rest of the parameters needed for this trigger handler.

d. For Data Source, select GenerateProductList.

e. For Cache Targets, select TargetProductList.

f. For the remaining parameters, accept the defaults.

g. Click Create.

Figure 10-29 TCM: Creating a trigger handler description

This completes the configuration for the trigger handler PRODUCTLIST. The next step is to
test the TCM server.

Testing the TCM server
First, you must start the TCM server and pass it a few simple requests to make sure it is
running properly. These requests must be in the form of trigger messages.

Tip: You can select multiple cache targets by holding down the Ctrl key and selecting
each item in the list.
274 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Before continuing, we explain how TCM trigger messages are formed. First, TCM uses HTTP
Version 1.0 (written as HTTP/1.0) as the protocol to carry the trigger messages. HTTP was
chosen because it is a common protocol and easy to pass between systems and through
firewalls. It is this requirement for HTTP/1.0 that leads us to the requirement that TCM’s
trigger messages be created by an application since there is really no native way on the
iSeries server to generate the HTTP/1.0 protocol as a client. This application can reside on
your iSeries or on any other system in your network.

Second, we use the HTTP post method to send trigger messages to the TCM server. Here is
an example for the syntax to query the /admin/ trigger handler for its -v[ersion].

post /admin/ http/1.0<Enter>
content-length: 3<Enter>
<Enter>
-v<Enter>

Tip: It is beyond the scope of this IBM Redbook to explain how to write an application to
create trigger messages. For this scenario, we use a Telnet VT100 client to simulate an
HTTP client. You need a Telnet client that can locally echo the characters you are typing as
you emulate an HTTP client when sending trigger messages to the TCM server. We used
ZOC/Pro 4.11. You may download a 30-day evaluation copy from the Web at:

http://www.emtec.com/main.html

We made a configuration change to the defaults with ZOC. This was to change the session
options to always “start session with local echo on”. Select Options →Edit Session
Profile... Select the Device tab. For the Telnet I/O Device, select Start session with local
echo on. Click Save.

Tip: The syntax for the HTTP protocol is specific and unforgiving.

� <Enter> means to press the Enter key (or carriage return). And, yes, the third line in the
sample above is asking you to press the Enter key all by itself.

� The content-length value must be precise. It should include all the characters including
spaces and the <Enter> for the line that immediately follows it.

� If you make a mistake while typing the post syntax, the only way to fix it is start all over
again. The Backspace key on your keyboard is not recognized by the TCM (nor any
other HTTP) server.

� If you are going to use this Telnet client to emulate an HTTP client repeatedly, you may
want to investigate using macros to record your keystrokes so you can accurately
repeat them without making a mistake.

� The URI path information is case sensitive. For example, the following path causes the
TCM server to send the HTTP/1.0 404 (file not found) to the client:

post /Admin/ http/1.0<Enter>
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 275

http://www.emtec.com/main.html

OK, now we are ready to start the TCM server and test it:

1. Start the TCM server. Click Work with servers, select the server you want to start (we
selected TCMserv00) and click Start (see Figure 10-30). This process seems to take a bit
of time. The server should not stay with a Starting status for more than one minute. Click
Refresh until the status becomes Active.

Figure 10-30 TCM: Working with servers and clicking Start

2. Determine the version of TCM that is running on your iSeries server. Follow these steps:

a. Use ZOC to Telnet to port 7049 on your iSeries server. Figure 10-31 shows the settings
that we used for this client connection. Click Options to turn on local echo if it is not
already enabled for this terminal session.

Figure 10-31 TCM: Using ZOC to Telnet to the iSeries TCM server at port 7049

b. In ZOC, type the following HTTP/1.0 syntax. -v is a shorthand notation for -version.

post /admin/ http/1.0<Enter>
content-length: 3<Enter>
<Enter>
-v<Enter>
276 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The TCM server should reply with something similar to:

HTTP/1.0 200
content-type: application/x-trigger-msglist
Content-length: 75

1152 0 0 admin ! Version: Daedalus 04042000A Started: 09/24/2004 14:44:37
[TELNET] INFO: DISCONNECTED

3. Determine the status of all the TCM queues. Follow these steps:

a. Use ZOC to Telnet to port 7049 on your iSeries server.

b. In ZOC, type the following HTTP/1.0 syntax:

post /admin/ http/1.0<Enter>
content-length: 8<Enter>
<Enter>
-queues<Enter>

The TCM server should reply with something similar to:

HTTP/1.0 200
content-type: application/x-trigger-msglist
Content-length: 1107

1140 1 1 admin ! SNK_LOCAL_DIRECTORY: active=0 queued=0 lifetime-total=0
lifetime-failed=0 lifetime-retried=0 threads=5
1140 1 1 admin ! SNK_TargetProductList: active=0 queued=0 lifetime-total=0
lifetime-failed=0 lifetime-retried=0 threads=5
1140 1 1 admin ! TRH_UPDATE_CACHE: active=0 queued=0 lifetime-total=0
lifetime-failed=0 lifetime-retried=0 threads=10
1140 1 1 admin ! SRC_LOCAL_HTTP: active=0 queued=0 lifetime-total=0
lifetime-failed=0 lifetime-retried=0 threads=5
1140 1 1 admin ! TRH_PUBLISH: active=0 queued=0 lifetime-total=0 lifetime-failed=0
lifetime-retried=0 threads=10
1140 1 1 admin ! admin: active=0 queued=0 lifetime-total=2 lifetime-failed=0
lifetime-retried=0 threads=0
1140 1 1 admin ! TRH_PRODUCTLIST: active=0 queued=0 lifetime-total=0
lifetime-failed=0 lifetime-retried=0 threads=10
1140 1 1 admin ! SRC_GenerateProductList: active=0 queued=0 lifetime-total=0
lifetime-failed=0 lifetime-retried=0 threads=5
1140 1 1 admin ! DeferQueue: active=0 queued=0 lifetime-total=0 lifetime-failed=0
lifetime-retried=0 threads=-1
1141 1 1 admin ! Lifetime total server requests=2
[TELNET] INFO: DISCONNECTED

As you can see, TCM uses many queues and many different handlers to operate even a
simple configuration like ours. The one we are interested in is TRH_PRODUCTLIST,
which is TCM’s name for the trigger handler PRODUCTLIST we created in “Creating and
configuring the TCM server” on page 268.

Testing interaction between TCM and HTTP Server (powered by Apache)
For this second part of the test, we start the HTTP Server (powered by Apache) and test the
interaction. For this step, we send the trigger handler TRH_PRODUCTLIST a trigger
message:

-update -from /MACRO1.MBR/run -to /products.html

Tip: Daedalus was the IBM code name for the project that created TCM.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 277

This trigger message causes TCM to make an HTTP request to the URL:

http://as20:8700/cgi-bin/MACRO1.MBR/run

And then TCM places the resulting HTML in the iSeries IFS path and file. Refer to
Figure 10-22 on page 266 to see how the configuration of TCM generates the desired output.

/tcp52d00/TCM/ITSOco/Products/products.html

Follow these steps to perform this task:

1. Start the HTTP Server (powered by Apache) PBATCM00.

2. Verify for yourself that the directory /tcp52d00/TCM/ITSOco/Products/ is empty. If it is not
empty, you may want to delete the file Products.html as a way to prove to yourself that
TCM has dynamically generated the file. Choose one of the following options:

– Map a network drive to the iSeries IFS or use the Work with Object Links (WRKLNK)
command as follows:

WRKLNK OBJ('/tcp52d00/TCM/ITSOco/Products/*')

If no objects are in the directory /Products, you should see the Work with Object Links
display (Figure 10-32).

Figure 10-32 Work with Object Links (WRKLNK) of /Products subdirectory

– Use a Web client to request the products.html document directly as shown in
Figure 10-33. Use the URL:

http://as20:8700/products/products.html

 Work with Object Links

 Directory : /tcp52d00/TCM/ITSOco/Products

 Type options, press Enter.
 2=Edit 3=Copy 4=Remove 5=Display 7=Rename 8=Display attributes
 11=Change current directory ...

 Opt Object link Type Attribute Text

 (Cannot find object to match specified name.)
278 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 10-33 TCM: The /Products/products.html page is not found (yet!)

3. Send the trigger message to the TCM server. Follow these steps:

a. Use ZOC to Telnet to port 7049 on your iSeries server.

b. In ZOC, type the following HTTP/1.0 syntax:

post /TRH_PRODUCTLIST/ http/1.0<Enter>
content-length: 49<Enter>
<Enter>
-update -from /MACRO1.MBR/run -to /products.html<Enter>

The TCM server should reply with something similar to:

HTTP/1.0 202
content-type: application/x-trigger-msglist
Content-length: 58

1102 2 2 TRH_PRODUCTLIST ! update-sink request is queued
[TELNET] INFO: DISCONNECTED

As you can see, TCM queues the request on the TRH_PRODUCTLIST trigger handler.

Tip: The URI path information on the post is case sensitive.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 279

4. To verify that the directory /tcp52d00/TCM/ITSOco/Products/ now has a file Product.html,
use a Web client as shown in Figure 10-34 using the URL:

http://as20:8700/products/products.html

Figure 10-34 TCM: The /Products/products.html page created by TCM’s actions

If this was a real Web application, the trigger message that was sent to the trigger handler
TRH_PRODUCTLIST would be sent by your custom-written application. At this point, the
HTTP Server (powered by Apache) PBATCM00 serves the static results file
/Products/Products.html at static file speeds.

When the raw data in the SQL table is updated (for example, if the price of one of the items
changes or a new item is added to the table), your application needs to send a new trigger
message to the trigger handler to cause the /Products/Products.html file to be updated.
280 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

10.6 Fast Response Cache Accelerator

FRCA (affectionately pronounced “Frica” by the Rochester developers) is a significant leap
forward in caching architecture for your HTTP Server (powered by Apache). FRCA is dramatic
in two ways. First, it can serve Web content at a whopping seven times faster than a file from
the IFS. And, it serves over four times faster than the traditional local cache in the HTTP
Server (powered by Apache). Second, FRCA does this with approximately four to seven times
less CPU per transaction.

To back up this claim, see iSeries Performance Capabilities Reference Version 5, Release 3,
SC41-0607, which is the center of release-to-release performance information about the
iSeries server. You can find it on the Web at:

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

In this publication, see Section 6.1, which is dedicated to the HTTP Server (powered by
Apache). Table 10-3 is a subset of the information provided.

Table 10-3 iSeries Web serving capacity planning various transaction types

For a rough guide as to the number of static pages you can serve from either the IFS, cached
(from the local cache of the HTTP Server (powered by Apache)) or the new FRCA cache,
multiply the published CPW of your iSeries server by the number you find in the Capacity
column.

For example, if you take an average iSeries Model 810 with 1470 Commercial Processing
Workloads (CPWs), you should expect the HTTP Server (powered by Apache) to serve
around 2570 static pages from the IFS per second. For the same system, you should expect
4100 from the HTTP Server (powered by Apache) local cache. For FRCA, expect 19,100!

The CPU Time column is equally exciting. If, on the same Model 810, you need to serve 2000
static pages per second, you can expect 1140 CPWs consumed every second served from
the IFS. The same files served from the local cache consume 700 CPWs per second. For
FRCA, expect just 160 CPWs per second!

FRCA provides a Fast Response Cache, and it accelerates the overall performance of your
system by freeing up your main processor or processors to do other things. To see where
FRCA fits into the overall performance picture of your HTTP Server (powered by Apache),
see Figure 10-3 on page 227.

FRCA, as we will see, can also cache “dynamic” content that you expire using a timer. But,
while TCM seems like the better choice for caching dynamic content, it requires programming
to make it work. FRCA, on the other hand, is just simple configuration.

Note: With permission from iSeries Network, we include material from an article written for
iSeries Network as a basis for this section. For the original article, see:

http://www.iseriesnetwork.com

Transaction type Capacity
Metric: trans/sec per CPW

CPU time
Metric: CPW per trans/sec

Static Page (IFS) 1.75 0.57

Static Page (cache) 2.79 0.35

Static Page (FRCA) 13.01 0.08
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 281

http://www.iseriesnetwork.com
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

10.6.1 What FRCA is
FRCA is the external product name given to a software architecture named Adaptive Fast
Path Architecture (AFPA) developed by IBM Research. This architecture dramatically
improves the capacity/performance of Web and other TCP servers.

Only one application on the iSeries server takes advantage of FRCA in OS/400 V5R2 and
i5/OS V5R3. That is the HTTP Server (powered by Apache). That is, the architecture can be
used by any iSeries TCP application, but only the HTTP Server (powered by Apache) has
done so to date. To be clear, FRCA requires OS/400 at V5R2 or higher, plus the LPP IBM
HTTP Server (5722-DG1).

FRCA directives are simply embedded within the HTTP Server (powered by Apache)
configuration file (httpd.conf). This enables your HTTP server to use the FRCA cache. FRCA
can be enabled for each listen port in the server configuration. This allows you to make a
choice whether you use FRCA cache for each Listen on a specific <IP address:port>.

You can cache static content by specifying a specific file name or a group of files using wild
cards, such as the asterisk (*). The loading of the cache occurs during HTTP server startup or
at runtime depending on your configuration. Here is an example:

FRCACacheLocalFileStartup /ITSO/ITSOco/Downloads/*.html

Dynamic content, such as result of an HTTP request to a content server, can be cached by
specifying a URI to identify the request that is then mapped to a fully qualified URL. This is a
reverse proxy cache support. It allows you to access an HTTP server on this same iSeries or
anywhere on your intranet or Internet to provide dynamic content that is automatically cached
in the NFC. A timer is used to determine when cached items are stale. See the following
example:

FRCAProxyPass /cgi-bin/ http://as21.domain.com:9999/cgi-bin/
FRCAProxyCacheRefreshInterval /cgi-bin/ 180

At this point, it is important for you to realize that FRCA is two vastly different caching
mechanisms wrapped into one package. That is, FRCA is both a:

� Local cache for IFS files that are generally static in nature.

� Reverse proxy cache for content that was generated by a dynamic content server either
running on your local iSeries server or connected via a TCP/IP network.

Content server: A content server can be any content created by a Web application
using the HTTP protocol. Good examples are:

� WebSphere Application Server serving servlets and Enterprise JavaBeans (EJBs)
� Tomcat serving servlets
� A CGI application, for example, Net.Data or Hypertext Preprocessor (PHP)
282 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

10.6.2 How FRCA local cache works
This section shows a series of diagrams that demonstrate the dramatic shift in processing
from above the MI to below as we follow each client get request.

FRCA: Local cache miss scenario
Figure 10-35 shows a FRCA local cache miss scenario. The steps are:

1. An HTTP request is received by TCP and passed to FRCA.

2. FRCA intercepts the HTTP request and passes it to the SLIC HTTP Server code.

3. The SLIC HTTP server code parses the HTTP request and uses the URL as a search key
into the hash table, one per server instance.

4. When the HTTP logical cache lookup fails, the HTTP request is redirected to the HTTP
Server (powered by Apache) using the normal sockets interface.

5. The HTTP Server (powered by Apache) parses the HTTP request, maps the URL to an
IFS file, builds the HTTP response from the IFS file, and calls Sockets send() to send the
HTTP response. This is business as usual for the HTTP Server (powered by Apache).

6. After sending the HTTP response, the FrcaLoadFile() system API is called to load the file
in the NFC.

7. FRCA calls the NFC to load a single copy of the file in the Network File Cache.

Figure 10-35 FRCA: Local cache miss scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network File Cache

File

HTTP
request

lookup
& fail

open

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

File

FRCA SPI

IFS

FrcaLoadFile()send

read
close

1

2

6

5

3

4

7

copy
or
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 283

FRCA: Local cache hit scenario
Figure 10-36 shows a FRCA local cache hit scenario. The steps from request through
response are:

1. An HTTP request is received by TCP and passed to FRCA.

2. FRCA intercepts the HTTP request and passes it to the SLIC HTTP server code.

3. The SLIC HTTP server code parses the HTTP request and uses the URL as a search key
into the hash table.

4. When the HTTP logical cache lookup is successful, NFC is called to locate the file data
using the NFC handle found in the hash table.

5. NFC finds the file using the handle and returns it to the SLIC HTTP server code.

6. The SLIC HTTP Server code builds the HTTP response header, links the file data to it, and
sends it as a response through TCP/IP.

Figure 10-36 FRCA: Local cache hit scenario

Tip: FRCA local cache has an interesting feature. Assume that a file located in the IFS is
cached in the NFC by FRCA. If that file is updated in the IFS, it is also automatically
updated in the NFC and the new content is served by FRCA.

Compare this behavior to the HTTP Server (powered by Apache) local cache directive
LiveLocalCache. LiveLocalCache checks to see if the file is updated in the IFS each time it
is requested. If it is not updated, the file is served from the cache. If it is updated, then the
entry for this file in the local cache is marked invalid and the file is served from the IFS for
all subsequent requests. You have to restart your server to cause it to be loaded back in
the local cache. See 10.3.1, “HTTP Server (powered by Apache) local cache” on
page 236, for more information.

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network File Cache

File

HTTP
request

lookup
& hit!

locate

send

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

File

FRCA SPI

IFS

FrcaLoadFile()

6
5

2 3
4

1

284 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

10.6.3 How FRCA reverse proxy cache works
This section offers a series of diagrams that show the dramatic shift in processing from above
the MI to below as we follow each client get request.

FRCA: Reverse proxy miss scenario
Figure 10-37 shows a FRCA reverse proxy miss scenario. That is, when FRCA recognizes
that content for an incoming URI should be cached but is not.

The steps from request through response are:

1. An HTTP request is received by TCP and passed to FRCA.

2. FRCA uses the URI as part of the lookup key to see if this dynamic content is cached in
the FRCA network proxy cache. It has not (miss!).

3. As part of the configuration of the FRCA reverse proxy, a new HTTP request is sent to the
configured URL (for this URI). This dynamic content server (called an origin server) is
contacted via TCP/IP. This origin server can be located on the same iSeries server or
anyplace connected via TCP/IP.

4. The origin server returns the content.

5. FRCA caches the content and updates the hash table (for the next time).

6. The content is sent back to the Web browser.

Figure 10-37 FRCA: Reverse proxy miss scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network Proxy Cache
Proxy
Cache

HTTP
request

lookup &
miss!

send

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

5

4
2

3

1

http://server/URI

HTML response

CGI/WAS
Process

CGI/WAS
Plug-in Content

Server

6

Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 285

FRCA: Reverse proxy hit scenario
Figure 10-38 shows an FRCA reverse proxy hit scenario. The steps from request through
response are:

1. An HTTP request is received by TCP and passed to FRCA.

2. FRCA uses the URI as part of the lookup key to see if this dynamic content is cached in
the FRCA network proxy cache. It is (hit!).

3. FRCA reads the content in the network proxy cache.

4. FRCA sends the content back to the Web browser.

Figure 10-38 FRCA: Reverse proxy hit scenario

10.6.4 FRCA limitations
All the limitations mentioned in this section are the result of one reason. That is that FRCA is
a SLIC task running below the MI. Therefore, it cannot take advantage of some of the server
API as provided in OS/400.

� FRCA does not support SSL or TLS. Therefore you cannot enable FRCA cache for the
sessions or ports with SSL/TLS. The reason is that applications (above the MI) write to the
sockets API, which is currently unavailable to FRCA. FRCA can be configured for a
non-secured port, such as port 80, for example, even in the same HTTP server that is also
listening on a SSL encrypted port of 443.

� After the file loaded into the NFC, it can be accessed by any users accessing files in the
same server instance. For this reason, you should enable the FRCA cache only for the
contents that can be public. If some HTML files in IFS can be accessed only by
authenticated users and one of the authenticated users has accessed such a file, the file
is loaded in to the NFC by FRCA. Now when an unauthenticated user requests the same
file, FRCA serves this file without user authentication.

� Similarly, since the code conversion is also performed above MI, code conversion is not
supported. IFS files are read in binary and loaded into the cache as is. Generally, we don't
use code conversion for IFS files so this limitation should have little impact.

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network Proxy Cache
Proxy
Cache

HTTP
request

lookup &
hit!

send

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

4

2

3

1

Content
Server

CGI/WAS
Process

CGI/WAS
Plug-in
286 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Due to these limitations, the basic rule for FRCA is to use it to help serve the public portions
of your Web application. Consider your public home page and all GIFs and JPEGs as an
example. If and when the customer enters, a portion of your Web application that is secured
with Basic Authentication or SSL/TLS turns off FRCA.

The presence of any of the following headers in an HTTP request forces FRCA to pass the
request directly to the local HTTP Server (powered by Apache) or remote content server (via
reverse proxy) without checking the cache:

� authorization
� allow
� cache-control
� content-base
� content-encoding
� content-language
� content-location
� content-md5
� content-range
� date
� etag
� expires
� if-match
� if-none-match
� if-range
� last-modified
� max-forwards
� proxy-authorization
� public
� protocol-request
� range
� retryafter
� transfer-encoding
� upgrade
� vary
� www-authenticate
� warning

10.6.5 FRCA configuration examples
Refer to the following examples of using FRCA:

� “Configuring FRCA for local cache” on page 288
� “Configuring FRCA for reverse proxy cache” on page 292
� “A more complete FRCA configuration example” on page 295

Before getting started with FRCA, configure the Network File Cache.

Network File Cache
FRCA local cache (only) uses the NFC component of OS/400. The NFC is a SLIC component
that is basically a file system that allows other SLIC tasks to open, read, write, and close
stream files. All this happens below the MI as shown in Figure 10-3 on page 227.

Starting from V5R2, by default, the NFC is enabled and has a size of 10 MB allocated out of
the base user pool. Due to OS/400’s single-level store, even if you do not use the NFC, it
simply pages out to direct access storage device (DASD) and it does not disturb the running
of your other applications.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 287

The size you define for the NFC is the maximum amount of storage available to all the
individual instances of the HTTP Server (powered by Apache) that are configured to use
FRCA combined. For example, you may have three instances of the HTTP Server (powered
by Apache) that are using FRCA, each with the FRCACacheLocalSizeLimit set to 1 MB. In
this case, configure the NFC to have a size of 3 MB.

You can change the parameters of the NFC using the Change TCP/IP Attributes (CHGTCPA)
command. CHGTCPA NFC(*YES 300 10) changes the settings for the NFC to the defaults.

Configuring FRCA for local cache
This scenario uses FRCA local cache to cache all the files in a SiteMap/* subdirectory.
Table 10-4 shows all the important characteristics of this Web application. This Web
application ran in a shared environment in the International Technical Support Organization
(ITSO), which explains the ports names such as 8000 (equivalent to port 80) and
SSL-enabled port 44300 (equivalent to port 443).

Table 10-4 FRCA: HTTP Server (powered by Apache) used for local cache

We recommend that before you start to configure FRCA, test your Web application to verify it
is working as expected. In our case, everyone has access to the files in the SiteMap/*
subdirectory.

To configure FRCA local cache, follow these steps. In this first part, we enable FRCA for port
8000 only.

1. From the Server list, select you server.

2. From the Server area list, select Global configuration. This is where all FRCA
configuration should take place.

3. In the left pane, under Server Properties, select FRCA.

4. Select the General Settings tab.

Tip: FRCA reverse proxy cache simply allocates main store memory out of the base user
pool to hold the HTML results pages from the remote content servers. As shown in
Figure 10-37 on page 285 and Figure 10-38 on page 286, this cache is named network
proxy cache, although it really does not have a proper name. Generally, these HTML
results pages are small. It was thought to be more efficient to maintain an in-memory
cache, rather than to add the overhead of the NFC.

Parameter Value

Server name PBABASIC00

Server root /http53d00/basicConfig

Document root /http53d00/basicConfig/ITSOco

Directory to be cached by FRCA local cache /http53d00/basicConfig/ITSOco/SiteMap/*

IP address All

Ports 8000 (FRCA enabled)
44300 (for SSL, not FRCA enabled)
288 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. On the General Settings page (Figure 10-39), complete these steps:

a. Select the radio button for the port for which you want to enable FRCA. In this case, we
are using port 8000 for the public traffic and port 44300 for the SSL encrypted traffic.

b. Under the FRCA column, select Enabled. This configuration feature allows you to
enable, by port, FRCA caching.

c. Click Continue to keep the changed configuration and to stay on this form.

Figure 10-39 FRCA: Enabled for a specific port

6. Configure the FRCA local cache to cache all the contents of a Directory context. Select
the FRCA File Cache tab.

7. On the FRCA File Cache page (Figure 10-40), complete these tasks:

a. For FRCA file cache capabilities, select Enabled. This option allows you to turn FRCA
local cache on and off with ease, without having to resort to commenting out or deleting
all the FRCA local cache configuration directives.

b. Optional: Restrict the maximum size of the FRCA local cache and define the maximum
file size to be cached with these parameters. To keep our example simple, we keep
them as the defaults.

c. Under Files to cache during server startup, click Add.

d. A new row is added to the table in which you can enter the file path and names that you
want FRCA to cache. For our example, we typed SiteMap/*. Here are some comments
about FRCA directives:

• Since SiteMap/* does not have a leading slash (/), we assume it to be relative to
Document root.

• FRCA configuration directives are case sensitive, unlike Apache configuration
directives.

• FRCA configuration directives are not recursive, unlike Apache configuration
directives. That is, in this situation you are telling FRCA to cache files in the
SiteMap/* directory only. If you need to cache multiple subdirectories or multiple file
types, you have one FRCA directive for each.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 289

e. Click Continue. If you have more files or file types that you want to cache, repeat
step c.

f. Click OK to save all your configuration changes.

Figure 10-40 FRCA: Configuring for caching the contents of a Directory context

If you follow these steps, you have these three directives in your HTTP Server (powered by
Apache) configuration file:

Listen *:8000 FRCA
FRCAEnableFileCache On
FRCACacheLocalFileStartUp SiteMap/*

Tip: You can choose to have FRCA local cache files during server runtime or at
startup. The choice is a subtle one, however. Both choices behave in a similar way in
that the first request for a file in the SiteMap/* subdirectory is served by the HTTP
Server (powered by Apache) and the second and all subsequent requests are served
by FRCA.

Caching at server startup requires some additional CPU at server startup time to
ready FRCA for caching the file at the first request. When the first request is made for
the file and served from the HTTP Server (powered by Apache), the CPU time it
takes to load the NFC with the file is reduced.

Caching at server runtime requires less CPU at server startup time. When the first
request is made for the file and served from the HTTP Server (powered by Apache),
the CPU time it takes to load the NFC with the file is greater than if you selected to
cache at server startup.
290 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

And, finally test your server. It is a bit difficult to tell whether your HTTP Server (powered by
Apache) served a file or if it was done by FRCA. The end result to the Web client is the same,
of course. One sure way is to use Start Communications Trace (STRCMNTRC) command.

The HTTP Server (powered by Apache) may return an HTTP response that looks something
like the following example (the key text is highlighted in bold):

*.....E...*G..@.*K.*.*.**P"*.**.**
*.**.*P. .DN..HTTP/1.1 200 OK..DA*
TE: SAT, 03 AUG 2002 13:15:47 GM
T..SERVER: APACHE..LAST-MODIFIED
: SAT, 03 AUG 2002 01:37:39 GMT.
.ETAG: "4B33-3CB-C07A7EC0"..ACCE
PT-RANGES: BYTES..CONTENT-LENGTH
: 971..KEEP-ALIVE: TIMEOUT=15, M
AX=100..CONNECTION: KEEP-ALIVE..
CONTENT-TYPE: TEXT/HTML; CHARSET
=ISO-8859-1....<HTML>.FRI AUG 02

FRCA local cache returns this (the key text is highlighted in bold):

*.....E..**J..@.**.*.*.**P"*.**.**
*@****P..-**..HTTP/1.1 200 OK..DA*
TE: SAT, 03 AUG 2002 13:15:54 GM
T..SERVER: APACHE/2.0.43(FRCA)..
ACCEPT-RANGES: BYTES..CONNECTION
: KEEP-ALIVE..LAST-MODIFIED: SAT
, 03 AUG 2002 13:15:48 GMT..CONT
ENT-TYPE: TEXT/HTML..CONTENT-LEN
GTH: 971..X-CACHE: HIT FROM APAC
HE/2.0.43(FRCA)....<HTML>.FRI AU

You can find more details about communications trace in 13.2.9, “Communications trace” on
page 353. To test FRCA on your iSeries using communications trace, follow these steps:

1. Start your HTTP Server (powered by Apache) instance.

2. Enter the Start Communications Trace (STRCMNTRC) command.

3. Request a file from the SiteMap/* subdirectory from a Web client. This first request is
served from the HTTP Server (powered by Apache) since FRCA stores this file in the
NFC.

4. Clear the local cache from your Web client. Microsoft Internet Explorer has a habit of
caching files when you least expect it. For Internet Explorer, select Tools →Internet
Options →Delete Files.

5. Request the same file again from SiteMap/* should cause FRCA to serve that file directly
from the NFC.

6. Enter the End Communications Trace (ENDCMNTRC) command.

7. Enter the Print Communications Trace (PRTCMNTRC) command. Then open the spooled
trace file. Searching for “(FRCA)” usually finds the place where FRCA served the file.

8. Make sure to enter the Delete Communications Trace (DLTCMNTRC) command for the next
time you want to start a communications trace.

Tip: It may look like the FRCA server is based on or uses code borrowed from ASF to
provide this HTTP server function below the MI. This is not the case, however. FRCA is a
mini-HTTP server that has been written by IBM specifically for this purpose.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 291

Configuring FRCA for reverse proxy cache
Dynamic content, such as result of an HTTP request to a content server, can be cached by
specifying a URI to identify the request that is then mapped to a fully qualified URL. This is
reverse proxy cache support that allows you to access an HTTP server either on this same
iSeries or anywhere on your intranet (or Internet) to provide dynamic content that is
automatically cached in FRCA. A timer is used to determine when cached items are stale. An
example is:

FRCAProxyPass /cgi-bin/ http://as20.domain.com:9999/cgi-bin/

For this scenario, we want to cache a document that is generated dynamically by a Net.Data
macro (this is our content server) each time a Web client requests that page. Net.Data is a
good scripting language from IBM that is similar to PHP in the Apache world and JavaServer
Pages (JSPs) and servlets in the Java 2 Platform, Enterprise Edition (J2EE) world. But, if your
iSeries has to serve hundreds, if not thousands, of these Net.Data generated pages, you may
want to find a way to cache the results.

We assume that the Web server PBABASIC00 defined in Table 10-4 on page 288 will perform
the function of our content server. We create a new HTTP Server (powered by Apache) based
on the values in Table 10-5.

Table 10-5 FRCA: HTTP Server (powered by Apache) used for reverse proxy cache

Nothing can stop you from doing all this work in the same Apache instance on your iSeries
server. It is easier to conceptualize as two different servers. PBABASIC00 is the remote
content server, and PBAFRCA00 is used as a front end to the remote content server.

To configure FRCA reverse proxy cache, follow these steps. The first step is to enable FRCA
for port 8600. The configuration steps for this new server PBAFRCA00 are similar to those
shown in Figure 10-39 on page 289.

1. From the Server list, select you server. For Server area, select Global configuration. This
is where all FRCA configuration should take place.

2. In the left pane, under Server Properties, select FRCA.

3. Select the General Settings tab.

4. Select the radio button for the port for which you want to enable FRCA. In this case, we are
using port 8600. Under the FRCA column, select Enabled.

5. Click Continue to keep the changed configuration and to stay on this form.

Parameter Value

Server name PBAFRCA00

Server root /http53d00/FRCA

Document root /http53d00/FRCA/ITSOco

IP address All

Port 8600

If incoming URI is… /cgi-bin/MACRO1.MBR/

Send request to content server URL http://as20:8000/cgi-bin/MACRO1.MBR/

Content Server Server PBABASIC00 as defined by Table 10-4 on
page 288
292 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. Enable FRCA for reverse proxy cache as shown in Figure 10-41.

a. Select the FRCA Reverse Proxy Cache tab.

b. For the FRCA reverse proxy cache capabilities, select Enabled. This option allows you
to turn FRCA reverse proxy cache on and off with ease, without resorting to
commenting out or deleting all the FRCA reverse proxy cache configuration directives.

c. Optional: Restrict the maximum size of the FRCA reverse proxy cache and define the
maximum file size to be cached with these parameters. To keep our example simple,
we keep them as the defaults.

d. Under Proxy requests to remote servers, click Add. A new row is added to the table in
which you can enter the local virtual path (URI) and the remote server URL. For our
example, we entered /cgi-bin/MACRO1.MBR/ and
http://as20:8000/cgi-bin/MACRO1.MBR/ respectively. The same comments about
FRCA directives apply here as they did for FRCA local cache.

In addition, FRCA reverse proxy cache handles the incoming URI in the same way you
expect any reverse proxy cache. The matching URI text is stripped off. Additional text
to the right is saved and appended to the end of the fully qualified remote server URL.
As you can see in our example, we repeat the string /cgi-bin/MACRO1.MBR/ as part of
the remote server URL so we do not lose this information.

e. Click Continue.

Figure 10-41 FRCA: Configuring for reverse proxy caching

f. Under Document refresh policies, click Add. Type /cgi-bin/MACRO1.MBR/ for Match
URL and 300 seconds for Period. In this example, we tell FRCA that the proxy cache
item will expire when the minimum of the FrcaProxyCacheExpiryLimit and the HTTP
response expiration time is reached. FRCA reverse proxy only caches responses that
do not contain headers that prohibit caching (that is MaxAge=0).
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 293

The response is cached the first time it is received from the content server and then is
continually refreshed at the specified interval. If multiple responses are cached by the
same FrcaProxyCacheRefreshInterval, the refresh is distributed evenly across the
specified refresh interval, to prevent all of the responses from being refreshed at the
same time. The main advantage of the FrcaProxyCacheRefreshInterval is that once a
response is cached, a valid copy always exists in the proxy cache. There is never a
need to wait for the response to be retrieved from the content server.

g. Click Continue.

h. Click OK to save all your configuration changes.

If you follow these steps, you change and add four directives in your HTTP Server (powered
by Apache) configuration file:

Listen *:8600 FRCA
FRCAEnableProxy On
FRCAProxyPass /cgi-bin/MACRO1.MBR/ http://as20:8000/cgi-bin/MACRO1.MBR/
FRCAProxyCacheRefreshInterval /cgi-bin/MACRO1.MBR/ 300

Finally, test your server. In this case, two instances of the HTTP Server (powered by Apache)
are running. To determine if FRCA is caching the HTML result pages from our content server,
simply monitor the iSeries thread that is handling the Net.Data macro invocation in the
PBABASIC00 server. That is, regardless of the number of times FRCA reverse proxy serves
the HTML results page, the CPU seconds for the content server should not increase.

On your iSeries server, follow these steps:

1. Start both of the HTTP Server (powered by Apache) instances PBABASIC00 and
PBAFRCA00.

2. From a 5250 session, enter the Work with Active Jobs (WRKACTJOB) command to find the
tasks associated with the remote content server PBABASIC00. It should look similar to the
example in Figure 10-42.

Figure 10-42 WRKACTJOB: Displaying the list of threads; PGM-QZSRCGI is the CGI thread

3. Enter option 12 (Work with threads) next to the BCI job running as a CGI as indicated by
the function PGM-QZSRCGI. As shown in Figure 10-43, you should see a single line that
indicates how many CPU seconds this thread has used.

Figure 10-43 WRKACTJOB: Option 12 (Work with threads)

4. From your Web client, enter the URL:

http://as20:8600/cgi-bin/MACRO1.MBR/run

Opt Subsystem/Job User Type CPU % Function Status
 PBABASIC00 QTMHHTTP BCH .0 PGM-QZHBHTTP SIGW
 PBABASIC00 QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
 PBABASIC00 QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
 PBABASIC00 QTMHHTTP BCI .0 PGM-QZSRHTTP SIGW
 PBABASIC00 QTMHHTTP BCI .0 PGM-QZSRHTTP SIGW
12 PBABASIC00 QTMHHTTP BCI .0 PGM-QZSRCGI TIMW

 Total Aux Run
Opt Thread Status CPU I/O Priority
 0000002E TIMW .521 484 25
294 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Port 8600 is the HTTP Server (powered by Apache) instance PBAFRCA00. Your FRCA
reverse proxy configuration redirects this request to the PBABASIC00 instance at port
8000 on the same iSeries server.

5. Back on your 5250 session, press F5 (Refresh). You should see the Total CPU seconds for
this thread handling the Net.Data CGI invocation.

6. Back on your Web client, click Refresh (which is also F5). In fact, click Refresh as many
times as you want, clear the client cache, or do what every you want. You do not see the
Net.Data task on the iSeries spend any CPU because FRCA is serving the resulting
HTML from its cache.

A more complete FRCA configuration example
As shown in Figure 10-44 on page 296, this example is more complex and complete of FRCA
configuration for a Web application. This example includes:

� Static HTML and GIF content as served from the subdirectory contexts of /Downloads and
/People.

� Dynamic content from:

– A WebSphere Application Server content server running on the local iSeries server
defined as as20.itsoroch.ibm.com

– A CGI content server running on a remote iSeries server defined as
as21.itsoroch.ibm.com

We do not show you all the steps to configure FRCA via the administration GUI, but instead
offer a description of the FRCA directive and its effect on your Web application. The following
numbers correspond to the line number of the directives found in the httpd.conf configuration
file in Figure 10-44. Figure 10-44 also shows pairs of numbers. The configuration directives in
the lower part of this figure match the functional diagram in the upper part of the figure.

2 Listen 10.5.92.14:8080 FRCA

Specifying the Listen directive with the parameter FRCA enables FRCA cache for this
port.

5 FRCAEnableFileCache On

This directive enables FRCA cache for this server instance ITSO99. The other directives
for specific settings of FRCA all depends on this directive is on or off.

11 FRCACacheLocalFileStartUp /ITSO/itso99/ITSOco/Downloads/*.html

By specifying this directive, the files that have an .html extension in the directory
/ITSO/itso99/ITSOco/Downloads are all cached when you start the server ITSO99.

12 FRCACacheLocalFileRunTime /ITSO/itso99/ITSOco/People/*

This directive makes all files in the directory /ITSO/itso99/ITSOco/People available to be
cached when they are accessed. In this example, the files in the subdirectory /Employees
are not cached because file name matching is not recursive.

15 FRCAEnableProxy On

This directive enables FRCA proxy.

16 FRCAProxyPass /servlet/ http://10.5.92.14:8080/servlet/

In this example, specifying /servlet in URI causes it to run a servlet on the application
server. By specifying the directive FRCAProxyPass as in this example, the result of the
servlet can be cached in the NFC for a certain period, that is specified by the directive
FRCAProxyCacheRefreshInterval.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 295

In this example, the target URL has the same IP address and port as the ones on which
this server listens. In this case, FRCA recognizes that this URL is for the same server and
passes the request to the HTTP Server (powered by Apache) without any looping
problem.

17 FRCAProxyCacheRefreshInterval /servlet/ 300

As described above, this directive specifies the interval of refreshing cached data of FRCA
proxy.

20 FRCAProxyPass /cgi-bin/ http://as21.itsoroch.ibm.com:9999 /cgi-bin/

By specifying this directive, the request for CGI program is rerouted to the remote iSeries
as21.itsoroch.ibm.com:9999. The result is cached in the NFC on as20.itsoroch.ibm.com.

21 FRCAProxyCacheRefreshInterval /cgi-bin/ 180

As described earlier, this directive specifies the interval of refreshing cached data of FRCA
proxy.

Figure 10-44 FRCA: Complete configuration example

10.6.6 Miscellaneous FRCA directives beyond the online help
Most FRCA directives are defined in the online help associated with your HTTP Server
(powered by Apache). While you are managing the details of any Apache server, you can
click Directive Index under Tools. All the FRCA directives, except Listen, start with “FRCA” so
you can find them easily. Here is a list to get you started:

FRCACacheLocalFileRunTime
FRCACacheLocalFileSizeLimit
FRCACacheLocalFileStartUp
FRCACacheLocalSizeLimit
FRCACustomLog
FRCAEnableFileCache
FRCAEnableProxy
FRCAProxyCacheEntitySizeLimit

NFC Web
Application
Server

Servlet

DB

as21.itsoroch.ibm.com

DB

xxx.html
xxx.html

xxx.html

results

xxx.gif

results

3 4

5

as20.itsoroch.ibm.com IP address: 10.5.92.14 port: 8080 1

...
2 Listen 10.5.92.14:8080 FRCA
...
5 FRCAEnableFileCache On
...
11 FRCACacheLocalFileStartup /ITSO/itso99/ITSOco/Downloads/*.html
12 FRCACacheLocalFileRuntime /ITSO/itso99/ITSOco/People/*
...
15 FRCAEnableProxy On
16 FRCAProxyPass /servlet/ http://10.5.92.14:8080/servlet/
17 FRCAProxyCacheRefreshInterval /servlet/ 300
...
20 FRCAProxyPass /cgi-bin/ http://as21.itsoroch.ibm.com:9999/cgi-bin/
21 FRCAProxyCacheRefreshInterval /cgi-bin/ 180

1

4

5

3
2

2

httpd.conf:
296 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

FRCAProxyCacheExpiryLimit
FRCAProxyCacheRefreshInterval
FRCAProxyCacheSizeLimit
FRCAProxyPass
Listen (with the FRCA parameter)

Some, however, are not defined in the GUI online help text. These are:

FRCACookieAware
FRCAEndOfURLMarker
FRCAMaxCommBufferSize
FRCAMaxCommTime
FRCARandomizeResponse

As far as we can tell, these directives are not formally documented anywhere. They are used
to perform specific services to dramatically improve the performance of FRCA. These FRCA
directives are documented in the following sections.

FRCACookieAware
Syntax:

FRCACookieAware <path>

Example:

FRCACookieAware /some_path_segment

This FRCA directive indicates a URL prefix for which the cookie should be included in cache
lookup. This directive makes it possible to serve a cached entity only for the requests with the
same cookie. This allows content that is intended for specific individuals to be cached
separately.

FRCAEndofURLMarker
Syntax:

FRCAEndofURLMarker <marker>

Example:

FRCAEndofURLMarker ###

FRCA support can identify the end of the original URL (link) before it is modified or padded by
the client. Specify the unique string that identifies the end of URLs. Suppose a link in an
HTML page is:

http://some.org/some_path/some_parms###

Before a client sends this request to the server, it may pad the URL with some data such as
client_padded_data. In this case, your HTTP Server (powered by Apache) receives the path:

/some_path/some_parms###client_padded_data

Specify the following directive:

FRCAEndofURLMarker ###

FRCA support can identify the end of the original URL (link) before it is modified (padded) by
the client.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 297

FRCAMaxCommBufferSize
Syntax:

FRCAMaxCommBufferSize <bytes>

Example:

FRCAMaxCommBufferSize 4000000

This directive sets the communication buffer size (in bytes) in FRCA for performance. The
data being sent to the HTTP Server (powered by Apache) consists of log data, message data,
and collection services data. FRCA buffers the size of data specified until the buffer is full.
After the buffer is full, the data is transmitted to the HTTP Server (powered by Apache) for
processing.

FRCAMaxCommTime
Syntax:

FRCAMaxCommTime <seconds>

Example:

FRCAMaxCommTime 240

This directive sets the maximum number of seconds to wait before the data buffer is sent from
FRCA to the HTTP Server (powered by Apache). The data being sent to the HTTP Server
(powered by Apache) consists of log data, message data, and collection services data. After
the time limit is reached, the data is transmitted to the HTTP Server (powered by Apache) for
processing.

FRCARandomizeResponse
Syntax:

FRCARandomizeResponse <path> <string> <nnn> <mmm>

Note the following explanation:

� <path>: A valid path in the form:

/some_path_segment/some_partial_file_nameNNN.ext

The NNN marker is replaced with a randomly generated whole number by FRCA before
serving the response.

� <string>: The replacement string marker (NNN) in the path.

� <nnn>: Lower bound of the random numbers (whole number integers) that FRCA
generates.

� <mmm>: Upper bound of the random numbers (whole number integers) that FRCA
generates.

Examples:

FRCARandomizeResponse /some_path/fileNNN.html NNN 1 999
FRCARandomizeResponse /some_path/fileXXX.html XXX 200 300

Specify the path template, the replacement string marker, and the random number range that
you want FRCA to use to randomly select and serve files of that template.
298 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The most likely place this is used is on your home page. Normally, FRCA caches the content
of your home page for a configurable period of time. During that period of time, your
advertising banner is the same for everybody. It does not change. This configuration directive
allows you to create NNN home pages (index.html) and have FRCA randomly select from its
cache which one to send as an individual response to each and every request. Even the
same client using the refresh key randomly receives a different advertising banner.

For example, if you have 999 “advertising” files with the names file1.html through file999.html
in your server document root, then configure:

FRCARandomizeResponse /document_root_alias_path/fileNNN.html NNN 1 999

Then request the URL:

http://some_host:port/dirpath/fileNNN.html

FRCA randomly selects and serves one of the 999 files.

10.6.7 The FRCA challenge
You now can see how easy it is to take advantage of FRCA’s local and reverse proxy caching.
It is simply a matter of configuration. FRCA really can be thought of as providing both a local
cache for public documents that tend to be static and reverse proxy for documents that tend to
be dynamic. For the FRCA challenge, use:

� FRCA local cache to cache graphic files (GIFs, JPEGs, and so on). These graphic files
tend to be the caching world's equivalent of “low-hanging fruit” for a Web application.

� FRCA reverse proxy cache to cache just a single dynamic page: your index.html, or home
page. This single HTML page is usually the most popular page and most likely is thick with
dynamic content.

Over time, you will become more comfortable with FRCA on your iSeries HTTP Server
(powered by Apache). Then you can expand the range of items cached with a bit of simple
configuration and testing.

10.6.8 For more information
Here are some pointers to more information about FRCA:

� iSeries Performance Capabilities Reference Version 5, Release 3, SC41-0607

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

� Detailed reference documentation on FRCA and its configuration directives, which is
located in the iSeries Information Center at:

http://publib.boulder.ibm.com/html/as400/infocenter.html

� The online help associated with your HTTP Server (powered by Apache), which defines
most of the FRCA directives. While you are managing the details of any Apache server,
click Tools →Directive Index. All the FRCA directives start with “FRCA” so you can find
them easily.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 299

http://publib.boulder.ibm.com/html/as400/infocenter.html
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

10.7 Cryptographic coprocessors
IBM offers two cryptographic hardware solutions for customers that require a high level of
security for data stored on their iSeries server and for SSL/TLS transactions. These options
have a lot to offer iSeries server customers, including enhanced SSL/TLS performance. IBM
offers the following cryptographic hardware options:

� IBM 2058 e-business Cryptographic Accelerator (hardware feature code: 4805)
� IBM 4758 Cryptographic Coprocessor (hardware feature codes: 4801 or 4802)

The benefits of each cryptographic hardware option include:

� IBM 2058 e-business Cryptographic Accelerator:

– Offers a large capacity for accelerating SSL transactions
– Minimal installation and configuration effort
– Minimal management requirements

� IBM 4758 e-business Cryptographic Coprocessor:

– Tamper-resistant hardware features
– Numerous configuration options, enabling you to customize functions to fit your needs
– Provides secure key storage for applications and SSL transactions
– Offers a rich set of cryptographic functions for applications, including Triple-DES, RSA

digital signature support, financial PIN processing, and robust key management
services

These cryptographic accelerator coprocessors are used by the system on an SSL/TLS
connection handshake process (negotiates the level of SSL support and key exchange
information to be used by an SSL session). Your configuration and use of the DCM and client
or server digital certificates does not change.

iSeries Performance Capabilities Reference Version 5, Release 3, SC41-0607, has test
results that show the handshaking performance improvements for both the older 4758
technology and the new technology 2058. The 2058 supports the same algorithms as the
4758. The 2058 does not support any secure key usage or key management. See the
following Web site for more information:

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

You can find detailed information about these features in the V5R3 Information Center, under
Security. You should also refer to the redbook IBM Eserver iSeries Wired Network Security:
OS/400 V5R1 DCM and Cryptographic Enhancements, SG24-6168.

Tip: The iSeries already held the number three spot on the SPECweb99 and the number
two spot on the SPECweb99 SSL benchmarks. This is a significant validation of the overall
systems performance of the entire iSeries server. It is the iSeries’ balanced ability to scale
and run enormous On Demand Business workloads that is the basis for these (and other)
benchmark successes. Note that FRCA and the cryptographic accelerator coprocessors
where not used for the iSeries SPECweb99 SSL benchmark. FRCA could not due to an
architectural limitation. The 4758 and 2058 cryptographic accelerator coprocessors could
not since the SPECweb99 SSL benchmark does not allow hardware assist.

And, our ability to run enormous On Demand Business workloads is due to the integration
of the SSL and TLS component 5722-AC3, the HTTP Server (powered by Apache)
integration with OS/400. It is also due to the pure power of the iSeries’ 64-bit RISC
POWER processors, which allow the iSeries to climb to near the top of these benchmarks,
even without using the cryptographic accelerator coprocessors.
300 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

10.8 Real Time Server Statistics
This function was introduced as PTF for OS/400 V5R1 and V5R2 and was implemented with
i5/OS V5R3 in the base version. Besides other enhancements, forms on the HTTP
administrative GUI are provided for displaying HTTP Server statistics that are recorded for
collection services (similar to the Original server monitor form).

The Real Time Server Statistics form and tabs in the IBM Web Administration for iSeries GUI
provide information about server performance. You can only view statistics for running
servers. You may choose this form to automatically refresh every 10 or 30 seconds, or 1, 5 or
10 minutes, by changing the Refresh Interval in the upper half of the right panel. The default is
to refresh the data manually using the Refresh button located at the bottom of the form.

As shown in Figure 10-45, the upper part always describes the server, when it started, the
current date and time, and the period of time the data has been measured. The lower part of
the Real Time Server Statistics form contains five tabs. Each contains a different set of
statistical information.

The type of information displayed depends on the activity of the HTTP Server (powered by
Apache) and the functions that are enabled. Only statistical information for enabled or active
functions are displayed. Each column heading identifies what enabled function or associated
server is being surveyed for statistical information.

Statistical information is cumulative. If a value is greater than 264-1 in any column, the value
resets to 0. All values reset to 0 if the server is stopped and then started.

Tip: The Real Time Server Statistics provide real-time information about the running
server environment. The information can help you determine if you server is set up
correctly or if it needs some performance tuning. Following are a few examples that show
how the statistics can help you detect configuration or performance problems:

� One piece of information that can help in several ways is the number of error
responses. In today’s complex Web content structure with many interlinked pages, it is
likely that links may be broken and a user may receive a 404 (file not found) error
message. Whenever this or other errors occur, the error response counter is updated.
For example, if you see over a period of time a huge number of error responses, you
know that something strange happens on your server. You can then go to the error log
to determine the problems.

� The data provided for non-cache and cache responses tell you at a glance whether
your cache configuration is working efficiently. For example, you may have decided to
cache all HTML and GIF files from a certain directory, because you expected a huge
number of hits for these resources. However, it turns out that the cached responses are
quite low and the number of non-cached responses very high. In that case, you know
that you cached the wrong resources and that you should use a Web analyzer to
evaluate your access logs to see what resources were requested most.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 301

Figure 10-45 IBM Web Administration for iSeries: Real Time Server Statistics

Statistical information may be obtained for the following functions:

� Server handled: This column displays the number of completed server transactions by
the server since the server was started. For example, it includes the completed
transactions for static HTML pages, HTML pages containing SSIs, and images.

� Proxy: This column displays the number of completed server transactions that used proxy
since the server was started. Proxy statistics are only available if proxy is enabled.

� CGI: This column displays the number of completed server transactions that were handled
as CGI since the server was started. CGI statistics are available only if CGI is enabled.

� Using SSL: This column displays the number of completed server transactions that used
SSL since the server was started. SSL statistics are available only if SSL in enabled.

� WebSphere: This column displays the number of completed server transactions that used
an associated application server since HTTP Server (powered by Apache) was started. If
the associated application server is not running, the information is still displayed but
equals 0. WebSphere statistics are available only if a WebSphere Application Server is
associated with an HTTP Server (powered by Apache).

� Tomcat: This column displays the number of completed server transactions that used an
in-process or out-of-process ASF Tomcat server since HTTP Server (powered by Apache)
was started.

� Customer module: This column displays the number of completed server transactions
that used a customer or third-party module.

� FRCA Stats: This column displays the number of completed server transactions that used
FRCA since the server was started. FRCA statistics are available only if FRCA is enabled.
302 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

� FRCA Proxy: This column displays the number of completed server transactions that
used the FRCA proxy since the server was started. FRCA statistics are only available if
FRCA is enabled.

The General tab as shown in Figure 10-45 displays basic information about the active server
since the server was started. Statistical information displayed includes:

� Active threads: This field displays the number of currently active threads on the server.
Active threads are typically processing a server request, such as serving a static page,
calling a CGI script, or routing data to an application server.

� Idle threads: This field displays the number of currently idle threads active on the server.
An idle thread is a portion of a program that is waiting for either a response or a request
before it can continue. Idle threads are most often waiting for an HTTP request to process.

� Normal connections: This field displays the number of total normal (non-secure)
connections to the server.

� SSL connections: This field displays the number of total SSL (secure) connections
currently active.

� Requests: This field displays the number of total requests to the server since the server
was started.

� Responses: This field displays the number of total responses from the server since the
server was started.

� Requests rejected: This field displays the number of total rejected requests issued by the
server since the server was started.

The Absolute and Delta tabs display statistical information about currently enabled functions
or associated servers. The absolute value, as shown in our example in Figure 10-46, is a
measurement of the total transactions since the server was started.

Figure 10-46 Real Time Server Statistics: Absolute tab
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 303

The delta value shown in Figure 10-47 is a measurement of the total transactions since the
server statistics were refreshed.

Figure 10-47 Real Time Server Statistics: Delta tab

The absolute and delta statistical information may be displayed separately or side by side for
comparison as in Figure 10-48.

Figure 10-48 Real Time Server Statistics: Absolute and Delta tab

Each column heading identifies what enabled function or associated server is being surveyed
for statistical information. Each row identifies what statistical information is being retrieved.
Statistical information displayed for each column includes:

� Requests: This field displays the number of requests to the enabled function or
associated server identified at the top of the column.

� Responses: This field displays the number of responses sent by the enabled function or
associated server identified at the top of the column.
304 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

� Error responses: This field displays the number of error responses sent by the enabled
function or associated server identified at the top of the column. An error response
example is the 404 “Page Not Found” response.

� Non-cache responses: This field displays the number of non-cached responses sent by
the enabled function or associated server identified at the top of the column.

� Cache responses: This field displays the number of local memory cached responses sent
by the enabled function or associated server identified at the top of the column.

� Bytes received: This field displays the number of bytes received by the enabled function
or associated server identified at the top of the column.

� Bytes sent: This field displays the number of bytes sent by the enabled function or
associated server identified at the top of the column.

� Non-cache Processing (seconds): This field displays the number of seconds of
non-cached processing activity completed by the enabled function or associated server
identified at the top of the column.

� Cache Processing (seconds): This field displays the number of seconds of cached
processing activity completed by the enabled function or associated server identified at
the top of the column.

The server Averages tab, shown in Figure 10-49 displays the average length of activity, in
seconds, completed by the enabled function or associated server identified at the top of the
column.

Figure 10-49 Real Time Server Statistics: Average tab

Each column heading identifies what enabled function or associated server is being surveyed
for statistical information. Each row identifies what statistical information is being retrieved.
Statistical information displayed for each column includes:

� Total (seconds): This field displays the total time of activity completed by the enabled
function or associated server identified at the top of the column.

� Non-cached (seconds): This field displays the average length of time of non-cached
activity completed by the enabled function or associated server identified at the top of the
column.

� Cached (seconds): This field displays the average length of time of cached activity
completed by the enabled function or associated server identified at the top of the column.
Chapter 10. Getting the best performance from HTTP Server (powered by Apache) 305

10.9 References
Here are some other resources for you to read and learn more about how to improve the
performance of your HTTP Server (powered by Apache) Web server:

� The iSeries Information Center is a good starting point for performance-related topics that
include the logging of information with iSeries Collection Services:

http://publib.boulder.ibm.com/iseries/v5r3/ic2924/info/rzahx/rzahxebushttp.htm

� iSeries Performance Capabilities Reference Version 5, Release 3, SC41-0607, is the
definitive guide to performance on the iSeries server. This manual, which is updated
regularly, has a good chapter on Web serving and communications performance. You can
find it on the Web at:

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

� AS/400 HTTP Server Performance and Capacity Planning, SG24-5645, is an IBM
Redbook intended for iSeries programmers, network and system management
professionals, and other information technologists that are responsible for designing,
developing, and deploying Web-based applications and information systems. This IBM
Redbook was written before the HTTP Server (powered by Apache) was brought to the
iSeries server. Yet, it contains some useful advice on getting the best performance out of
your Web application.

� Performance Tools for iSeries, SC41-5340, provides programmers with the information
needed to collect data about the system, job, or program performance. It includes tips for
printing and analyzing performance data to identify and correct inefficiencies that may
exist. It also includes information about the manager and agent feature.
306 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://publib.boulder.ibm.com/iseries/v5r3/ic2924/info/rzahx/rzahxebushttp.htm
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

Chapter 11. Getting started with Webserver
Search Engine and Web Crawler

The key to any successful Web site is to offer a good clean way for people to navigate through
the myriad of Web pages to find that one piece of information they need. The problem is that
there are many different types of people that come to your Web site looking for information.

Some people like to follow a well thought out and defined hierarchy of information. You can
use nested levels of navigation bars on the left, top, and right side of your Web pages to give
a logical order to your site. You can also use site maps to give these type of people the big
picture view of your site. Some like to follow the hypertext links found throughout the text and
graphics that you have prepared. In a way, they read their way through to the information they
are looking for. And some people simply like to search.

The webmaster’s job is to provide all of these forms of navigation to your customers since you
cannot control what kind of person they are. A good search engine, then, is part of the critical
items you must add to your Web site.

On the iSeries server, the search engine comes in two logical pieces that are related to each
other:

� iSeries Webserver Search Engine

– Collects all documents into a single directory
– Creates a search index
– Creates a document list that contains a list of all the document paths
– Customizes your search forms with supplied HTML section
– Sets up your HTTP server correctly for the search forms
– Keeps your index up to date

� iSeries Webserver Search Engine Web Crawler

– Crawls the URL you provide and downloads the Web page
– Builds a document list using downloaded Web pages
– Create a search index using the document list

These two search engines are further explained in 11.1, “iSeries Webserver Search Engine”
on page 308, and 11.2, “iSeries Webserver Search Engine Web Crawler” on page 309.

11

An interesting
analogy may
be OS/400.
Users are
given the ability
to follow
menus, search
for commands,
or directly enter
commands.
They can also
prompt for
additional
context-
sensitive
information. All
are designed
for different
types of users.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 307

11.1 iSeries Webserver Search Engine
If you want to allow others to search through documents on your server, you need to set up
your system to be a searchable site. Doing this is easy with the new iSeries Webserver
Search Engine. There are just a few administrative tasks you need to do.

These tasks are summarized here:

1. Collect all of the related documents into a single directory on your iSeries server. You may
use either the root (/) directory of the integrated file system (IFS) or the QSYS.LIB file
system. Using the IFS system allows you to easily port your files from a PC onto the
iSeries server.

2. Create a search index. An index is a collection of all of the selected documents in your
directory. The documents are stored in a special indexed form. In the indexing process, the
search engine takes each document provided in a document list and parses through it to
create keys that are used in searches. The Webserver Search Engine uses very short
character string keys. This indexed form allows for faster searching than can be done on
documents that are not indexed.

3. The documents provided to the indexing function are contained in a document list that is
automatically created when you create an index. A list can also be created through
administrative forms or by hand.

4. After you create the search index, you can test it from the search administration form. This
allows you to see all of the different options available to select for a search, such as fuzzy
or precise.

5. Now you are ready to set up the Webserver Search Engine to run on your Web site. A
short Hypertext Markup Language (HTML) section is supplied that you can add to your
Web page. A Net.Data macro is also supplied that contains all of the HTML you need. This
allows you to customize your search and search results forms. You may use the short
HTML form supplying a few values if you are not comfortable using Net.Data. However,
you must still copy the sample macro to your directory to make all of this work.

6. After you decide how you want to present your search forms, you need to make sure the
HTTP server you use contains the correct directives in the configuration to run the
Net.Data macro. You must also make sure that users can view the documents found on a
search. A simple set of steps to do the necessary setup is provided for the HTTP Server
(powered by Apache) and HTTP Server (original).

7. When all of this is completed, you are ready to perform searches.

8. You must keep your index up to date. If you modify your documents from time to time,
make sure that your users can find the most current information. We supply a way for you
to update your index. You can use the same document list you used when you originally
created your index. We index any changed files that were previously indexed. You can also
add a new set of documents to an index that already exists and delete some of the
documents from your index. This is a matter of supplying different lists when you update
the index.

For more information about how to use the iSeries Webserver Search Engine, see:

http://www.ibm.com/servers/eserver/iseries/software/http/services/searchinfo.htm

The online “How to” documentation is good for this feature. If you have not done so, we
recommend that you consult the online documentation at this same Web site.
308 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/servers/eserver/iseries/software/http/services/searchinfo.htm

11.2 iSeries Webserver Search Engine Web Crawler
Web Crawler is a program that you can start from the same Search Setup forms that you use
to set up your search engine. It works in much the same way as when you enter a Uniform
Resource Locator (URL) on your browser and then click various links to go to new Web
pages.

The crawling program starts by finding the URL that you provide. It downloads this Web page
to your system and then continues to follow the links it finds. Each Web page that it links to is
also downloaded until there are no more links to follow or your timer expires.

Web Crawler extends the capability for building a document list. As each file is downloaded,
the local path, plus the original URL, are added to your document list. You can then use this
document list to create a search index. Search results for this type of index display the URL
where the document was originally found rather than the local copy. When you find one of
these documents in your search results, you are taken to the actual page that was found
during crawling.

When you choose to build a document list by crawling Web sites, the session always runs as
a background task whether it is initiated from the browser or one of the search CL commands.
It takes several minutes to run at a minimum, depending, of course, on the maximum time you
selected for the session to run, as well as other attributes you specified.

Web Crawler has some special features. It can go to any Web site, English or non-English,
and process the downloaded files correctly for indexing and searching. If a site requires
authentication, you can provide the necessary setup. Since Web Crawlers can run for quite a
long time and consume a lot of your system storage, you can limit the time the crawler runs,
the size of the files it can download, and the amount of storage it can consume. In addition,
you can stop, pause, and resume your crawling session.

All of these features are on the Search Setup forms that are part of the HTTP Server
Configuration and Administration.

For more information about how to use the iSeries Webserver Search Engine Web Crawler,
see:

http://www.ibm.com/servers/eserver/iseries/software/http/services/webcrawler.htm

Web Crawler
was introduced
to the HTTP
Server
(powered by
Apache) with
OS/400 V5R1.
Chapter 11. Getting started with Webserver Search Engine and Web Crawler 309

http://www.ibm.com/servers/eserver/iseries/software/http/services/webcrawler.htm

310 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 12. Apache Portable Runtime:
Extending your core functionality

Consider these scenarios:

� What if you need to provide some kind of dynamic content to your Web site and it needs to
be as efficient as possible?

� What if you want to perform some special logging that is outside what either your Web
application or the HTTP Server (powered by Apache) does?

� What if you need to implement your own authentication of remote users for your Web
application?

� What if you want to implement your own version of a server-side include (SSI) that would
recognize a pattern of text in the outgoing Hypertext Markup Language (HTML) and
replace it with some dynamic content?

The answer to all these “what if” questions is Apache Portable Runtime (APR). The APR is all
about extending the core functionality of the Apache server in a manner that is portable
between platforms. This chapter explores the APR Version 2.0 and writes a module for the
iSeries server.

12
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 311

12.1 Apache module design overview
The design of the HTTP Server (powered by Apache) defines modules. Modules are
operating system objects that can be dynamically linked and loaded to extend the nature of
the HTTP Server (powered by Apache). Depending on the operating system, this is similar to:

� Windows Dynamic Link Libraries (DLL)
� UNIX shared object libraries
� OS/400 Integrate Language Environment (ILE) Service Programs

In this way, the Apache modules provide a way to extend a server's function. Functions
commonly added by optional modules include:

� Authentication
� Encryption
� Application support
� Logging
� Support for different content types
� Diagnostics

A good example of a module that is shipped with your HTTP Server (powered by Apache) that
extends the reach of the core Apache server is:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

This service program is only loaded, linked, and used when you configure the LoadModule
directive because you decided to encrypt your data using Secure Sockets Layer (SSL). The
advantage of this is that the core Apache program can stay relatively small and tight until a
particular function (as provided by a plug-in module) is needed. Then, with just a LoadModule
directive and optionally some configuration directives, you can increase the functionality of
your Web server with a corresponding increase in the working set size.

Apache core functions are those available in a standard Apache installation with no
nonstandard modules. iSeries Apache Version 2.0 supports about 137 directives. Of those,
53 are in the core functions. The remainder are in separate modules that are compiled into
the code. The LoadModule directive must be used to activate the directives in these modules.

As shown in Figure 12-1, the
HTTP Server (powered by
Apache)’s core functions are
extended with a variety of different
modules. In some cases
(Common Gateway Interface
(CGI) module and a Cookie
module), the modules are built-in
extensions to the server’s core
functions and do not need an
explicit LoadModule to use. In
other cases (for example, the SSL
module), the modules are
provided with the HTTP Server
(powered by Apache) product on
the iSeries but must be explicitly
loaded with the LoadModule directive.

You can also write your own module to extend the core functionality of the HTTP Server
(powered by Apache). This, in fact, is one of the biggest drawing points to the Apache Web
server and a good example of why it is a popular HTTP server.

Server core
functions

CGI
module

SSL
module

User
written
module

Cookies
module

Figure 12-1 Modules expanding the functionality of the core
Apache Web server
312 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

To understand how modules are plugged into the Apache server, you need a good
understanding of request handling. Request handing is done in a series of steps called
phases. The phases are:

� Post read request: Set of hooks called immediately after the incoming request is read.

� URI to filename translation: Hooks for mapping the incoming Uniform Resource
Identifier (URI) to the physical file. Examples include aliasing, redirecting, rewriting, and so
on.

� Parse headers: Hooks that need to read the incoming HTML headers and perform tasks
based on what is in them.

� Check access: Hooks that determine whether the current context is restricted.

� Authentication ID checking: Hooks that verify who the user is.

� Authentication access checking: Hooks that verify if the user is authorized in the current
context.

� Type checker: Hooks to determine the Multipurpose Internet Mail Extensions (MIME)
type of the object requested.

� Fixups: Hooks that don't really fit anywhere else, such as ASCII/EBCDIC conversions or
setting/resetting environment variables.

� Insert filters: Hooks for inserting input or output filters. A module either does this or
registers the filter at startup time. If a module registers filters at startup time, the server
adds those filters during this phase.

� Sending a response back (handlers): Hooks that possibly handle the request and
respond to the client.

� Logging: Hooks to log any data to a log file that the module defines.

For Version 2.0 of the Apache server, the Apache Software Foundation (ASF) provides the
ability to modify data that was generated by an earlier module. This concept is called buckets
and brigades as seen in Figure 12-2. The premise is that, after all is said and done, Web
pages are nothing more than chunks of information:

� Each chunk is stored in a bucket.
� A list of buckets form a brigade.
� Lists of brigades can form a Web document.
� Filters operate on one brigade at a time.

The C language
implementation of the
structure shown in
Figure 12-2 is a linked list
of buckets.

Tip: The example provided in 12.2, “Creating a module for the iSeries server” on page 315,
is an example of a response handler (Sending a response back (handlers) in the list
above). In this phase, buckets and brigades (see the next paragraph) are lined up and our
code steps in to make a minor modification to the HTML right before it is sent back to the
client.

bucket Dbucket A bucket B bucket C

Figure 12-2 Many buckets in a row become a brigade
Chapter 12. Apache Portable Runtime: Extending your core functionality 313

As you now know, the iSeries has integrated the 2.0 version of the Apache server with the
IBM HTTP Server for iSeries. Much of the rest of the world, however, is still back at version
1.3 of the Apache server. A big difference between version 1.3 and 2.0 of the Apache server
is that the APR is new for version 2.0. To bring a module written to version 1.3 to the iSeries
server, you should first update it to the new version 2.0 APR module. Then, the port to iSeries
should be fairly easy.

The APR found with version 2.0 of the Apache server is actually independent of the Apache
HTTP 2.0 server. Technically, APR is a separate Apache product altogether and can exist
alone. Users of APR can create their own applications using APR and not touch the Apache
HTTP 2.0 server.

12.1.1 Documentation and resources
For you to successfully implement a more complex module using the APR of Apache, you
need to study the following documentation:

� V5R3 HTTP Server Documentation Center:

Select the document depending on the version you are using, V5R3, V5R2, or V5R1.
Inside the V5R3 IBM HTTP Server for iSeries Documentation Center, click
Programming →HTTP Server (powered by Apache) and Apache portable runtime
application programming interfaces →Compile and configure modules on HTTP
Server (powered by Apache). You can find the documentation center at:

http://www.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

� Apache Software Foundation home page:

http://www.apache.org

� Apache Software Foundation documentation:

http://httpd.apache.org/

Select Apache 2.0 under Documentation.

� Links to many Apache Software Foundation resources on APR:

http://apr.apache.org/

� Apache modules registry:

http://modules.apache.org/

These online magazines often provide Apache 2.0 leading edge advice and support,
especially in the area of writing modules:

� ApacheToday news and information online:

http://www.apachetoday.com

� Apache Week news and information online:

http://www.apacheweek.com

� Onlamp news and information online:

http://www.onlamp.com/apache/
314 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://www.apache.org
http://httpd.apache.org/
http://www.apachetoday.com
http://www.apacheweek.com
http://www.onlamp.com/apache/
http://modules.apache.org/
http://apr.apache.org/
http://www.apache.org
http://httpd.apache.org/
http://apr.apache.org/
http://modules.apache.org/
http://www.apachetoday.com
http://www.apacheweek.com
http://www.onlamp.com/apache/

12.2 Creating a module for the iSeries server
The best way to learn how to create a module for the iSeries server is to just do it.

12.2.1 The task at hand
Our goal is to create a module that adds text (most likely HTML) to the start of a Web page.
We do so only within the context in which we define an output filter handler. That is, we use
the same way that all Apache directives can inherit or override the settings of directives found
above this context. This, in effect, provides private storage for our module. There is one per
Directory context.

In our example, Table 12-1 defines many of the features of our module.

Table 12-1 Definition of the HeaderFilter module

12.2.2 Source code and comments
This section provides the C language source code and annotated comments to help guide
your understanding of the logic behind the code.

mod_header.c source code and annotation
Example 12-1 shows the C language source code of the module mod_header.c. The
numbered annotations found in the source code are described in “Comments to
mod_header.c” on page 318.

You can find this source code in:

� Library: TCP52L00
� Source file: QCSRC
� Member: MOD_HEADER

Example 12-1 C language source code for the mod_header.c module

/* 1 */
#include "apr_strings.h"
#include "apr_xlate.h"
#include "ap_config.h"
#include "util_filter.h"
#include "httpd.h"
#include "http_config.h"
#include "http_request.h"
#include "http_core.h"
#include "http_protocol.h"
#include "http_log.h"
#include "http_main.h"
#include "util_script.h"
#include "http_core.h"

Feature How is it defined or used

DocumentRoot /tcp52d00/basicconfig/itsoco

HeaderFilter active in context <Directory /tcp52d00/basicconfig/itsoco/people>

Define the text that will be added just before
the start of the <html> tag with all pages
sent from within the active context.

HeaderText “<center><i>Listen to all the
People</i></center>”

Cause the header_module module to be
loaded

LoadModule header_module
/QSYS.LIB/TCP52L00.LIB/MOD_HEADER.SRVPGM
Chapter 12. Apache Portable Runtime: Extending your core functionality 315

#include "util_charset.h"

module AP_MODULE_DECLARE_DATA header_module; /* 2 */
/* 3 */
typedef struct header_rec {
 const char *headert;
} header_rec;

/*
 * 4 Handle the HeaderText directive
 */
static const char *add_header_text(cmd_parms *cmd, void *dummy,
 const char *arg)
{
 header_rec *d = dummy;

 /* store the text for the header. */
 d->headert = apr_pstrdup(cmd->pool, arg);
 return NULL;
}

/*
 * 5 Define the directives
 */
static const command_rec dir_cmds[] =
{
 AP_INIT_TAKE1("HeaderText", add_header_text, NULL,
 ACCESS_CONF || OR_FILEINFO,
 "text for a header"),
 {NULL}
};

/*
 * 6 Create the module specific structure
 */
static void *create_header_config(apr_pool_t *p, char *dummy)
{
 header_rec *new =
 (header_rec *) apr_pcalloc(p, sizeof(header_rec));

 new->headert = NULL;
 return (void *) new;
}
/* 7 */
typedef struct header_struct {
 int state;
} header_struct;

/*
 * 8 Define the filter to add the header text to the request.
 */
static int header_filter(ap_filter_t *f, apr_bucket_brigade *bb)
{
 header_struct *ctx = f->ctx;
 header_rec *conf;
 apr_bucket *e;

 /* get the module specific structure for the current context. */
 conf = (header_rec *)ap_get_module_config(
316 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

 f->r->per_dir_config,
 &header_module);

 /* If the current context has not been created, create one */
 if (ctx == NULL) {
 f->ctx = ctx = apr_pcalloc(f->r->pool, sizeof(*ctx));
 }

 /*
 * If the context state is 0 (meaning we haven't yet done this)
 * AND if the current object being processed is text/html
 * Then we will process what was defined in the HeaderText directive
 */
 if((ctx->state == 0) &&
 (!strcasecmp(ap_field_noparam(f->r->pool, f->r->content_type),
 "text/html"))) {
 ctx->state = 1; /* Indicate that we've been here */
 /* If HeaderText directive has been defined for the current context...*/
 if (conf->headert) {
 char *headertext = apr_pcalloc(f->r->pool,
 strlen(conf->headert));
 apr_size_t in_length = strlen(conf->headert);
 apr_size_t out_length = in_length;
 /* We must convert the text string from EBCDIC to ASCII.
 * ap_locale_to_ascii is defined by the server at startup time.
 */
 apr_xlate_conv_buffer(ap_locale_to_ascii,
 conf->headert, &in_length,
 headertext, &out_length);

 /* Create the bucket to store the ASCII text */
 e = apr_bucket_immortal_create(headertext,
 strlen(conf->headert));
 /* Insert the bucket t the beginning. */
 APR_BRIGADE_INSERT_HEAD(bb, e);
 }
 }

 /* Pass the brigade on... */
 ap_pass_brigade(f->next, bb);
 return APR_SUCCESS;
}

/*
 * 9 Register any hooks or filters needed for this module
 */
static void header_register_hook(apr_pool_t *p)
{
 ap_register_output_filter("HEADERFILTER",
 header_filter,
 NULL,
 AP_FTYPE_CONTENT);
}
/* 2 */
module AP_MODULE_DECLARE_DATA header_module = {
 STANDARD20_MODULE_STUFF,
 create_header_config, /* create per-directory config structure */
 NULL, /* merge per-directory config structures */
 NULL, /* create per-server config structure */
 NULL, /* merge per-server config structures */
Chapter 12. Apache Portable Runtime: Extending your core functionality 317

 dir_cmds, /* command apr_table_t */
 header_register_hook /* register hooks */
};

Comments to mod_header.c
Here are the comments to the code presented in the previous section. Each numbers
corresponds to the bold numbers in Example 12-1 on page 315:

1. The header files included in this example are only to define all application programming
interfaces (APIs) used in the example. These and a lot more header files are located in
your iSeries server’s integrated file system (IFS) directory
/QIBM/ProdData/HTTPA/include/.

2. This is the Command Module Structure, which is well known to the server. It contains:

– Standard Apache 2.0 module items
– Function pointer to create per-directory configuration structure
– Function pointer to merge per-directory configuration structures
– Function pointer to create per-server configuration structure
– Function pointer to merge per-server configuration structures
– Pointer to command table
– Function pointer to register hooks function

This module also needs to be exported from the service program that you create. See
12.2.3, “Compiling, linking, and exporting your service program” on page 319.

3. Here we declare some module specific storage that will later be used to store the header
text that will come from the configuration file’s HeaderText <center><i>Listen to all
the People</i></center> directive.

4. This is the add_header_text function. It is one of the parameters used in the command
table.

5. The command table and command handler define:

– The server directives
– Functions to handle those directives

The command table is composed of:

– Directive name
– Configuration action routine. In our case, this is the add_header_file function.
– Additional argument to include in call
– Where directive is valid
– Directive description

The APR module support at 2.0 defines a series of directive initializers used to define how
many arguments (parameters) are passed.

In our case, we use AP_INIT_TAKE1. Since we defined the directive to take one argument
(AP_INIT_TAKE1), the string following the directive in the configuration file needs to be
quoted like this:

HeaderText "<center><i>Listen to all thePeople</i></center>"

See 12.2.4, “Activating via configuration” on page 320, for the details.

The list of directive initializers include:

– AP_INIT_RAW_ARGS: Function parses the command line itself
– AP_INIT_TAKE1: One argument
– AP_INIT_TAKE2: Two arguments
– AP_INIT_ITERATE: One argument, occurring multiple times
– AP_INIT_ITERATE2: Two arguments; the second occurs multiple times
318 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

– AP_INIT_FLAG: Values “On” or “Off”
– AP_INIT_NO_ARGS: No arguments
– AP_INIT_TAKE12: One or two arguments
– AP_INIT_TAKE3: Three arguments
– AP_INIT_TAKE23: Two or three arguments

6. Create a per-directory configuration. This, in effect, provides private storage for our
module. One per Directory context. This can be merged with previous context in the tree in
the same way that all Apache directives can inherent or override the settings of directives
found above this context.

7. Define the filter context structure. This structure is designed to keep track of things needed
in case this filter is called multiple times in a context.

8. This is the main declaration and code that is our output filter.

9. Register the output filter hook. All register hooks are called at startup time. They are
designed for modules to register the filters (as in this example) and to specify which
phases the module wants to hook. This can be done by calling APIs for specific hooks (for
example calling ap_hook_translate_name to hook the URI to filename translation phase).

12.2.3 Compiling, linking, and exporting your service program
After you create your module, it is time to compile and then create and export the
header_module service program.

Compiling the service program
For V5R2 and V5R3, you enter the following command (all as one command):

CRTCMOD MODULE(TCP52L00/MOD_HEADER)
SRCSTMF('/QSYS.LIB/TCP52L00.LIB/QCSRC.FILE/MOD_HEADER.MBR') DEFINE(AS400)
LOCALETYPE(*LOCALE) TERASPACE(*YES) INCDIR('/qibm/proddata/httpa/include')

For V5R1, you enter the following command (all as one command):

CRTCMOD MODULE(TCP52L00/MOD_HEADER)
SRCSTMF('/QSYS.LIB/TCP52L00.LIB/QCSRC.FILE/MOD_HEADER.MBR') DEFINE(AS400)
LOCALETYPE(*LOCALE) INCDIR('/qibm/proddata/httpa/include')

For V4R5, you enter the following commands:

CHGCURDIR DIR('/qibm/proddata/httpa/include')

CRTCMOD MODULE(TCP52L00/MOD_HEADER)
SRCSTMF('/QSYS.LIB/TCP52L00.LIB/QCSRC.FILE/MOD_HEADER.MBR') DEFINE(AS400 '_MULTI_THREADED')
LOCALETYPE(*LOCALE)

Creating and exporting the service program
For either V5R3, V5R2, V5R1, or V4R5, you create a service program export source member.
You can find this source code in:

� Library: TCP52L00
� Source file: QSRVSRC
� Member: MOD_HEADER

Note: A change to the HTTP Server (powered by Apache) in V5R2 requires a new
parameter TERASPACE(*YES) on the Create C Module (CRTCMOD) command. If you
recompile your programs with this option and then rebuild your service program, the
performance of your service program should improve.
Chapter 12. Apache Portable Runtime: Extending your core functionality 319

It contains:

STRPGMEXP PGMLVL(*CURRENT)
 EXPORT SYMBOL("header_module")
ENDPGMEXP

Then create the mod_header service program:

CRTSRVPGM SRVPGM(TCP52L00/MOD_HEADER) MODULE(TCP52L00/MOD_HEADER) EXPORT(*SRCFILE)
SRCFILE(TCP52L00/QSRVSRC) SRCMBR(MOD_HEADER) BNDSRVPGM(QHTTPSVR/QZSRAPR QHTTPSVR/QZSRCORE
QHTTPSVR/QZSRXMLP QHTTPSVR/QZSRSDBM)

12.2.4 Activating via configuration
Then add these directives to your configuration file:

� To cause the module header_module to be loaded by the HTTP Server (powered by
Apache) at server startup time:

LoadModule header_module /QSYS.LIB/TCP52L00.LIB/MOD_HEADER.SRVPGM

� Within the context in which you want the module header_module to be executed, use
HeaderText as a directive to define the HTML text that will be added to the start of any
HTML page within this context. Consider this example:

<Directory /tcp52d00/basicconfig/itsoco/people>
HeaderText "<center><i>Listen to all the People</i></center>"
</Directory>

12.2.5 Testing header_module
To test header_module, save your configuration file and then start your server:

� Server: PBABASIC00
� Listen: port 8000
� DocumentRoot: /tcp52d00/basicconfig/itsoco

With the Uniform Resource Locator (URL) http://as20:8000/index.html, you should see
your normal home page unchanged as shown in Figure 12-3.

Note: If you create a module with *PUBLIC *RWX authority, there should be no authority
considerations. If *PUBLIC is *EXCLUDE, authority has to be granted explicitly to the
profile that the server instance will run under as well as user profile QTMHHTTP.

Attention: When using the Display Configuration File option of the IBM Web
Administration for iSeries interface, the administration program checks for syntax errors. A
directive with an incorrect syntax is displayed in red. Directives that are added via user
modules are also displayed in red even if they are correct.
320 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 12-3 header_module is not evoked for this context; no changes to HTML

Next, using the navigation bar on the left, click People. The pages to support the People
section of our small Web application are defined within the context in which header_module is
registered. This causes the People page to look like the example in Figure 12-4.

Figure 12-4 header_module evoked for this context; notice ‘Listen to all the People’

Further, if you view the source for the page, you see:

<center><i>Listen to all the People</i></center>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
<META NAME="Generator" CONTENT="NetObjects Fusion 5.0.1 for Windows">
<TITLE>People</TITLE>
</HEAD>
<BODY ...
Chapter 12. Apache Portable Runtime: Extending your core functionality 321

12.2.6 Debugging
Here are two methods to debug your module:

� Compile your module with debug views turned on, for example:

CRTCMOD MODULE(TCP52L00/MOD_HEADER) DBGVIEW(*ALL)
SRCSTMF('/QSYS.LIB/TCP52L00.LIB/QCSRC.FILE/MOD_HEADER.MBR') DEFINE(AS400)
LOCALETYPE(*LOCALE) TERASPACE(*YES) INCDIR('/qibm/proddata/httpa/include')

You can then use the Start Service Job (STRSRVJOB) and Start Debug (STRDBG)
commands to set breakpoints in your module.

� You can directly add trace points into your code. These trace points can be turned on and
off with the Trace TCP/IP Application (TRCTCPAPP) CL command.

The APIs for this are defined in the API guide. For more information about this, click the
Reference documentation for HTTP Server link on the iSeries Information Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm

Using AP_ERROR_TRACE, AP_INFO_TRACE, or AP_VERBOSE_TRACE at various
places in the code accomplishes this. Then the user only has to use the TRCTCPAPP
command to turn on and off the trace for the instance. The trace points that were added
appear in the TRCTCPAPP output depending on the level coded versus the level
requested.
322 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm

Chapter 13. Problem determination: When
things do not go as planned

Setting up and tuning an HTTP server requires time, testing, and patience. This chapter helps
you face the problems that you may encounter in both phases. It gives you a better
understanding of the practices and tools to assist you in your work.

13
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 323

13.1 The art of problem determination
This section is by no means a ready solution for all of your Web serving woes. It is only
intended as a quick guide to help solve the most common problems you will encounter when
configuring and managing your HTTP Server (powered by Apache).

If you are experiencing a special problem, skip Table 13-1. Instead read 13.2, “Tools of the
trade” on page 327, which explains the detailed problem determination tools and techniques.
Use Table 13-1 as a quick checklist and a guide during problem determination.

Table 13-1 Problem determination checklist

Note: If the graphical user interface (GUI) is not doing what you want it to do, then see
Table 13-2.

Symptom What to do

The server does not
start or does not stay
active.

� Manually start your server from a green screen using the Start TCP/IP Server
(STRTCPSVR) command. Look for messages in your job log. The completion message
CPC1221 informs you that job NNNNNN/QTMHHTTP/SERVERNAME was submitted.
You can use this data in the Work with Job (WRKJOB) command to retrieve the server job
log. Refer to 13.2.1, “Working with configuration files” on page 327, for detailed
information about server job logs.

� Make sure that the user profile QTMHHTTP or the profile you chose as the default (see
Figure 13-5 on page 330) fits this profile:

– Exists on the server
– Is enabled
– Has no password expiration date set

� If using Net.Data or Common Gateway Interface (CGI) programs, repeat the previous
step for user profile QTMHHTP1.

� Check that all software requirements are met. Refer to Chapter 2, “From zero to powered
by Apache” on page 17, for additional information.

We can't find the
“myserver” message
using Internet
Explorer.

� Verify that the HTTP server is active. Also PING the server using both the name and
Internet Protocol (IP) address. If name fails and IP succeeds, this is a Domain Name
System (DNS) problem. Either add the server name and IP to your client’s hosts table or
contact your DNS server administrator.

� Make sure that you enter the Uniform Resource Locator (URL) in your address bar
exactly like the following examples if you are using Secure Sockets Layer (SSL) or
Transport Layer Security (TLS):

http://servername:port
https://servername:secureport

� Check your browser’s proxy setting and set it appropriately. If your Web client is
connected directly to the HTTP Server (powered by Apache), then try deleting the client
proxy configuration to see if that makes a difference.

� Use the Work with Subsystem Jobs (WRKSBSJOB) command to see whether the
QHTTPSVR subsystem is hosting your HTTP server jobs. If you are using Web
application servers that run on top of the HTTP server, such as WebSphere or Tomcat,
use the Work with Active Jobs (WRKACTJOB) command and set the JOB parameter to
your server name instead.

There was no
response. The server
must be down or is not
responding to the
message using
Netscape.
324 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Continued – If you don’t see any job named after your server, refer to the previous tip “The server
does not start”.

– If the jobs are active, use the Work with TCP/IP Network Status (NETSTAT) command
with the *CNN option. Look at the port numbers listed in the Local Port column. You
should be able to find port 80 (or the port you chose for your server).

– If your port is not listed, look for clues in the server job logs. See 13.2.2, “Job logs” on
page 329, for details.

Note: When you are unable to bind to a specific port, the HTTP server jobs remain active for
approximately five minutes. During this time, the bind operation is attempted every five
seconds, and the message HTP803D is posted to the job log. Should this occur, make sure
that no other application is already using the same port.

HTTP error message
404 - File not found.

� Make sure that the file you requested meets this criteria:

– Exists in your document root or in your current path.

– Can at least be read by your server user profile. Use the Display Authority (DSPAUT)
command for this purpose. See Figure 13-5 on page 330 if you don’t know which user
profile is running the server.

� Look at the access_log and error_log files. You’ll find more information about log files in
13.2.3, “Server logs” on page 331.

CGI program or
Net.Data macro is not
running.

� Use the Display Authority (DSPAUT) command to verify that the program can be run by
user QTMHHTP1.

� Check the server job log for obvious clues.

� Refer to HTTP Server for iSeries Programming, GC41-5435, for CGI program debugging
tips. See 13.2.4, “Net.Data logs and traces” on page 340, for information about Net.Data
debug procedures, or look at a sample Net.Data configuration in 7.3, “Net.Data: A
ready-made scripting tool” on page 161.

Unsatisfying
performance.

� See 10.1, “iSeries Web server performance components” on page 226.

LDAP authentication
does not work

When Lightweight Directory Access Protocol (LDAP) user authentication fails for HTTP basic
authentication, the error_log of your HTTP server instance is the starting point for debugging.
There can be multiple reasons why LDAP authentication fails. The following examples give
some hints on where to look for possible causes.

� Error message in error_log:

[Fri Oct 01 13:35:18 2004] [error] ZSRV_MSG0080: Unable to authenticate HTTP
server for realm 'FRA822 LDAP Server': Error is Invalid credentials.

When using LDAP authentication, the HTTP server is an LDAP client that needs to bind
to the LDAP server. The LDAP configuration file (see 6.2.3, “Authentication by LDAP
entries” on page 113) contains the bind distinguished name (DN) and the password that
is used by the HTTP server to authenticate to the LDAP server. When receiving the
previous message, the HTTP server was not able to authenticate to the LDAP server. To
correct the problem, check the administrator DN and password.

� Error message in error log:

[Fri Oct 01 13:32:53 2004] [error] ZSRV_MSG0066: Unable to find entry with
search filter '(&(objectclass=person)(!(cn=barle *)(uid=barle)))': Returning
401 error

This message indicates that the HTTP server successfully bound to the LDAP server and
used the search filter '(&(objectclass=person)(!(cn=barle *)(uid=barle)))' to look for an
entry where the objectclass is person and the common name (cn) attribute or the uid
attribute contains the value barle. In this case, the user does not exist. However, the
message is also issued when the search filter contains errors. To correct the problem,
verify that the user as displayed in the search filter part of the log does exist.

Symptom What to do
Chapter 13. Problem determination: When things do not go as planned 325

Table 13-2 identifies some common problems with the Administration GUI used to configure
and manage your HTTP Server (powered by Apache).

Table 13-2 Common GUI problems

LDAP authentication
does not work
(continued)

You can also verify the search filter definition in the LDAP properties file you created
during the LDAP authentication setup.

� Error message in error_log:

[Fri Oct 01 13:49:16 2004] [warn] ZSRV_MSG0063: Basic authentication failure
for user 'cn=Thomas Barlen,o=company00': Error is Invalid credentials

When you receive an error such as this, the HTTP server successfully connected to the
LDAP server and looked up an entry with the specified search filter. Also the LDAP server
returned the hashed password to the HTTP server. You can easily recognize this by the
DN of the entry in the log file. However, this time the password is the problem. To correct
the problem, the user must enter the correct password or the administrator needs to reset
the password for the user.

Symptom What to do

A common problem What you can do

msgCEE0200 is in the
ADMIN job log.

Verify that JDK 1.3 (5722-JV1 option 5) is installed on your system. See Chapter 2, “From zero
to powered by Apache” on page 17, for a list of pre-requisites.

Password prompt
appears several times.

Check your browser security setting. Both JavaScript and Cookies must be enabled.

Frames do not display
properly.

Buttons do not work.

The page is too large
to fit in the browser
window.

Most GUI pages are best viewed at a 1024x768 screen resolution. Here are other tips for
adjusting the view:

� The frames you see on the screen can be resized. Click a frame border and drag it to a
different position. This new layout is maintained for the whole session.

� Try a smaller font size. Select View →Text Size from the menu options in Internet
Explorer, View →Decrease Font in Netscape Navigator, or Document Zoom in the
Opera list.

ADMIN does not start. Use the Work with Job (WRKJOB) CL command to retrieve the server job log, and look for
significant clues.

ZUI_50004: OS/400
user profile
USERNAME does not
have *IOSYSCFG
authority, which is
required to use the
configuration and
administration
interface of IBM HTTP
Server for iSeries.

Remember that you are ultimately dealing with OS/400 configuration files. OS/400 requires
*IOSYSCFG authority from any user attempting to alter configuration files. Sign on with a more
powerful profile.

Other interesting tips. DSPAUT OBJ('/') should not show *EXCLUDE for *PUBLIC.

Use the Work with Object Links (WRKLNK) CL command to browse the IFS path
/QIBM/UserData/HTTPA/admin/logs where the ADMIN error logs are stored. For additional
information, see the following section.
326 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

13.2 Tools of the trade
Let us now look at the tools that make our everyday tasks easier. We identify what they are
and how we can make the most out of them. This section takes you deeper into problem
determination and shows how to work with configuration files, logs, and iSeries native
instruments such as job logs and application traces.

13.2.1 Working with configuration files
Manually editing the configuration file requires care, patience, knowledge of the configuration
directives, and a good backup of the original file. We recommend that you do not manually
edit your httpd.conf file unless you really know what you are doing and you have solid
experience with the Apache configuration directives.

The recommended way to change or create your HTTP Server (powered by Apache)
configuration is to use the GUI. The GUI also supports good tools for displaying and editing
configuration files.

From the main Configuration panel, select the Display Configuration File option. This opens
the content of your configuration file just as the server sees it. This is really important if you
manually altered the configuration file using the green screen Edit File (EDTF) utility. EDTF is
a quick and handy tool for editing files on the iSeries server, but it doesn’t provide the
additional error highlighting that the GUI has.

For an example, look at the second to last line in Figure 13-1, where we purposely added the
unsupported directive AddModule to our httpd.conf file.

Figure 13-1 The EDTF utility to edit the httpd.conf file

We save the file, and then go back to the GUI main configuration panel (Figure 13-2). Locate
the Tools section at the bottom of the display and click Display Configuration File.

Note: This check on the configuration file is similar to what the Apache native -t switch
does. See 13.2.7, “Other startup parameters” on page 351, for -t and other switches.

Edit file: /www/itsonew/conf/httpd.conf
 Record : 1 of 28 by 18 Column : 1 101 by 131
 Control :

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+...
************Beginning of data**************
Configuration originally created by Create HTTP Server wizard on Wed Sep 29 15:03:49 C
Listen *:8022
DocumentRoot /www/itsonew/htdocs
Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogMaint logs/error_log 7 0
AddModule mod_cgi
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
Chapter 13. Problem determination: When things do not go as planned 327

The latest selection displays the content of the httpd.conf file as shown in Figure 13-2. As you
can see, the unsupported directive is highlighted and a comment is placed underneath. Each
line is also numbered, making errors easier to spot. Also notice that the directives used by
default are crossed out and are destined to be deleted.

Figure 13-2 Display Configuration File: Line 10 indicates a problem with the configuration file

Let’s see what happens if we try to start the server using this configuration file. The server
ends immediately after parsing the invalid AddModule directive in line 10. The HTP8006 and
HTP8008 error messages in the job log (as shown in Figure 13-3) clearly indicate where the
problem lies. Now refer back to Figure 13-2 to see that line 10 of our configuration file is
indeed the invalid AddModule directive.

For more information about collecting, locating, and analyzing job logs, continue with the
following section.

Note: Since directives contain default values, which is what the server uses if it does not
find them, there is no reason to have them in the configuration. To limit the configuration file
size and improve its readability, they are deleted. This occurs when you are in the
configuration GUI for the specific directive and click OK or Apply.

Note: Not all directives that are marked as not recognized are actually incorrect directives.
The GUI checks for directives that it knows. You could still see a directive in error for
directives that belong to modules you have written or modules that are not part of the IBM
HTTP Server for iSeries product. However, the joblog and the GUI are an excellent starting
point for problem determination.

328 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 13-3 Display spooled file: HTP8006 and HTP8008

13.2.2 Job logs
HTTP server job logs are the first place to look for information whenever an abnormal ending
occurs. Their content can be more or less detailed, depending on the message logging
settings in the job description (JOBD) in use. The JOBD used by the HTTP Server (powered
by Apache) is QZHBHTTP in the QHTTPSVR library. Changing its message logging settings
always influences the content of your server job logs. Figure 13-4 shows the default values for
this IBM-supplied JOBD.

Changing the Text setting from *NOLIST to *MSG or *SECLVL can be extremely useful for
debugging purposes. See the online help for the Change Job Description (CHGJOBD) CL
command for usage information. Also remember that *SECLVL generates a highly verbose
job log for every server job. Therefore, do not choose it as a default setting.

 Display Spooled File
 File : QPJOBLOG Page/Line 1/28
 Control Columns 1 - 130
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0....+....1....+....2....+
HTP8006 Diagnostic 40 05/01/03 13:21:51.124792 QZSRAPR QHTTPSVR *STMT QZSRCORE QHTTPSVR *STMT

From module : QZSRSNDM
 From procedure : sendMessageToJobLog
 Statement : 11
 To module : HTTP_CONFI
 To procedure : ap_walk_config_sub
 Statement : 11
 Message : Directive not recognized.
 Cause : Directive AddModule is not a recognized HTTP server
 directive. The HTTP server did not start. Recovery . . . : Correct or
 remove the directive. Then start the HTTP server again. Technical
 description : See the HTTP server documentation on
 configuration and administration for more information.
HTP8008 Escape 40 05/01/03 13:21:51.126128 QZSRAPR QHTTPSVR *STMT QZHBHTTP QHTTPSVR *STMT

 From module : QZSRSNDM
From procedure : sendEscapeWithMessageFile
Statement : 4

 To module : HTDAEMON
 To procedure : BigSwitch__FiPPc
 Statement : 1070
 Message : HTTP Server Instance ITSONEW failed during start-up.
 Cause : HTTP Server instance ITSONEW failed because of a
 configuration error on line 10 in configuration file
 /www/itsonew/conf/httpd.conf. Note: If the specified directive is either a
 container directive (e.g. <Directory>), or a directive within a container,
 the line number identified above may not be correct. In that case, you will
 need to verify that all directives in the container, and the container
 itself do not have configuration errors. Recovery . . . : See previous
 job log messages. Correct the problem and start the server again.
Chapter 13. Problem determination: When things do not go as planned 329

Figure 13-4 Display Job Description: Default message logging

Job logs are always produced under the default QTMHHTTP profile unless you choose to use
a different one, adding a ServerUserID directive in your configuration file. Figure 13-5 and the
following steps show how to set a default user using the GUI:

1. In the left pane, under Server Properties, click General Server Configuration.

2. In the General Server Configuration panel, click the Advanced tab.

3. In the Server user profile field, type the user profile name that is used by the HTTP server.
If no user profile is specified, it defaults to QTMHHTTP.

Figure 13-5 General Server Configuration: Server user profile

 Display Job Description
 System: ASM20
 Job description: QZHBHTTP Library: QHTTPSVR

 Message logging:
 Level . : 4
 Severity : 0
 Text . : *NOLIST
 Log CL program commands : *NO
 Accounting code : *USRPRF
 Print text : *SYSVAL

 Routing data : HTTPWWW

 Request data : *NONE

 Device recovery action : *SYSVAL
 More...
 Press Enter to continue.

 F3=Exit F12=Cancel
330 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Messages in your server job logs often contain helpful hints for problem determination, for
example:

� The name of a failing module
� Illegal configuration options
� Usage of a deprecated directive
� The number of the line where an error was found

To determine where the problem lies, you can also look up the line number referred to in the
message body with the Display Configuration File menu option as explained in 13.2.1,
“Working with configuration files” on page 327.

13.2.3 Server logs
Server logs are most useful for monitoring server activity and keeping track of user access, as
well as being a valid aid in debugging. By carefully examining these logs, you can discover
the reason behind the most common error messages and eventually point out configuration
errors. Figure 13-6 shows the logging options.

Figure 13-6 Logging server activity: General Settings page

General settings
The General Settings page allows you to configure settings that apply to all server log files
such as selecting which time format each log entry time stamp will follow, controlling how
often log files are closed and new log files created, and limiting the size of any defined log file.
This is also a security mechanism, to protect the server in case of a denial of service attack
from filling up direct access storage device (DASD) by producing huge log files.

The Log cycle parameter controls how often log files are closed and new log files created.
Maximum log file size limits the size of any defined log file on the system.
Chapter 13. Problem determination: When things do not go as planned 331

Custom logs
The Custom Logs page allows you to configure various log attributes, such as the format for
the information in the log file, rules for excluding entries from the log file, and client side
information logging. Each server configuration file contains information about the type of log
files the server will create. Logging information allows you to track and generate reports on
your server's activity. Figure 13-7 shows a sample access log configuration, which is
automatically created during the basic configuration with the Wizard. See 2.3.1, “Your first
HTTP Server (powered by Apache) via a wizard” on page 24.

Figure 13-7 Access log settings and log formats

What the setup means
Notice that our access log uses the combined format. It expires after 10 days and it is allowed
to have a maximum cumulative size of 10 MB. That means, that, based on the General
settings page, a new log file is created daily. It’s allowed to grow up to 20 MB. If the server
encounters a denial of service attack, it fills up the log file to its maximum size and stops
logging. Otherwise it closes the log file and opens a new one. If the cumulative size of all
access_log files is beyond the configured 10 MB, the server starts to delete the expired ones.
If it’s still too large, all other log files are deleted, beginning from the oldest, until the
cumulative size is reached, or less.

Log files that are currently in use are not processed. The previous explanation is valid for all
custom logs as well as for error and Fast Response Cache Accelerator (FRCA) logs.

Tip: There is no restriction on the maximum amount of customized logs you define, but
consider that every log file (and log maintenance) produces overhead for your HTTP
Server (powered by Apache).
332 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Log management options
As shown in Figure 13-7, you can set an expiration period and a maximum cumulative size for
log files. Following is an explanation of the two log management options:

� Expiration: This option specifies an integer value that indicates the number of days before
a log file expires. Files older than this value are deleted. A value of 0 means the log file will
never expire. The age of the log file is determined by the file creation date (as reported by
the operating system). A log file that is currently open and active in the server instance is
not deleted.

� Maximum cumulative size: This option specifies an integer value indicating the
maximum aggregate size of log files. When the combined log files exceeds this value in
bytes, files are deleted starting with the oldest file. Log files are deleted until the
cumulative size is within the specified value. A value of 0 means there is no size limit. If
both the expiration and maximum cumulative size are configured to non-zero values, the
expired log files are deleted first. If the maximum cumulative size is still exceeded after the
expired files are deleted, the server continues deleting log files (oldest files first) until the
cumulative size is achieved.

Note: By default, the HTTP server starts the deletion process every day at midnight.
That means, if your server instance is not up and running at midnight, log maintenance
will not occur. A new directive, which was not available via the IBM Web Administration
for iSeries interface at the time of writing the redbook, can be used to change the time
at which the server instance is running the log deletion process. The following example
shows the directive that needs to be added to start the log maintenance process at
10:00 o’clock in the morning.

LogMaintHour 10

The deletion process starts at the top of the hour that is specified as a parameter to the
LogMaintHour directive. Valid values are 0 - 23. Note that this directive is displayed in
the GUI as not recognized.
Chapter 13. Problem determination: When things do not go as planned 333

What is stored in these logs
Let’s see what kind of information is stored in these three logs based on the log format we
chose. Figure 13-8 shows five user-defined formats and the type of information that we want
them to collect. Each of the case-sensitive tokens that we can use in a format definition
represents different information about the client, the request received, or the status of
client-server communications.

Figure 13-8 Log formats

We now analyze an access log entry, looking for the data that we included in the associated
log format. Let’s say we want to access our server’s sample home page. We open a browser
window and type http://servername:port in the address bar, as shown in Figure 13-9.

Figure 13-9 Sample home page
334 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

The last line in our server’s access log now looks like the one in Figure 13-10.

Figure 13-10 Analyzing the access log

Table 13-3 breaks down our string and identifies the relationship between what we chose to
log in Figure 13-8 and the data our server collected.

Table 13-3 Understanding the access log

There is much more information you can log. For more information about customizing log
formats, see the log format article in the HTTP Server documentation center at:

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

You should also see the Worldwide Web Consortium (W3C) logfile standards at:

http://www.w3.org

Error logs
Servers created using the GUI wizard always produce an error log by default. Look for error
log files in the /logs subdirectory of your server root. Basic error logs are most useful for
debugging configuration problems, such as when a document is not accessible or the URI
(the path you add after the server address) you’re pointing to is not working as expected.
Error logs also keep track of configuration changes, server end/restart, and record some

 Browse : /www/itsonew/logs/access_log
 Record : 1 of 1 by 18 Column : 1 130 by 131
 Control :

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0....
9.146.221.156 - - ¬01/Oct/2004:13:11:11 +0200| "GET / HTTP/1.1" 200 717 "-" "Mozilla/4.0 (compatible; MS
************End of Data********************

Access log Token Meaning

9.146.221.156 %h The remote host’s IP address.

- %l The user logged on to the remote system. In this case, the browser did not
provide the user’s name for security reasons.

- %u Name of the authenticated user (no user authentication was performed
yet).

01/Oct/2004:13:11:11
+0200

%t Date and time the request was served. +0200 is the difference from UTC.
See system value QUTCOFFSET

"GET / HTTP/1.1" %r The request received. We can identify the method (GET), the Uniform
Resource Identifier (URI) (/, since we did not request any specific
document) and the protocol used for this transaction (HTTP version 1.1).

200 %>s The HTTP status code. 200 means that this transaction was successful.
See 13.2.8, “HTTP status codes” on page 352, for more information.

717 %b The amount of data transmitted, in bytes.

"-" %{Referer} The page we came from. There is none in this case, since we manually
typed our address.

"Mozilla/4.0
(compatible; MSIE
6.0; Windows NT®
5.0)”

%{User-Agent} Information about the browser and operating system on the remote client.
In this case, Microsoft Internet Explorer on a Microsoft Windows 2000
operating system.
Chapter 13. Problem determination: When things do not go as planned 335

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://www.w3c.org
http://www.w3.org

system errors. Be aware that any problem detected after server initialization is most likely not
recorded in the server job logs (unless a critical condition occurs), but in the error log. As you
can see in Figure 13-11, error logs are really easy to configure. Figure 13-11 shows the
configuration panel that results in the following directives in the configuration file:

� ErrorLog logs/error_log
� LogLevel warn

Figure 13-11 Error Logs settings and resulting directives

Script logs
Script logs record all CGI parsed data and, therefore, can have a significant impact on CGI
performance. They should be used for debug purposes only and not be kept active all the
time. Being a mere debug tool, they are not customizable, but saved for the maximum amount
of data to be collected. The Script log settings in Figure 13-12 result in these directives:

� ScriptLog logs/script_log (see Script log)
� ScriptLogLength 10385760 (see Maximum log file size)
� ScriptLogBuffer 1024 (see Maximum log entry size)

Note: The HTTP Server (powered by Apache) uses error logs per default. You may not be
able to see the directives ErrorLog and LogLevel in the configuration file, although errors
are being logged. To disable error logging, simply change the configuration directive to
ErrorLog Off or use the GUI (Figure 13-11) and set it to DISABLED.
336 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 13-12 Script Logs settings

Custom formats
Each server configuration file contains information about the type of log files the server
creates. Logging information allows you to track and generate reports on your server's
activity. This page allows you to add and remove unique format names and their associated
formats. After you define them, you can specify a format name on one or more CustomLog or
FRCACustomLog directives. The format defines the information that is recorded with each
entry in the log file. Figure 13-13 shows the benefit of using this page. The list provides an
explanation for each token.

Figure 13-13 Custom Formats page
Chapter 13. Problem determination: When things do not go as planned 337

FRCA logs
This log is used to log FRCA requests to the server (Figure 13-14). You perform the setup in
the same way as in “Custom logs” on page 332.

For more information about FRCA, see 10.6, “Fast Response Cache Accelerator” on
page 281.

Figure 13-14 Setting up for FRCA logs

Tip: FRCA collects logging data in System Licensed Internal Code (SLIC), based on
FRCAMaxCommTime and FRCAMaxCommBufferSize directives (see 10.6.6,
“Miscellaneous FRCA directives beyond the online help” on page 296, for configuration
details). When it sends the data to the HTTP Server (powered by Apache), which is above
the Machine Interface (MI), this data comes as a “chunk”. The log files entries can be
out-of-order and may be more difficult to read. All the log data is there, but not in the same
order as the requests were processed.

This is done to improve the overall performance of the HTTP Server (powered by Apache)
and FRCA servers.
338 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

User tracking (cookies)
This page provides options for tracking user requests via client-side cookies (Figure 13-15).

Figure 13-15 Setting up user tracking
Chapter 13. Problem determination: When things do not go as planned 339

Customer environment variables
This page allows you to add and remove environment variables and their associated attribute
values (Figure 13-16).

Figure 13-16 Adding customized environment variables

Log analyzers
You can extract access reports, usage statistic, and other interesting data from your HTTP
Server (powered by Apache) logs. A wide range of both commercial and freeware products is
available for this purpose, from the powerful IBM Tivoli Web Site Analyzer suite to simple log
parsing scripts. See:

http://www-306.ibm.com/software/tivoli/products/web-site-analyzer/

13.2.4 Net.Data logs and traces
You can activate Net.Data traces and logs by adding the following directives to your Net.Data
INI file:

DTW_ERROR_LOG_DIR [=] full_directory_path
DTW_ERROR_LOG_LEVEL [=] OFF | INFORMATION | ERROR | INFORMATION+ERROR | ALL
DTW_TRACE_LOG_DIR [=] full_directory_path
DTW_TRACE_LOG_LEVEL [=] OFF | APPLICATION | SERVICE
DTW_TRACE_MERGE_RECORDS [=] YES | NO

Remember that the server user profiles QTMHHTTP and QTMHHTP1 need access to the
Net.Data log folder.
340 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www-306.ibm.com/software/tivoli/products/web-site-analyzer/

13.2.5 HTTP server trace
An HTTP server trace provides additional information about server operations, from process
management to URI interpretation. Server traces can be activated from the GUI Manage
HTTP Servers display by starting the server with the lowercase -ve, -vi, and -vv startup
parameters. The Start TCP/IP Server (STRTCPSVR) CL command also supports these
startup options. You can collect the same data when the server is already active using the
Trace TCP/IP Application (TRCTCPAPP) and Dump User Trace (DMPUSRTRC) commands.
Be advised that this tracing facility does not support concurrent tracing of multiple HTTP
servers.

Figure 13-17 Trace TCP/IP Application (TRCTCPAPP): Turning on trace

The HTTP server trace can be set to operate at three different levels: error, information, and
verbose. User trace data for both parent and child helper jobs is automatically dumped as
soon as a failure condition is detected. The Dump User Trace (DMPUSRTRC) command is
otherwise used to direct trace output to the same database file while server jobs are still
active. Job name, number, and user profile for each one of your HTTP server jobs are
required. Trace output is dumped to file QAP0ZDMP in QTEMP in a member called
QP0Znnnnnn (where nnnnnn is the HTTP server job number you gave to the DMPUSRTRC
command).

Note: Net.Data logging and tracing support is available through the latest Net.Data or
HTTP group PTFs. See the iSeries Net.Data Web site for updated information:

http://www.iseries.ibm.com/netdata

You should also refer to 7.3, “Net.Data: A ready-made scripting tool” on page 161.

Note: The HTTP Server (powered by Apache) does not support the -vi, -ve, and -vv
switches on server restart. If you are unable to end all server jobs, use the Trace TCP/IP
Application (TRCTCPAPP) command instead (see Figure 13-17).

 Trace TCP/IP Application (TRCTCPAPP)

 Type choices, press Enter.

 TCP/IP application > *HTTP *FTP, *SMTPSVR, *SMTPCLT...
 Trace option setting *ON *ON, *OFF, *END, *CHK
 Maximum storage for trace . . . *APP 1-16000, *APP
 Trace full action *WRAP *WRAP, *STOPTRC
 HTTP server instance > MYSERVER Character value
 Trace level *ERROR *ERROR, *INFO, *VERBOSE

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
Chapter 13. Problem determination: When things do not go as planned 341

http://www.iseries.ibm.com/netdata

Table 13-4 shows the usage and purpose of this tracing facility.

Table 13-4 Service trace activation

Here are three examples of how an HTTP server trace can be collected in different
environments:

� A test environment, an ideal situation in which you have complete control over the server

� A business-critical application, where the HTTP server is the core component of your On
Demand Business infrastructure and must be available at any time

� Somewhere in between, a third scenario that fits in between the two extremes

A test environment
You are testing a stand-alone HTTP Server (powered by Apache) configuration that is not
working as you expected. The server stopped and you are ready to collect an HTTP trace.

1. Start the HTTP server with the -ve, -vi, or -vv option. Look for completion message
CPCA984 (see Figure 13-18) in the server job log for confirmation that the trace option
you specified was accepted.

Figure 13-18 Additional Message Information: CPCA984 - A successful activation

2. Reproduce the failure. Skip the next step if the server jobs already ended.

3. Stop the HTTP server.

Startup switch TRCTCPAPP Trace output

-ve *ERROR Server startup only. Nothing else is recorded unless an error
occurs.

-vi *INFO Server startup and initialization, including directive processing,
character conversion, and client request handling.

-vv *VERBOSE All the above plus application programming interface (API) and
module invocation, HTTP headers, error messages.

 Additional Message Information

 Message ID : CPCA984 Severity : 00
 Message type : Completion
 Date sent : 10/09/01 Time sent : 09:09:09

 Message : User Trace option changed for job
 032335/QTMHHTTP/ITSOSRV1.

 Bottom
 Press Enter to continue.

 F3=Exit F6=Print F9=Display message details F12=Cancel
 F21=Select assistance level
342 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. Use the Work with Spooled Files (WRKSPLF) CL command or iSeries Navigator
(Operations Navigator for V5R1) to retrieve QZSRHTTPTR spooled files for the
QTMHHTTP user profile (see Figure 13-19).

Figure 13-19 Work with All Spooled Files: Startup switch output

A business-critical application
The HTTP Server (powered by Apache) is a business-critical application running full time. It
cannot be stopped. You are experiencing occasional problems and need a server trace to
identify the source of your troubles.

1. Start the trace using the command:

TRCTCPAPP APP(*HTTP) SET(*ON) HTTPSVR(SERVERNAME) TRCLVL(*VERBOSE)

Select an appropriate level of information. Message CPC1129 (see Figure 13-21) is
posted to the server job log.

2. Reproduce the failure. Skip the next step if server jobs already ended.

3. Stop the trace with the command:

TRCTCPAPP APP(*HTTP) SET(*OFF)

 Work with All Spooled Files

 Type options, press Enter.
 1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages
 8=Attributes 9=Work with printing status

 Device or Total Cur
 Opt File User Queue User Data Sts Pages Page Copy
 QZSRHTTPTR QTMHHTTP PRT01 QSRV035027 HLD 28 1
 QZSRHTTPTR QTMHHTTP PRT01 QSRV035029 HLD 29 1
 QZSRHTTPTR QTMHHTTP PRT01 QSRV035028 HLD 44 1

 Bottom
 Parameters for options 1, 2, 3 or command
 ===> WRKSPLF SELECT(QTMHHTTP)
 F17=Top F18=Bottom F21=Select assistance level F24=More keys
Chapter 13. Problem determination: When things do not go as planned 343

4. Use the Work with Spooled Files (WRKSPLF) CL command or iSeries Navigator to
retrieve the QZSRHTTPTR spooled files for the user profile you used for signon (see
Figure 13-20).

Figure 13-20 TRCTCPAPP output

Somewhere in between
You are developing an intranet application, but you constantly run into an error. The server
cannot be stopped, but you are free to choose your debugging options.

1. Start the trace using the command:

TRCTCPAPP APP(*HTTP) SET(*ON) HTTPSVR(SERVERNAME) TRCLVL(*VERBOSE)

Select an appropriate level of information. Message CPC1129 (see Figure 13-21) is
posted to the server job logs.

Figure 13-21 CPC1129: The trace is active

2. Reproduce the error.

 Work with All Spooled Files

 Type options, press Enter.
 1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages
 8=Attributes 9=Work with printing status

 Device or Total Cur
 Opt File User Queue User Data Sts Pages Page Copy
 QZSRHTTPTR GBANCHELLI PRT01 QSRV035077 HLD 1 1
 QZSRHTTPTR GBANCHELLI PRT01 QSRV035078 HLD 1 1
 QZSRHTTPTR GBANCHELLI PRT01 QSRV035076 HLD 1 1

 Bottom
 Parameters for options 1, 2, 3 or command
 ===>
 F3=Exit F10=View 4 F11=View 2 F12=Cancel F22=Printers F24=More keys

 Additional Message Information

 Message ID : CPC1129 Severity : 00
 Message type : Completion
 Date sent : 10/11/01 Time sent : 17:30:11

 Message : Job 035076/QTMHHTTP/GERONIMO changed by GBANCHELLI.

 Bottom
 Press Enter to continue.

 F3=Exit F6=Print F9=Display message details F12=Cancel
 F21=Select assistance level
344 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3. At this point, you want to examine the data collected so far, but you still need to keep
tracing server activity. Retrieve job numbers for your HTTP server jobs and feed them to
the DMPUSRTRC command. Message CPCA986 is posted to your job log (see
Figure 13-22).

Figure 13-22 CPCA986: Trace data has been dumped

4. Look for the file QAP0ZDMP in QTEMP. This file contains a QP0Znnnnnn member for
each one of the server job numbers (nnnnnn) you used in the DMPUSRTRC command.

13.2.6 Collection Services performance data
Web-based transaction processing and Web-serving environments continue to grow in
importance and complexity. Your HTTP Server (powered by Apache) is the focal point of
many different kinds of On Demand Business environments including SSL, cache
accelerators such as FRCA, and WebSphere Application Server.

 Additional Message Information

 Message ID : CPCA986 Severity : 00
 Message type : Completion
 Date sent : 10/11/01 Time sent : 17:31:43

 Message : User Trace data for job 035076/QTMHHTTP/GERONIMO dumped to
 member QP0Z035076 in file QAP0ZDMP in library QTEMP.
 Cause : The User Trace records associated with job
 035076/QTMHHTTP/GERONIMO were successfully dumped to member QP0Z035076 in
 file QAP0ZDMP in library QTEMP.

 Bottom
 Press Enter to continue.

 F3=Exit F6=Print F9=Display message details F12=Cancel
 F21=Select assistance level

Tips: Never forget to stop the trace with TRCTCPAPP APP(*HTTP) SET(*OFF) when it
is no longer needed. Also remember that you can access only the content of the
QTEMP library from your current session. It is discarded as soon as you sign off.

Tip: The iSeries HTTP Server (powered by Apache) does not support mod_status. This
simple module allows a Web administrator to take a picture of an Apache server and see
performance-related statistics that drill down to the work performed by each individual
thread.

mod_status was adjusted to work with the Apache 2.0 threaded server by the Apache
Software Foundation (ASF). However the fact that iSeries implements asynchronous
input/output (I/O) (see 10.2.1, “Threads and asynchronous I/O” on page 228) provides
complex challenges for implementing mod_status on the iSeries server.

Unique to the iSeries, HTTP server statistics are saved into collection services in V5R2.
The advantage on the iSeries server is that these reports can provide a more holistic view
of system performance. For example, it helps in situations where you may say, “Ah, I see
the reason that the HTTP Server (powered by Apache) is running so slow. That
programmer recompiled the entire LOB application again on the production server!”
Chapter 13. Problem determination: When things do not go as planned 345

Beginning in V5R2, you can define your own performance collection categories with iSeries
Collection Services. The HTTP Server (powered by Apache) uses this new feature to
integrate performance data into Collection Services.

As shown Figure 13-23, the Standard plus protocol profile (the default used by Collection
Services) automatically collects HTTP Server (powered by Apache) if Collection Services
detects this application server is active on the system. As with all Collection Services
“collection object data”, the new statistics are placed into the following files via the currently
available iSeries Navigator “Create performance database files” function or the OS/400
Create Performance Data (CRTPFRDTA) command:

� QAPMHTTPB: Contains the basic data for HTTP Server (powered by Apache)
� QAPMHTTPD: Contains detailed data for HTTP Server (powered by Apache)

HTTP data collection category to contain HTTP performance data for Collection Services.
The HTTP performance data can then be queried to analyze HTTP server activity and better
understand what types of HTTP transactions are being processed by the iSeries (for
example, static files, CGI, or Java Servlets).

In addition, V5R2 Performance Tools for iSeries, 5722-PT1, has new sections in the System
and Component Reports for HTTP statistics.

Figure 13-23 Start Collection Services: Data to Collect page

The types of data collected are broken down into the following ways. Note that this is per
server job and the statistics are shown for each interval and request type within the interval.
346 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

� SR: Requests handled internally by the server itself. No program processing is necessary.

� SL: Requests of all types received via SSL. Reports activity that occurred over an SSL
connection even though that activity is also reported with other applicable request types.

� PX: Proxy requests.

� CG: CGI requests.

� WS: WebSphere requests.

� JV: IBM Java Servlet Engine requests.

� UM: Requests handled by user modules.

� FS: Static requests handled by FRCA.

� FX: Requests proxied by FRCA.

Starting Collection Services for the HTTP Server (powered by Apache)
We use iSeries Navigator to start and work with Collection Services. To start Collection
Services, as shown in Figure 13-23, follow these steps:

1. Log on to your iSeries server using with iSeries Navigator.

2. Expand your server →Configuration and Service.

3. Right-click Collection Services and select Start Collecting...

4. You see the Start Collection Services window (Figure 13-24). For the most part, you may
accept all the defaults.

Take note of the library to store collections since you need to know this later to find the
files. Also, we chose to set the Default collection interval for detailed data to 5 minutes.

5. Click OK to start Collection Services.
Chapter 13. Problem determination: When things do not go as planned 347

Figure 13-24 Start Collection Services: General page

At this point, your HTTP Server (powered by Apache) server and related applications should
be up and running in a “steady state”. Collect the data for as long as you need.

When you are done collecting the data, stop Collection Services:

1. Right-click Collection Services and select Stop Collecting...
2. In the Stop Collection Services panel, click OK.

Performance Tools reports
Performance Tools for iSeries were enhanced in V5R2 to generate reports based on the
HTTP performance data. The reports contain information about the transactions processed
by HTTP server jobs. Follow these steps to see the System and Component reports for the
HTTP server:

1. From a 5250 session, enter the Start Performance Tools (STRPFRT) command.

2. Select option 3 (Print performance report).

3. Change the Library to QMPGDATA. Or, specify the library in which you saved the collection
data. Press Enter to refresh the list of collections.
348 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. In the Print Performance Report - Sample data display (Figure 13-25), type option 1
(System report) to the left of the collection data member. Use the Date and Time columns
to make sure you select the correct one.

Figure 13-25 Performance Tools: Option 1 (System report)

5. In the Select Sections for Report display, press F6 to print the entire report.

6. In the Select Categories for Report display, press F6 to print the entire report.

7. In the Specify Report Options display, enter a meaningful report title.

8. Press Enter to submit this work to the batch queue.

9. In the Print Performance Report - Sample data display (Figure 13-25), type option 2
(Component report).

10.Repeat steps 5 through 8 for the Component report.

When the batch jobs finish, you should have two new spool files in OUTQ QPFROUTQ.
Figure 13-26 shows the output of the System Report.

Figure 13-26 Performance Tools: System Report - HTTP Server Summary

 Print Performance Report - Sample data

Library QMPGDATA

Type option, press Enter.
 1=System report 2=Component report 3=Job report 4=Pool report
 5=Resource report

Option Member Text Date Time
 1 Q168151618 06/17/03 15:16:18
 Q168125025 06/17/03 12:50:25
 Q143095558 05/23/03 09:55:58

Tip: We like to copy this System Report title so we can paste it to the Component
Report title later. This allows us to match these pairs of reports in the future.

 Display Spooled File
File : QPPTSYSR Page/Line 9/1
Control +5 Columns 1 - 130
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0....+....1....+....2....+....3
 System Report 052303 10:22:0
 HTTP Server Summary Page 000
 Batch jobs
Member . . . : Q143095558 Model/Serial . : 270/10-4RT9M Main storage . . : 8000.0 MB Started : 05/23/03 09:55:5
 Library . . : QMPGDATA System name . . : ASM27 Version/Release : 5/ 2.0 Stopped : 05/23/03 10:15:0
Partition ID : 000 Feature Code . : 22AB-2253-1520
Server Server job Server job Server start ------- Threads ------- -- Inbound Connections -- Requests Responses
name user number date/time Active Idle Non-SSL SSL received sent
---------- ---------- ---------- -------------- ---------- ---------- ------------ ------------ ----------- -----------
ADMIN QTMHHTTP 050851 05/22/03 11:04 0 40 0 0 0 0
HATSLEHTTP QTMHHTTP 051068 05/22/03 11:16 0 40 0 0 0 0
IAXHTTPEXA QTMHHTTP 051477 05/23/03 08:47 0 40 0 0 0 0
IAXHTTPEXB QTMHHTTP 051045 05/22/03 11:15 1 39 39 0 39 39
IAXHTTPSSL QTMHHTTP 051352 05/23/03 08:45 0 40 0 321 321 321
IWA QTMHHTTP 051022 05/22/03 11:13 0 40 0 0 0 0
Chapter 13. Problem determination: When things do not go as planned 349

Figure 13-27 shows the output of the Component Report for the HTTP server activity. This
example is for the same HTTP server - IAXHTTPSSL included in the System Report HTTP
statistics example. Here you can see that, of the 321 requests shown to be processed by this
server in the System Report example, 308 were processed during the 5 minute interval ended
at 10:00. Thirteen were processed during the 5 minute interval ended at 10:05. You can also
see the average “K bytes” (1024 bytes) sent each second was 5 KB and received was 1 KB
during the 10:00 interval.

Looking closely, you can tell via the SL Request Type (all requests handled under an SSL
connection) that all such requests were handled by some application running under a
WebSphere Application Server (WS Request Type). As defined on the next page, SL counts
also appear under another request type. You have to adjust to this accounting method to
know that actually 321 requests were received from browsers, not the 642 (2 x 321) shown as
total requests received and responses sent.

This example shows that no response was rejected or considered “in error”. High error or
reject values need to be investigated.

Note also the algorithm used when computing average K bytes per second. The Performance
Tools code knows that SL and WS values represent duplicates of each other. Using our 2
intervals example, we have 5K Bytes and 0K bytes per second transmitted averaged as 2K
bytes per second and 1K Bytes and 0K bytes per second received averaged as 0 K bytes per
second.

Figure 13-27 Performance Tools: Component Report - HTTP Server Activity

 Component Report 5/23/03 10:22:0
 HTTP Server Activity Page 2
 Batch jobs
Member : Q143095558 Model/Serial . : 270/10-4RT9M Main storage . . : 8000.0 MB Started : 05/23/03 09:55:5
 Library . . : QMPGDATA System name . . :ASM27 Version/Release : 5/ 2.0 Stopped : 05/23/03 10:15:0
Partition ID : 000 Feature Code . :22AB-2253-1520
Server : 051352/QTMHHTTP/IAXHTTPSSL
 ----------- Requests ---------- -------- Responses --------- KB KB
 Itv Req Pct Pct Transmitted Received
 End type Received Rejected Rejected Sent Error Error /Second /Second
----- ---- ----------- -------- -------- ----------- -------- ----- ----------- -----------
10:00 SL 308 0 .00 308 0 .00 5 1
10:00 WS 308 0 .00 308 0 .00 5 1
10:05 SL 13 0 .00 13 0 .00 0 0
10:05 WS 13 0 .00 13 0 .00 0 0
 Column Total Average
 ------------------------------ ---------------- ----------------
 Requests Received 642
 Requests Rejected 0
 Pct Requests Rejected .000
 Responses Sent 642
 Responses in error 0
 Pct Responses in error .000
 KB Transmitted/Second 2
 KB Received/Second 0
 Itv End -- Interval end time (hour and minute)
 Req type -- The type of request being reported
 Requests Received -- The number of requests received by the server
 Requests Rejected -- The number of requests received that were not valid
 Pct Requests Rejected -- Percentage of requests received that were not valid
 Responses Sent -- The number of responses sent
 Error Responses -- The number of responses in error
 Pct Error Responses -- Percentage of responses in error
 KB Transmitted/Second -- Number of kilobytes (1024 bytes) transmitted per second
 KB Received/Second -- Number of kilobytes (1024 bytes) received per second
350 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

For more information
For further study of this topic, refer to the following resources:

� The iSeries Information Center has a starting point for performance-related topics that
include the logging of information with iSeries Collection Services:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzahx/rzahxebushttp.htm

� Two Redbooks deal with collection services at V5R1. They do not have specific
information about the HTTP Server (powered by Apache) information that is collected at
V5R2.

– Managing OS/400 with Operations Navigator V5R1 Volume 1: Overview and More,
SG24-6226

– Managing OS/400 with Operations Navigator V5R1 Volume 5: Performance
Management, SG24-6565

13.2.7 Other startup parameters
Server startup parameters can also aid in problem determination and in testing your server
configuration. In addition to the more debug-oriented -ve, -vi, -vv startup parameters
discussed in 13.2.5, “HTTP server trace” on page 341, the following options are available:

� -netccsid [nnn]: Overrides the DefaultNetCCSID directive.

� -fsccsid [nnn]: Overrides the default DefaultFsCCSID directive.

� -d [serverroot]: Sets the initial value for the ServerRoot variable to serverroot. This can
be overridden by the ServerRoot directive.

� -f [configuration]: Uses the values in the configuration variable on startup. If the
configuration does not begin with a /, then it is treated as a path relative to the ServerRoot.
For example, the following command advises your server to use the configuration file from
the fully qualified path that is specified:

STRTCPSVR SERVER(*HTTP) HTTPSVR(ITSONEW '-f /www/apachedft/conf/httpd.conf')

The following command loads the file from the [serverroot]/conf directory:

STRTCPSVR SERVER(*HTTP) HTTPSVR(ITSONEW '-f conf/httpd.conf')

� -C [directive]: Processes the given directive as though it was part of the configuration.

� -c [directive]: Processes the given directive after reading all the regular configuration
files.

� -V: Displays the base version of the server, build date, and a list of compile time settings to
your 5250 session. You may use the Page Up and Page Down keys to review the
information. Press Enter to quit the terminal session. The server is not started. Here is an
example printout:

Server version: Apache/2.0.43
Server built: Nov 26 2002 15:57:01
Server's Module Magic Number: 20020903:0
Architecture: 128-bit
Server compiled with....
 -D APR_HAS_SENDFILE
 -D NO_LINGCLOSE
 -D APR_USE_FCNTL_SERIALIZE
 -D APR_USE_PTHREAD_SERIALIZE
 -D APR_PROCESS_LOCK_IS_GLOBAL

Tip: These parameters are case sensitive.
Chapter 13. Problem determination: When things do not go as planned 351

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzahx/rzahxebushttp.htm

 -D APR_HAS_OTHER_CHILD
 -D APR_CHARSET_EBCDIC
 -D APACHE_XLATE
 -D HTTPD_ROOT="/QIBM/UserData/HTTPA"
 -D AS400
 -D DEFAULT_SCOREBOARD="logs/apache_runtime_status"
 -D DEFAULT_ERRORLOG="logs/error_log"
 -D AP_TYPES_CONFIG_FILE="conf/mime.types"
 -D SERVER_CONFIG_FILE="conf/httpd.conf"
Press ENTER to end terminal session.

� -l: Displays a list of all modules compiled.

� -t: Tests the configuration file syntax but does not start the server. This command checks
to see if all DocumentRoot entries exist and are directories. The command STRTCPSVR
SERVER(*HTTP) HTTPSVR(ITSONEW '-t’) results in:

Syntax OK
Press ENTER to end terminal session.

13.2.8 HTTP status codes
In some cases, your HTTP server responds with standard three-digit codes, such as 404,
500, and so on to a client request. These are known as HTTP status codes. They often
provide additional information about the cause of a failure. Table 13-5 offers a quick guide on
HTTP status codes.

Table 13-5 HTTP status codes

For more information about HTTP status codes and their meaning, refer to Request for
Comments (RFC) 2616 on the HTTP 1.1 protocol standard.

Status
code group

Meaning Example

1xx Informational. Contains a
provisional response that
influences the client’s behavior.

101 Switching Protocols
Sent when an updated version of the HTTP
protocol has been negotiated.

2xx Successful. Also returns
information about the status of
negotiations and transactions.

200 OK
The client request is fulfilled. Can contain
additional information in the reply to GET,
POST, HEAD, TRACE methods.

3xx Redirection. Requests an action
from the user agent.

304 Not Modified
Often used in an answer to conditional
requests, usually when caching is involved.

4xx Client error. They are sent to your
browser window when the page
you requested cannot be served.

404 Not Found
The server is unable to find anything matching
the client request. Also used for security
reasons when the requesting user should not
have access to a particular resource.

5xx Server error. Sent to your browser
window when the server is unable
to fulfill your request because of
an internal problem.

503 Service Unavailable
The server has encountered a temporary
condition that is preventing the fulfillment of a
client request.
352 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

13.2.9 Communications trace
A communications trace is also a powerful tool for problem determination. It is useful for
gathering information about the connection status and response time, and if you are
experiencing troubles with the encoding of your files.

Here is a quick example of using a communications trace to all the IP datagrams received and
sent from the iSeries point of view. The 5250 communication trace commands used are:

� Start Communications Trace (STRCMNTRC)
� End Communications Trace (ENDCMNTRC)
� Dump Communications Trace (DMPCMNTRC)
� Print Communications Trace (PRTCMNTRC)
� Delete Communications Trace (DLTCMNTRC)

This assumes that your configuration line object’s name is ETHLINE. Enter the commands
and perform the following actions in the order shown:

1. Enter the following command:

STRCMNTRC CFGOBJ(ETHLINE) CFGTYPE(*LIN) MAXSTG(256K) USRDTA(*MAX)

2. Start your HTTP Server (powered by Apache) and Web client and test your Web
application. Keep your work at a minimum to lessen the amount of data collected.

3. Enter the following command:

ENDCMNTRC CFGOBJ(ETHLINE) CFGTYPE(*LIN)

4. The next step is to output the trace information. You have two options:

– Print the trace in to a spooled file using the following command:

PRTCMNTRC CFGOBJ(ETHLINE) CFGTYPE(*LIN) CODE(*ASCII) FMTBCD(*NO)

This option prints the trace in MAC layer format. If you want to print, for example, a
trace in IP formatting for server port 80, you could enter the following command:

PRTCMNTRC CFGOBJ(ETHLINE) CFGTYPE(*LIN) CODE(*ASCII) FMTTCP(*YES) SLTPORT(80)
FMTBCD(*NO)

– The following commands create a spooled file where uppercase and lowercase
characters are displayed correctly in the eye-catcher area.

DMPCMNTRC CFGOBJ(ETHLINE) CFGTYPE(*LIN) TOSTMF('/barlen/trace01Oct04')
PRTCMNTRC FROMSTMF('/barlen/trace01Oct04') CODE(*ASCII) SLTPORT(80)

This example also formats the trace for IP and contains only data for port 80.

5. Enter the Work with Job (WRKJOB) command and select option 4 (Work with spooled files).
This is a fast way to find the spool file created by the PRTCMNTRC command.

6. Enter the following command:

DLTCMNTRC CFGOBJ(ETHLINE) CFGTYPE(*LIN)

For more information about how to take a communications trace, refer to IBM iSeries Support
Line Knowledge Base document TCP/IP Communications Trace Instructions, 23825849.

Note: The spooled file of the communications trace output contains on the right side
a so called eye-catcher. This is an area where all text in a trace is formatted in a
readable format. However, when using the PRTCMNTRC command with the options
as previously shown, all text, whether uppercase or lowercase, will be displayed in
the spooled file in uppercase. In certain situations, it is necessary to consider the
case. The following command flow creates a spooled file where case-sensitivity is
considered.
Chapter 13. Problem determination: When things do not go as planned 353

13.2.10 Additional resources
For more information, consult the following sources:

� RFC Index

http://www.rfc-editor.org/rfc.html

� iSeries Support Line Knowledge Base

http://www-912.ibm.com/s_dir/slkbase.nsf/slkbase
354 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.rfc-editor.org/rfc.html
http://www-912.ibm.com/s_dir/slkbase.nsf/slkbase

Chapter 14. High availability

If Web serving is a critical aspect of your business, you may want a highly available Web
server environment. Highly available HTTP servers take advantage of iSeries clustering
technology and make it possible to build a highly available Web site. This improves the
availability of business-critical Web applications built with static Hypertext Markup Language
(HTML) pages or Common Gateway Interface (CGI) programs. This enhancement is available
with both the HTTP Server (powered by Apache) in addition to the HTTP Server (original).

Highly available HTTP servers are not supported on versions prior to V5R1.

14
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 355

14.1 Highly available Web server cluster on the HTTP server
The Web server cluster solution can provide:

� Planned downtime: If a Web server requires planned maintenance, it is possible to transfer
the work to another node without visible service interruptions to the client.

� No unplanned downtime: If a machine fails, the work is transferred to another node with no
human involvement and without visible service interruptions to the client.

� Scalability: When employing multiple nodes, it is possible to distribute the Web site
workload over the cluster nodes.

Clusters are a collection of complete systems that work together to provide a single, unified
computing capability.

A liveness monitor checks the state of the Web server. It interacts with the Web server and
the clustering resource services in the event that a Web server fails (failover), or a manual
switchover takes place (ensures no interruption of Web server services).

You can use the clustered hash table (part of the state replication mechanism) to replicate
highly available CGI program state data across the cluster nodes. That way the state data is
available to all nodes in the event that a Web server fails (failover) or is switched-over
manually (switchover). To take advantage of this capability, an existing CGI program must be
enabled in a highly available Web server environment. CGI programs write to the CGI
application programming interfaces (APIs) to indicate what data is replicated. See HTTP
Server for iSeries Programming, GC41-5435.

Three Web server cluster models are supported:

� Primary or backup with takeover Internet Protocol (IP) model
� Primary or backup with a network dispatcher model
� Peer model

14.1.1 Primary or backup with takeover IP model
In this model, the Web server runs on the primary and all backup nodes. The backup node or
nodes are in an idle state, ready to become the primary Web server should the primary Web
server fail (failover) or a switchover takes place. All client requests are always served by the
primary node. Figure 14-1 illustrates a primary or backup with takeover IP model.

When the primary node fails (failover), or is brought down by the administrator, the
failover/switchover process begins. The following steps are performed during
failover/switchover:

1. One of the backup servers becomes the primary (the first backup in the switchover order).

2. Client requests are redirected to the new primary node. Assuming this client was not in the
process of running a persistent CGI application, the failover is completely transparent.

Tip: You can provide a high availability (HA) environment with two iSeries servers, each
with one instance of the HTTP Server (powered by Apache). Each of these instances
serves the identical (a copy) HTML and images and from identical (a copy) httpd.conf
configuration files. You can do this with a simple configuration. You do not need
third-party software. This is assuming, however, that you are not providing a HA
environment for your CGI application.
356 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3. If the new primary receives a user request that belongs to a long-running-session (a CGI
program that is updated to be a highly available CGI program), the server restores the
request's state. The new primary retrieves that highly available CGI program's state
information from the clustered hash table. The clustered hash table is part of the state
replication mechanism.

Most non-HA CGI applications behave in the following manner:

a. The client clicks the Submit button to send a new request to the Web server and your
CGI application.

b. Your persistent CGI application “wakes up”. Its state information is saved in static
variables to determine what happened in the past with this client and what to do now.
Parameters found in the URL are parsed and actions are taken. New state information
is saved in the static variables for the next time this client returns to this iSeries server.
HTML code is generated and sent to standard out for presentation to the remote client.

c. The above “cycle” continues until the entire transaction is complete.

Most HA CGI applications behave in the following manner:

a. The client clicks the Submit button, which sends a new request to the Web server and
your CGI application.

b. Your persistent CGI application “wakes up”. Its state information is saved in the
clustered hash table. It reads from the clustered hash table and updates local variables
to determine what happened in the past with this client and what it must do now.
Parameters found in the URL are parsed and actions are taken. New state information
is written to the clustered hash table for the next time this same client returns to this (or
the backup) iSeries server. HA support ensures that the information written to the
clustered hash table on one iSeries server is replicated to the backup server. HTML
code is generated and sent to standard out for presentation to the remote client.

c. The above “cycle” continues until the entire transaction is complete.

4. After the failed node recovers, you can restart the highly available Web server instance,
which then becomes the backup system. If the system administrator wants the failed node
to become primary again, they must perform a manual switchover. They can accomplish
this with the IBM Simple Cluster Management interface available through iSeries
Navigator (Operations Navigator in V5R1), a 5250 CL interface, or a business partner tool.

Figure 14-1 High availability: Primary or backup with takeover IP model

Client
iSeries Web

Server Cluster

Network

Clustered Hash
Table

State Replication
Mechanism

PrimaryBackup

Liveness
Monitor

Liveness
Monitor
Chapter 14. High availability 357

For an example, see 14.2, “A working primary or backup with takeover IP model” on
page 359.

14.1.2 Primary or backup with a network dispatcher model
In this model, as with the primary or backup with takeover IP model, the Web server runs on
the primary and all backup nodes. The backup nodes are in an idle state and all client
requests are served by the primary node. A network dispatcher, such as the IBM WebSphere
Edge Server, sends client requests to the Web server.

When the primary node fails (failover), or a switchover takes place, the failover/switchover
process begins. The following steps are performed during failover/switchover:

1. One of the backup servers becomes the primary (the first backup in the switchover order).

2. The client requests are sent to the new primary node by the network dispatcher.

3. If the new primary receives a user request that belongs to a long-running-session, the
server needs to restore the request's state. The new primary searches for the state either
locally or in the clustered hash table. The clustered hash table is part of the state
replication mechanism.

4. After the failed node recovers, the system administrator can restart the Web server
instance and it becomes a backup Web server. If the system administrator wants the failed
node to become primary again, they must perform a manual switchover.

Figure 14-2 illustrates a primary or backup with a network dispatcher model.

Figure 14-2 High availability: Primary or backup with a network dispatcher model

Note: A node can join a recovery domain as a primary only if the Cluster Resource Group
(CRG) is in inactive mode.

Client

Network

Clustered Hash
Table

State Replication
Mechanism

PrimaryBackup

Liveness
Monitor

Liveness
Monitor

Network
Dispatcher
358 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

14.1.3 Peer model
In this model, there is no declared primary node. All nodes are in an active state and serve
client requests. A network dispatcher, such as IBM WebSphere Edge Server, evenly
distributes requests to different cluster nodes. This guarantees distribution of resources in
case of a heavy load. Linear scalability is not guaranteed beyond a small number of nodes.
After some nodes are added, scalability can disappear, and the cluster performance can
deteriorate.

Figure 14-3 illustrates the peer model.

Figure 14-3 High availability: Peer model

In the event that one node fails (failover), the failed Web server traffic is routed to one of the
other operational Web servers according to the configuration of the network dispatcher.

14.2 A working primary or backup with takeover IP model
This scenario provides the steps that are necessary to get a simple HA environment up and
running between two iSeries servers. On each server is an identical, yet separate, instance of
the HTTP Server (powered by Apache).

14.2.1 Problem definition
For this scenario, let’s suppose that a customer has a network as presented in Figure 14-4.
They have two iSeries servers that are available for serving a standard Web application
across either a public or private network. This Web application involves the serving of
standard HTML and graphics only. The primary iSeries as23 may be down for any reason:

� Planned outages such as hardware or software maintenance
� Unplanned outages such as power loss, fire, and so on

They want the ability to seamlessly move all active clients to the backup server as24. And,
when the primary server as23 is brought back online, they want to move back seamlessly all
the clients.

Client

Network

Clustered Hash
Table

State Replication
Mechanism

Server 2Server 1

Liveness
Monitor

Liveness
Monitor

Network
Dispatcher
Chapter 14. High availability 359

Figure 14-4 Primary or backup with IP takeover: Problem definition

14.2.2 Solution definition
The solution is to take advantage of the Highly Available HTTP Server first introduced at
V5R1 for OS/400 Web applications. As shown in Figure 14-5, it takes advantage of the two
separate iSeries servers as23 and as24 to provide a primary or backup with IP takeover HA
solution.

Figure 14-5 Primary or backup with IP takeover: Solution definition

14.2.3 Assumptions
The software and hardware used in this scenario has the following characteristics:

� We are using V5R2 of OS/400. This scenario can also be created for V5R1, but some of
the interfaces to iSeries clustering have changed.

� If you plan to use iSeries Navigator and the Simple Cluster Management interface to
configure the cluster, you must install 5722-SS1 OS/400 Option 41 (HA Switchable
Resources). OS/400 Option 41 is not necessary if you plan on using the 5250 commands
to configure your cluster.

Client
iSeries Web

Server Cluster

Network

Primary:
as23.itsoroch.ibm.com

Backup:
as24.itsoroch.ibm.com

Client
iSeries Web

Server Cluster

Network

Clustered Hash
Table

State Replication
Mechanism

Primary:
iSeries host and domain: as23.itsoroch.ibm.com
as23 'primary IP address': 10.5.92.30
Clustered IP address: 10.5.92.51

Backup:
iSeries host and domain: as24.itsoroch.ibm.com
as24 'primary IP address': 10.5.92.38
Clustered IP address: 10.5.92.51

Liveness
Monitor

Liveness
Monitor

Cluster Information:
Cluster: ITSOTEST
Nodes: AS23 and AS24
Cluster Resouce Group: PBABASIC00
360 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

� Both iSeries servers must have a routable IP address that is accessible from each other
server. This is shown in Figure 14-5 that as23 can PING 10.5.92.38 and as24 can PING
10.5.92.30.

14.2.4 How to
To configure the primary and backup servers in this scenario, perform the following tasks as
explained in the sections that follow:

� Step 1: Validate system and TCP/IP settings on both iSeries servers
� Step 2: Creating the HA cluster for ITSOTEST for nodes AS23 and AS24
� Step 3: Adding HA clustering directives to both httpd.conf configurations
� Step 4: Testing the primary and backup servers

Step 1: Validate system and TCP/IP settings on both iSeries servers

Before you start, you need to validate and possibly modify some of the system and TCP/IP
configuration settings on both iSeries servers. These instructions demonstrate what is
needed on both systems by showing you what we did on as23. In your own environment, you
must perform these steps for both the primary and backup servers.

1. Ensure that clustering is enabled for both iSeries servers:

a. Enter the Display Network Attributes (DSPNETA) command. On this Display Network
Attributes display, page down until you see the value set for the Allow add to cluster as
highlighted in Figure 14-6. This value should be set to *ANY on both iSeries servers.

Figure 14-6 Primary or backup with IP takeover: Allow add to cluster should be *ANY

Tip: Do not confuse these IP addresses on both iSeries servers with the clustered IP
address of 10.5.92.51. This clustered IP address is routable (that is, if a client on the
same subnet wants to communicate to this IP address, it uses ARP to resolve the MAC
address on the iSeries) but cannot be active on both systems at the same time.

Note: iSeries Navigator provides a simple graphical user interface (GUI) tool to manage a
cluster of iSeries servers. We chose to use a 5250 command entry in our configuration of
HA clustering on the iSeries at V5R2 because the CL commands that are provided offer
more features and choices not provided by the GUI. Be sure to make your own choice.

Tip: In addition the steps outlined in this section, you must review the Information Center’s
resources for clustering:

http://publib.boulder.ibm.com/html/as400/infocenter.html

On this site, select your version and language, and click GO! Search for “clusters”. The
document that helps you the most in this step is entitled “Cluster configuration checklist”.

 Display Network Attributes
 System: AS23
Allow add to cluster : *ANY
Modem country or region ID :
 Bottom
Press Enter to continue.

F3=Exit F12=Cancel
Chapter 14. High availability 361

http://publib.boulder.ibm.com/html/as400/infocenter.html

b. If necessary, you can change this value using the Change Network Attributes
(CHGNETA) command:

CHGNETA ALWADDCLU(*ANY)

2. Create the same routable IP address on both iSeries servers to be used as the clustered
IP address. This IP address is the “well-known” IP address at which your Web application
is bound to via the Listen directive. That is, a Domain Name System (DNS) server must
have an A record that maps the primary host’s name of as23.itsoroch.ibm.com to
10.5.92.51.

Available with V5R2 of OS/400 is a new feature called Virtual IP Address with proxy ARP
(VIPA with proxy Apache Portable Runtime (ARP)). This VIPA is routable in the same
subnet as the other IP addresses associated with the physical Network Interface Cards
(NIC) on your iSeries servers. VIPAs can provide extremely valuable fault tolerance for
situations where you have two or more NICs configured to all be in the same subnet on the
same iSeries. This scenario proceeds to create a clustered IP address on both iSeries as
VIPA with proxy ARP.

The added feature of fault tolerance (for a failure in a NIC) using the VIPA addresses is
detailed in iSeries IP Networks: Dynamic!, SG24-6718.

This scenario works equally well with new local area network (LAN) interfaces (rather than
the virtual IP addresses that we use) of 10.5.92.51 on both iSeries. These can be created
using 5250 commands such as Add TCP/IP Interface (ADDTCPIFC).

But, if you want HA for your Web server, you should follow up and implement VIPA with
proxy ARP as part of a total solution that includes fault tolerance for a failure in one of your
NICs.

a. Using iSeries Navigator create a VIPA with proxy ARP that will be the clustered IP
address on both iSeries servers. Start iSeries Navigator and connect to as23. Expand
Network →TCP/IP Configuration →IPv4.

b. Right-click Interfaces and select New Interface →Virtual IP.

c. Follow the New IPv4 Interface wizard to create the new VIPA interface. When
prompted, specify the following values:

• IP address: 10.5.92.51
• Description: VIPA with proxy ARP
• Subnet mask: 255.255.255.255
• Do you want to start this TCP/IP interface every time TCP/IP is started?: No
• Do you want to start this TCP/IP interface now?: No

d. Change the properties of this VIPA address to “turn on” the proxy ARP feature:

i. Right-click the IP address 10.5.92.51 and select Properties.
ii. Select the Advanced tab and click Enable proxy ARP.
iii. Click OK to save your changes.

Tip: It may feel strange to create the same routable IP address on both iSeries. But, as
long as both are not active at the same time this is OK. It is the IP address takeover
feature of OS/400’s HA clustering that automatically allows only one of the iSeries
servers to have 10.5.92.51 active at one time. To be clear, you never manually make
10.5.92.51 active on either iSeries server. HA clustering’s IP takeover does this for you.

Note: 5250 command entry cannot be used to create VIPA with proxy ARP in V5R2.
You must use iSeries Navigator.
362 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 14-7 Primary or backup with IP takeover: Changing the VIPA address to enable proxy ARP

3. Make sure that the loopback IP address 127.0.0.1 is configured and started on both
iSeries servers.

4. Make sure that the Internet Daemon (INETD) server is started on both iSeries servers:

a. Using iSeries Navigator, expand Network →Servers and then click TCP/IP. In the
panel on the right, a list of TCP/IP servers and their status (started or stopped) is
updated. Make sure the INETD server has the status of started.

b. If the INETD server has the status of stopped, right-click INETD and select Start.

5. Make sure that Liveness Monitor can run unimpeded in the QBATCH subsystem on both
iSeries servers. OS/400’s HA clustering uses a batch job to slow poll the primary server to
determine if this system is still available to the network. By default, this batch job is started
in QBATCH. You must ensure that the job queue for QBATCH is large enough to always
allow this job to run.

a. To check the QBATCH subsystem, use the 5250 command Display Subsystem
Description (DSPSBSD):

DSPSBSD SBSD(QBATCH)

Select option 6 (Job queue entries). As highlighted in Figure 14-8 on iSeries as23, the
maximum active jobs allowed in QBATCH is 4.

Figure 14-8 Primary or backup with IP takeover: Max Active for QBATCH showing 4

Tip: Because INETD is needed for the proper operation of HA clustering on your
iSeries servers, we recommend that you change the properties of the INETD to
Start when TCP/IP is started.

 Display Job Queue Entries
 System: AS23
Subsystem description: QBATCH Status: ACTIVE

 Seq Job Max ---------Max by Priority----------
 Nbr Queue Library Active 1 2 3 4 5 6 7 8 9
 10 QBATCH QGPL 4 * * * * * * * * *
 20 QS36EVOKE QGPL *NOMAX * * * * * * * * *
 50 QTXTSRCH QGPL *NOMAX * * * * * * * * *
Chapter 14. High availability 363

b. To ensure the testing will succeed, use the Change Job Queue Entry (CHGJOBQE)
command to change the maximum active to no maximum:

CHGJOBQE SBSD(QBATCH) JOBQ(QBATCH) MAXACT(*NOMAX)

6. Verify that the basic TCP/IP configuration is correct.

Test the interconnectivity of all the servers and clients to ensure that the Step 2 has the
best chance of succeeding. Refer to the network diagram in Figure 14-5 on page 360.

a. Verify that primary as23 can verify TCP/IP Connection (PING) backup as24 at IP
address 10.5.92.38.

b. Verify that backup as24 can PING primary as23 at IP address 10.5.92.30.

c. Conversely, make sure that a PING to clustered IP address 10.5.92.51 times out. That
is, this IP address should not be active on any host in the 10.5.92.0 subnetwork.

d. Verify that when the client PINGs the primary as23.itsoroch.ibm.com, the name is
resolved to 10.5.92.51. However, this PING should time out.

Step 2: Creating the HA cluster for ITSOTEST for nodes AS23 and AS24
You can perform the following steps on either iSeries server as23 or as24. For the purposes
of demonstration, we create the HA cluster ITSOTEST from as23.

1. On iSeries server as23, use the Create Cluster (CRTCLU) command to create the cluster
ITSOTEST and node AS23.

CRTCLU CLUSTER(ITSOTEST) NODE((AS23 ('10.5.92.30')))

The CRTCLU command should complete without errors.

2. To see the status of your newly created cluster ITSOTEST, enter the Display Cluster
Information (DSPCLUINF) command:

DSPCLUINF CLUSTER(ITSOTEST)

As shown in Figure 14-9, your cluster is created. Currently the cluster has one node. In our
case, this node is named AS23 and it has the active interface of 10.5.92.30.

Figure 14-9 Primary or backup with IP takeover: Display cluster information showing one node AS23

Tip: The 5250 command GO CMDCLU provides a list of HA clustering commands that are
available.

 Display Cluster Information

Cluster : ITSOTEST
Consistent information in cluster : *YES
Current cluster version : 3
Current cluster modification level : 0
Configuration tuning level : *NORMAL
Number of cluster nodes : 1
Detail : *BASIC

 Cluster Membership List

 Potential
 Node Mod Device
Node Status Vers Level Domain ------Interface Addresses
AS23 Active 3 0 *NONE 10.5.92.30
364 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3. Create the second cluster node AS24 by entering the Add Cluster Node Entry
(ADDCLUNODE) command (on iSeries server as23):

ADDCLUNODE CLUSTER(ITSOTEST) NODE(AS24 ('10.5.92.38'))

The ADDCLUNODE command should complete without errors.

4. To see the status of your newly created node AS24 in cluster ITSOTEST, enter the
DSPCLUINF command:

DSPCLUINF CLUSTER(ITSOTEST)

As shown in Figure 14-10, node AS24 is added to your cluster ITSOTEST.

Figure 14-10 Primary or backup with IP takeover: Display cluster information two nodes: AS23, AS24

Step 3: Adding HA clustering directives to both httpd.conf
configurations
Now that you established a cluster between the two iSeries servers as23 and as24, it is time
to add to this cluster a CRG. You do this by creating a basic HTTP Server (powered by
Apache) configuration on iSeries server as23 and then adding the necessary HA server
directives. Then you make an identical copy of this HTTP Server (powered by Apache)
configuration and Web site on iSeries server as24.

1. Using the administration GUI create on iSeries server as23 an HTTP Server (powered by
Apache) server with the attributes shown in Table 14-1.

 Display Cluster Information

Cluster : ITSOTEST
Consistent information in cluster : *YES
Current cluster version : 3
Current cluster modification level : 0
Configuration tuning level : *NORMAL
Number of cluster nodes : 2
Detail : *BASIC

 Cluster Membership List

 Potential
 Node Mod Device
Node Status Vers Level Domain ------Interface Addresses
AS23 Active 3 0 *NONE 10.5.92.30
AS24 Active 3 0 *NONE 10.5.92.38

Tip: Make a special note of the server name and IP address.
Chapter 14. High availability 365

Table 14-1 Primary or backup with IP takeover: Create New HTTP Server wizard required parameters

2. Add the HA server directives to the PBABASIC00 server on as23:

a. Select the Manage tab.

b. For Server, select PBABASIC00. For Server area, select Global configuration.

c. In the left pane, click System Resources.

d. Select the Highly Available Server tab.

e. Select Enable HTTP server to be highly available. This expands your options for this
tab as shown in Figure 14-11. Specify the following options:

i. Select Primary/backup with IP takeover.

ii. Deselect Enable highly available CGI programs.

iii. In the Liveness monitor settings area, enter the Liveness check URL:

http://10.5.92.51:8000/index.html

This URL is slow polled (as defined by the Time between liveness checks field
which is next) by the backup server to determine if the primary has failed. We
recommend that this page not be a complex dynamic page but rather one that is
simply HTML. Avoid HTML pages that include server-side includes (SSIs) too. Our
simple Web application’s index.html (home page) has static content only and makes
a good liveness test.

iv. For the remaining parameters, keep the defaults.

f. Click OK.

Create HTTP Server wizard parameter Value

Server name PBABASIC00
Note: This server name also becomes the
name of the CRG.

Server root /tcp52d00/basicConfig

Document root /tcp52d00/basicConfig/ITSOco

On which IP address and TCP/IP port do you want
your server to listen?

IP address: 10.5.92.51
Note: This is the address of the clustered IP
address shown in Figure 14-5 on page 360.
Port: 8000

Do you want your new server to use an access log? Yes
366 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure 14-11 Primary or backup with IP takeover: Enabling HA for the PBABASIC00 server on as23

3. Display the httpd.conf configuration file to view three new directives that are added as
shown in Figure 14-12.

Figure 14-12 Primary or backup with IP takeover: Three new directives to support HA in PBABASIC00

4. Create an identical HTTP Server (powered by Apache) configuration and Web application
on your backup iSeries server as24. There are many ways to accomplish this. As a
high-level overview, we recommend this method:

a. Copy and paste the entire Web application’s HTML, GIFs, and other collateral from the
IFS on as23 to as24. Place these files in a similar directory structure.

b. Use the administrative GUI to create another PBABASIC00 HTTP Server (powered by
Apache) configuration on as24 using the same information found in Table 14-1.

c. Copy and paste the new HA directives from the PBABASIC00 httpd.conf configuration
file on as23 to as24.

 2 LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
...
19 HAModel PrimaryBackupWithIPTakeover
20 LmURLCheck http://10.5.92.51:8000/index.html
...
Chapter 14. High availability 367

5. Since this is a test, we took the liberty to make some minor modifications to the index.html
(home page) on both the primary as23 and backup as24 iSeries servers. We added the
text “Welcome to Primary” on server as23 and “Welcome to Backup” on server as24. We
did this so the client Web browser could see the difference when it is automatically and
seamlessly switched from the primary to the backup iSeries server. Otherwise, it is difficult
to tell. You can see the differences in the index.html file on both servers in Figure 14-13
and Figure 14-16 on page 370.

Step 4: Testing the primary and backup servers
To test the HA server environment, start the PBABASIC00 server on as23 and then start
PBABASIC00 on as24.

1. Start the primary HTTP server PBABASIC00 on as23. Using the administrative GUI, make
sure select server PBABASIC00 on iSeries server as23 and then click Start. This starts
the HTTP Server (powered by Apache) PBABASIC00. This also automatically starts the
IP address 10.5.92.51 on iSeries server as23. The primary server is started first and the
backup server is started second.

2. Verify that your primary server is up and running. From a Web browser, enter the URL:

http://10.5.92.51:8000

You should see your home page as shown in Figure 14-13. The modification we made to
the index.html file to say, “Welcome to Primary” to distinguish this page from the similar
one on the backup server.

Figure 14-13 Primary or backup with IP takeover: Primary server on as23 up and running

Tip: In the end, your objective is to have the same Web application and configuration
file on both as23 and as24.

Tip: The CRG is not started because the backup server is still inactive. However, your
Web site is up and running on the primary, you see in the next step.
368 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3. Start the backup HTTP server PBABASIC00 on as24. Using the administrative GUI, make
sure you select server PBABASIC00 on iSeries server as24 and then click Start. This
starts the HTTP Server (powered by Apache) PBABASIC00.

4. Now that the backup server is started, this automatically creates and starts the CRG
PBABASIC00. To list all the CRGs in cluster ITSOTEST, enter the Display CRG
Information (DSPCRGINF) command:

DSPCRGINF CLUSTER(ITSOTEST) CRG(*LIST)

As highlighted in Figure 14-14, our CRG PBABASIC00 is active on primary node AS23.

Figure 14-14 Primary or backup with IP takeover: CRG PBABASIC00 is active on primary node AS23

5. Use the Change CRG Primary (CHGCRGPRI) command to switch the clustered
application PBABASIC00 from the primary node AS23 to the backup node AS24:

CHGCRGPRI CLUSTER(ITSOTEST) CRG(PBABASIC00)

The CHGCRGPRI command should complete without errors.

Tip: This does not start the IP address 10.5.92.51 on iSeries server as24. Only during
a failure of the primary iSeries server as23 does as24 take over and make active this IP
address.

Tip: Use the following 5250 command for even greater detail about the CRG:

DSPCRGINF CLUSTER(ITSOTEST) CRG(PBABASIC00)

 Display CRG Information

Cluster : ITSOTEST
Cluster Resource Group : *LIST
Consistent Information in Cluster: *YES
Number of Cluster Resource Groups: 2

 Cluster Resource Group List

Cluster Resource Group CRG Type Status Primary Node
 PBABASIC00 Application Active AS23
 PBABFL0ARB Data Inactive AS23

Tip: One of the major effects of this command is that iSeries server as24 does an IP
takeover of the IP address 10.5.92.51. That is, after the CHGCRGPRI command has
completed, the IP address 10.5.92.51 is inactive on server as23 and active on server
as24.
Chapter 14. High availability 369

6. Now node AS24 is the primary server for the CRG PBABASIC00. Enter the Display CRG
Information (DSPCRGINF) command:

DSPCRGINF CLUSTER(ITSOTEST) CRG(*LIST)

As highlighted in Figure 14-15, CRG PBABASIC00 is now active on (the new) primary
node AS24.

Figure 14-15 Primary or backup with IP takeover: CRG PBABASIC00 is active on primary node AS24

7. As a final confirmation, simply refresh the Web browser which still has
http://10.5.92.51:8000 for the URL. As shown in Figure 14-16, the Web client was
seamlessly moved to the backup HTTP server on iSeries as24. The only way you can
really tell from the client’s point of view is from the “Welcome to Backup” text we modified
in the index.html home page.

Figure 14-16 Primary or backup with IP takeover: Backup server on as24 ‘up and running’

The ability of the HTTP Server (powered by Apache) to take advantage of the iSeries HA
APIs is a powerful enhancement to the Apache server. This is another demonstration of the
integration that the Rochester lab has done to bring the Apache server to the iSeries server.

 Display CRG Information

Cluster : ITSOTEST
Cluster Resource Group : *LIST
Consistent Information in Cluster: *YES
Number of Cluster Resource Groups: 2

 Cluster Resource Group List

Cluster Resource Group CRG Type Status Primary Node
 PBABASIC00 Application Active AS24
 PBABFL0ARB Data Inactive AS23
370 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

14.3 For more information
Highly available HTTP servers and iSeries clustering resources include:

� HTTP Server: What’s new, which includes information about the 17 December 2001
Highly Available HTTP Server announcement

http://www.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html

� Documentation Center information about highly available Web servers

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

On this site, search for “high availability”.

� High Availability and Clusters home page

http://www.ibm.com/servers/eserver/iseries/ha/

� Clustering documentation in the iSeries Information Center

http://publib.boulder.ibm.com/html/as400/infocenter.html

On this site, select your version and language, and click GO! Then search for “clusters”.

� The IBM Redbook Clustering and IASPs for Higher Availability on the IBM Eserver
iSeries Server, SG24-5194
Chapter 14. High availability 371

http://www.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html
http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://www.ibm.com/servers/eserver/iseries/ha/
http://publib.boulder.ibm.com/html/as400/infocenter.html

372 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Chapter 15. National language
considerations

This chapter discusses national language considerations on the iSeries server as they relate
to the HTTP Server (powered by Apache). It also discusses many associated applications
such as the Digital Certificate Manager (DCM) and the Cryptographic Service Provider, for
example. It provides information for you to view these applications in many of the world’s
languages.

15

Tip: It is interesting to note that some of the applications found on the iSeries Tasks page
have their graphical user interface (GUI) driven by Net.Data (for example the DCM). Others
have their GUI driven by servlet (for example the administration GUI for HTTP Server
(powered by Apache)). Because of this underlying difference, each handles national
language support (NLS) in a different manner!
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 373

15.1 Installing secondary languages
The GUI used to configure the HTTP Server (powered by Apache) can be installed in many
different languages. To use different languages, you must install the licensed product:

� 5722-DG1: If you need different languages for the administration GUI
� 5722-SS1, option *BASE and 3: For the initial iSeries TASK page
� 5722-SS1, option 34: For the Digital Certificate Manager (DCM)
� 5722-AC3: For the Cryptographic Service Provider
� 5722-JV1 Developer Kit for Java

Before we can work with different languages, we have to check if the licensed program is
installed and if it is installed in the needed language. To check this, follow these steps:

1. Enter the OS/400 command GO LICPGM and press Page Down.

2. You should now see the Work with Licensed Programs display (Figure 15-1). From here
choose option 20 (Display installed secondary languages) to check if any secondary
languages are installed.

Figure 15-1 Work with Licensed Programs: Page down

 LICPGM Work with Licensed Programs
 System: AS20
 Select one of the following:

 Secondary Languages
 20. Display installed secondary languages
 21. Install secondary languages
 22. Delete secondary languages

 Redistribution
 40. Create distribution media
 41. Work with installation profiles

 Completion Status
 50. Display log for messages

 More...
 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F16=AS/400 Main menu
374 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

3. You now see the Display Installed Secondary Languages display (Figure 15-2). In our
case, 2924 (English) is the primary, and 2929 (German) is the secondary language. Enter
5 (Display installed Licensed Program) to see the installed licensed programs associated
with that secondary language.

Figure 15-2 Display Installed Secondary Languages

4. In the Display Installed Secondary Language Licensed Programs display (Figure 15-3),
verify the Installed Status of the products. If any of these is in status *ERROR, try to
re-install the product or contact your local service representative.

Figure 15-3 Display Installed Secondary Languages: Option 5 (LPPs)

If no secondary language is installed on your system, refer to iSeries Information Center or to
Chapter 10 in Software Installation V5R2, SC41-5120.

15.2 Net.Data based: iSeries Tasks page and DCM
Both, the iSeries Tasks page and the DCM are implemented as a Net.Data application.
Net.Data based GUIs use iSeries host settings to determine which language they should
present to the client. Therefore, you must check the language settings in the user profile that
you used to sign on to the iSeries Tasks page, to display the correct language. As shown in
Figure 15-4, use the OS/400 command Display User Profile (DSPUSRPRF)
USRPRF(WOLFGANGP) to check the settings for your OS/400 user profile.

Tip: You can find a national language feature code matching table on the Web at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzahc/rza
hcnlvfeaturecodes.htm

 Display Installed Secondary Languages
 System: AS20
 Primary language : 2924
 Description : English

 Type options, press Enter.
 5=Display installed Licensed Program

 Option Language Description
5 2929 German

 Display Installed Secondary Language Licensed Programs
 System: AS20
 Secondary language : 2929
 Description : German

 Licensed Installed
 Program Status Description
5722SS1 *COMPATIBLE OS/400 - Digital Certificate Manager
5722DG1 *COMPATIBLE IBM HTTP-Server
 5722DG1 *COMPATIBLE Triggered Cache Manager
Chapter 15. National language considerations 375

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/rzahc/rzahcnlvfeaturecodes.htm

Figure 15-4 Display User Profile: Language identifier

If the language ID is set to *SYSVAL (which is the default), the OS/400 system value
QLANGID is used to identify the desired language. To display the system value, use the
OS/400 command Display System Value (DSPSYSVAL SYSVAL(QLANGID)). You should
see the Display System Value display as shown in Figure 15-5.

Figure 15-5 Display System Value: QLANGID

In our case, this display shows ENU which means US - English. If you have some users that
need to work with other languages (for example German), you can change the Language
identifier parameter to DEU. The next time the user connects to any site pages served by
Net.Data on this iSeries server, they see them in German.

15.3 Servlet based: Administration GUI
The administrative GUI can be served in any language that is installed on your iSeries server.

 Display User Profile - Basic

 User profile : WOLFGANGP

 Previous sign-on : 05/07/03 10:11:16
 Sign-on attempts not valid : 0
 Status : *ENABLED
 Date password last changed : 04/29/03
 Password expiration interval : *SYSVAL
 Date password expires : 11/01/03
 Set password to expired : *NO
.
.
.
Language identifier. : *SYSVAL

 Display System Value

 System value : QLANGID
 Description : Language identifier

 Language identifier . : ENU Language abbreviation

Tip: It is important to learn that if the Web pages are served by Net.Data, the iSeries
server examines the language settings of your browser. It only uses the information found
in either your OS/400 user profile or the default system value. For more information about
using the browser’s language settings to influence the national language chosen by the
iSeries, see the following section.

Tip: You have to restart the Admin instance after installing the secondary languages to
take advantage of the change.
376 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

How the language recognition works
The HTTP Server (powered by Apache) (and we are focusing on the administrative GUI in
this section) determines which language it has to serve based on the Accept-Language
request header. This is determined on the first request that is done from the browser to the
server. All future requests from the same browser session to the HTTP Server (powered by
Apache) are served in this language. If you change the language settings in your Web
browser in the middle of a session, you have to restart it to see the new language.

The configuration in your browser is simple.

For Microsoft Internet Explorer
Follow these steps to configure the client’s language choices:

1. Click Start →Settings →Control Panel →Internet Options.

2. The Internet Properties window (Figure 15-6) opens. Click Languages.

Figure 15-6 Microsoft Internet Explorer Internet Properties window
Chapter 15. National language considerations 377

3. In the Language Preference window (Figure 15-7), click Add.

Figure 15-7 Language Preference window

4. In the Add Language window (Figure 15-8), choose the appropriate language. In our case
we chose German. Click OK.

Figure 15-8 Add Language window

5. Click OK on the Language Preference window (Figure 15-7) and on the Internet
Properties window (Figure 15-6) to save all your changes.
378 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

For Netscape Navigator
Follow these steps to configure the client’s language choices:

1. From the menu bar, click Edit →Preferences as shown in Figure 15-9.

Figure 15-9 Using Netscape Navigator to select a language

2. In the Preferences window (Figure 15-10), under Category, expand Navigator and select
Languages to see what language the browser is configured to request.

3. To add a new language, click Add and select the appropriate one.

Figure 15-10 Preferences window in Netscape Navigator
Chapter 15. National language considerations 379

4. In the Add Languages window (Figure 15-11), select the language or languages you need
and click OK.

Figure 15-11 Add Languages window

5. Click OK on the Preferences window.

After you complete these steps, restart your browser. The next request to the administrative
GUI (and only this interface) appears in the correct language.

15.4 Other programs linked from iSeries Task page
Many other licensed programs use the iSeries Tasks page as their initial enter page. It is also
possible to display those pages in a different language.

15.4.1 Internet Printing Protocol server for the iSeries server
This licensed product is included in 5722-SS1, option 3 (OS/400 - Extended Base Directory
Support). If you want to use different languages, you have to verify that it is also installed as a
secondary language.

The language recognition is the same as for the administration GUI (see 15.3, “Servlet based:
Administration GUI” on page 376). If the product is installed in the needed language, you only
have to check your browser’s setup and the correct language.

For more information about the Internet Printing Protocol (IPP) GUI, see IBM Publication IBM
Eserver iSeries Printing VI: Delivering the Output of e-business, SG24-6250.

Attention: Use care in regard to the sort order of the configured languages. The browser
initially requests the first language in the list and steps through all configured ones. If none
of the configured languages matches the ones that the HTTP Server (powered by Apache)
can serve, it reverts to the LANGID parameter of the authenticated user profile. This kind of
language selection, for example, is used by the IBM Web Administration for iSeries
interface.
380 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

15.4.2 WebSphere family
Refer to the following documentation on the WebSphere on iSeries home page at:

http://www.ibm.com/eserver/iseries/software/websphere

15.4.3 4758 Cryptographic Coprocessor
The GUI to set up the 4758 Cryptographic Coprocessor is only translated in the following
languages:

� Brazilian Portuguese
� Italian
� Japanese
� Korean
� Simplified Chinese
� Spanish
� Swiss Italian

If you do not have installed any of the above languages, the GUI is always displayed in
English (if 5722-AC3 is installed in English (2924) on your system either as the primary or as
secondary language). It uses the same mechanism as in 15.2, “Net.Data based: iSeries
Tasks page and DCM” on page 375, to display the GUI in one of the previous languages.

15.5 Serving your own Web site in the world’s languages
To serve your own language-based sites, you do not have to install any secondary language
or additional software on your iSeries server. The choice of language that the HTTP Server
(powered by Apache) serves is mainly based on the Accept-Language request header, so it
depends on your browsers language settings, your HTTP Server configuration, and the Web
application that you are serving.

Follow these steps to prepare your HTTP Server (powered by Apache) to serve the correct
language based page:

1. As shown in Figure 15-12, for Server, select your server. For Server area, select Global
configuration.

2. In the left pane, under Server Properties, select Content Settings.

3. Select the MIME tab.

Tip: You can configure these settings for your server’s global configuration or for an
individual container.

MIME: MIME stands for Multipurpose Internet Mail Extensions. It refers to an official
Internet standard that specifies how messages must be formatted so that they can be
exchanged between different systems.
Chapter 15. National language considerations 381

http://www.ibm.com/eserver/iseries/software/websphere
http://www.ibm.com/eserver/iseries/software/websphere

4. On the MIME page (Figure 15-12), complete these steps:

a. Under Specify individual Meta (MIME) information for file extensions, click Add. You
add one row for each national language that you will serve from this HTTP Server
(powered by Apache).

Add all the file extensions you want to serve. Select Content-language as the type of
content encoding. Both the Type and Value lists show all the possibilities. In this
section, you associate a file extension to the language requested from the browser in
the Accept-Language request header.

That is, a browser that is setup to request [en] encoded pages asks the HTTP Server
(powered by Apache) to search for files that contain the configured file extension in the
file name. In this case, for an incoming request with the Uniform Resource Identifier
(URI) of /index, a search is made for the file /index.en.html or /index.html.en.

b. When your are done adding all the languages you will be serving, click Apply.

Figure 15-12 Serving language-based pages: Content Settings
382 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

5. Select the Multi-views tab as shown in Figure 15-13.

6. On the Multi-views page, you enable the server to honor client request options, such as
the language setting. Enable the HTTP Server (powered by Apache) to search the files in
the IFS that correlates to the requested language.

Figure 15-13 Serving language-based pages: Enabling multi-views
Chapter 15. National language considerations 383

7. It is possible for the client’s Web browser to request a language that you are not prepared
to serve. To prevent the client from seeing the HTTP error 406 - Not acceptable, configure
the HTTP Server (powered by Apache) to serve a default language.

As shown in Figure 15-14, select the Content Negotiation tab.

8. On the Content Negotiation page, click Add to add a default language. For Force
language priority, select Prefer/Fallback.

Figure 15-14 Serving language-based pages: Default language

Figure 15-15 shows the configuration directives we changed or added.

Figure 15-15 Serving language-based pages: Directive changes

After you apply all configuration changes, restart your server.

If you are using welcome pages, you must take care of your HTML files. Due to the setup and
renaming of the files, they are not named index.html anymore. They are named index.en.html
or index.html.en. When the HTTP Server (powered by Apache) searches for those files and it
is configured to display the welcome page index.html, it only finds the appropriate one when
the filename is index.html.en. In this case, HTTP error 403 or the directory listing is sent back
to the client. To prevent this, set the directive DirectoryIndex to index.

Options +MultiViews
AddLanguage de .de
AddLanguage en .en
LanguagePriority en
ForceLanguagePriority Prefer Fallback
384 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Part 4 Appendixes

To complete this IBM Redbook, we include appendixes on porting different open source
projects to the iSeries server. An advantage of using the Apache server is that you do not
have to wait for the developers in Rochester, Minnesota, to provide you with new features or
functions. You can do it yourself.

In addition, all the examples provided in this redbook can be downloaded from the Web,
allowing you to reduce the time in your transition from reading to understanding and
implementation. See Appendix D, “Additional material” on page 421.

Part 4
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 385

386 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Appendix A. Bringing PHP to your iSeries
server

Hypertext Preprocessor (PHP) is a powerful server-side scripting language for the Apache
Web server. PHP is popular for its ability to process database information and create dynamic
Web pages. Server-side refers to the fact that PHP language statements, which are included
directly in your Hypertext Markup Language (HTML), are processed by the Web server.
Scripting language means that PHP is not compiled. Since the results of processing PHP
language statements is standard HTML, PHP-generated Web pages are quick to display and
are compatible with most all Web browsers and platforms. PHP is for the open source Apache
community as Net.Data is for the IBM community.

To “run” PHP scripts with your HTTP Server (powered by Apache), a PHP engine is required
on your iSeries server. The PHP engine is an open source product. This chapter explains how
to download, compile, install, and then configure PHP on your iSeries. It explains how to
install versions 4.3.0 and the older version 4.2.2 of PHP.

A

Restriction: PHP is not supported on the iSeries server by IBM. We provide these
instructions for you to download a public domain open-source copy of a PHP engine to
allow you to run PHP scripts on the iSeries server.

Specifically, IBM does not support:

� The open-source CGI based PHP engine
� Any of the PHP scripts that you would write against this PHP engine
� The other open source tools described in this IBM Redbook used for building the PHP

engine

IBM fully supports:

� 5722-SS1 Option 33 OS/400: Portable Application Solutions Environment (OS/400
PASE) and all the utilities supplied with it

� The VisualAge® C++ compilers

� The HTTP Server (powered by Apache) support for OS/400 PASE Common Gateway
Interfaces (CGIs)
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 387

The PHP engine is available both as an Apache module and a CGI. Support for PHP as a
module is not yet available for OS/400. The step-by-step implementation discussed in this
chapter involves the CGI version of PHP running in OS/400 PASE. For a general discussion
on the CGI support with the HTTP Server (powered by Apache), see 7.2, “Everything
dynamic with CGI support” on page 160. This allows you to run AIX binaries directly on an
iSeries. It includes the necessary patches for the minor modifications needed to the PHP
source code.

Programming with PHP on the iSeries server

Hypertext Preprocessor Language is a powerful, server-side scripting language for Web page
creation. Scripting language means PHP requires no compilation, much like Perl or Rexx.
Because PHP is a server-side language, you can include it directly in HTML, and it is
recognized and processed by a Web server.

The first “P” in PHP is a remnant from the original acronym for Personalized Home Page. This
was the term that PHP creator Rasmus Lerdorf used when he first used a set of Perl scripts to
monitor access to his online resume. Since then, however, PHP has become the most
popular optional module configured on Web servers. See the following Web sites:

� http://www.netcraft.com/survey
� http://www.securityspace.com/s_survey/data/man.200304/apachemods.html

This section introduces the PHP language and explains how to configure PHP to access DB2
Universal Database (UDB) from your Apache Web server. Then, you see examples of how
iSeries shops can use PHP to create dynamic Web pages based on new or existing iSeries
DB2 UDB databases.

What PHP is
PHP code can easily access database files and output HTML, resulting in non-static,
up-to-date Web pages. It's a technique similar to JavaServer Pages (JSPs) or CGI binary
(often called CGI-BIN) programming. Also, PHP is an open-source project. Open-source code
can be useful if you want to tweak the behavior of PHP, but it's even more valuable because
there are many open-source PHP applications and code samples available on the Web. This
means you can get a new PHP Web project up and running quickly with little investment.

Hundreds of ready-made applications written in PHP are available as shareware, and many
commercial products employ it. Until recently, PHP enjoyed a reputation for reliability and
security. See “Beware of PHP bugs” on page 397.

Note: If you want to know why this is so great, see the article “Programming with PHP on
the iSeries” for iSeries Network by David Larson and Tim Massaro. You can find this article
(requires login) on the Web at:

http://www.iseriesnetwork.com/resources/artarchive/index.cfm?fuseaction=viewarticle&CO_C
ontentID=15746&channel=art&PageView=Search

With permission from iSeries Network, we include the article in this IBM Redbook. To skip
the article, go to “Prerequisites” on page 398.
388 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.iseriesnetwork.com/resources/artarchive/index.cfm?fuseaction=viewarticle&CO_ContentID=15746&channel=art&PageView=Search
http://www.netcraft.com/survey
http://www.securityspace.com/s_survey/data/man.200304/apachemods.html

Figure A-1 shows the difference
between standard static Web
pages and dynamic Web pages
using server-side PHP processing.
In the first scenario on the left, a
standard URL request arrives at
the Web server asking for Web
page:

http://www.example.com/index.html

The Web server sees this request
and returns the HTML that is in the
file somepage.html.

Still looking at Figure A-1 with the
second scenario on the right, the
index.php file contains the special
<?php tag that tells the Web server
to process embedded PHP statements. After PHP processes those statements, it returns
HTML statements to the Web server. Those statements are then sent back to the user
included in the original HTML found in the file index.php. Because the PHP statements can
run a command or Structured Query Language (SQL) statement, we say that the Web page is
dynamically generated, as opposed to our previous static HTML page.

Why PHP
Besides the fact that PHP is so popular, why would you want to use it? There are several
reasons:

� Easy to use: As mentioned earlier, PHP is a scripting language included directly in HTML.
This means that getting started is easy. There’s no need to compile PHP programs or
spend time learning tools that create PHP. You can simply insert statements and get quick
turnaround as you make changes.

� Fully functional: The PHP language has built-in functions to access your favorite
database. With PHP, your HTML pages can reflect current information by querying those
databases, or you can use information about the user viewing your HTML Web page to
customize the page specifically for that user. In addition to good relational database
support, PHP is a complete language that includes powerful functions. You can create
classes for object-oriented programming and use flat file or Lightweight Directory Access
Protocol (LDAP) databases. Plus, it includes a spell checker, Extensible Markup Language
(XML) functions, image generation functions, and more.

� Compatible and quick: Because PHP generates plain HTML, it's compatible with all Web
browsers and refreshes quickly.

� Secure: Although PHP is open source, it’s a secure environment. One of its advantages
(over, JavaScript, for example) is that all that Web clients see is pure HTML. Because the
logic of the PHP program is never exposed to the client, security exposures are reduced.

� Open source: Another reason to use PHP is because it's an open-source project, which
makes it easy to find examples and get started quickly. Here are two examples of Web
sites that offer a place where PHP scripts are shared:

– http://www.sourceforge.net
– http://www.phpresourceindex.com

Figure A-1 Left: Standard request for a Web page
Right: Request with PHP
Appendix A. Bringing PHP to your iSeries server 389

http://www.sourceforge.net
http://www.phpresourceindex.com

A code example
Example A-1 shows us a simple "HelloWorld!" example. This is as simple as it gets. The file
starts as a normal HTML file. We simply insert PHP statements following the <?PHP tag. The
<?PHP tag is the signal to the HTML processor that PHP processing is necessary. The print
statement is a PHP statement.

Example: A-1 HelloWorld PHP example

<html>
<head><title>Standard HTML Page with PHP
HelloWorld</title>
<body>
<?PHP
 print "Hello World";
 print "
 Generated with PHP";
?>
</body>
</html>

To make this example a little more useful, we add the statements shown in Example A-2 to
query the state of our Web server.

Example: A-2 Changes made to HelloWorld

<?PHP
 print "Hello World from System:" .
 $HTTP_SERVER_VARS['HTTP_HOST'];
 print phpinfo();
?>

The result of our PHP program is similar to what is shown in Figure A-2. This is a dynamic
Web page that contains the name of our Web server and a table built by PHP with details
about how PHP is configured on our Web server. This is accomplished by using one of
several predefined PHP variables (for example HTTP_HOST) and the PHP function phpinfo.
390 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure A-2 Dynamic Web page generated by the PHP ‘Hello World’ script

PHP on the iSeries server
An iSeries user has two options to set up PHP. You can use PHP with OS/400 PASE and the
HTTP Server (powered by Apache). Or you can install a Linux logical partition (LPAR) and run
Apache and PHP in that partition. Table A-1 shows factors to consider before you make this
decision.

Table A-1 Which is for you? PHP as a CGI in OS/400 PASE versus PHP in a Linux LPAR

Factors to consider PHP in OS/400 PASE and Apache PHP in Linux LPAR

OS/400
requirements

You should have V5R1 or newer. This
should work for V4R5, but we have not
tried it ourselves.

You must have V5R1 or newer with
specific hardware to run Linux.

Cost A cost is associated with OS/400 PASE
(becomes free in V5R2). In V5R1 and
prior releases, OS/400 PASE was a
nominal fee of around $100 US.

A cost is associated with Linux
distribution.
Appendix A. Bringing PHP to your iSeries server 391

If you plan to install PHP on an iSeries server, you need to be at V5R1 or later. As mentioned
in Table A-1, this can work for V4R5, but we have not tried it ourselves. You must also have
installed OS/400 PASE. PASE is the AIX runtime support for iSeries. See “Prerequisites” on
page 398 to see if you have the requirements for running PASE on your AS/400 or iSeries
hardware.

If you plan to install PHP on a Linux LPAR, PHP is most likely included with your Linux
distribution. If it is not included, the installation instructions are virtually identical to those
found in the PHP distribution itself and in the PHP site frequently asked questions (FAQs) at:

http://cvs.php.net/cvs.php?login=1

Regardless of where you install PHP in OS/400, the configuration is the same. For the
Apache Web server to recognize PHP files, you must change the Web server configuration
file to recognize script aliases and allow access to the directory in which the PHP CGI
executes. See Example A-3. The directory where PHP is installed may differ.

Example: A-3 Script aliases for PHP

ScriptAlias /php-bin/ /usr/local/php/bin
AddType application/x-httpd-php .php
Action application/x-httpd-php /php-bin/php
<Directory /QOpenSys/php/bin>
 Options +ExecCGI
 order allow,deny
 allow from all
</Directory>

Setup required No setup is required to use PASE. Some setup associated with the
creation of a Linux partition, user
IDs, and so on, and extra LPAR
requires some dedicated
processor resource.

Availability and
compatibility

You must obtain PHP from these
instructions and have AIX skills to
compile PHP as new versions come
out.

Linux is most compatible with new
versions of PHP as they are
released.

mySQL mySQL is unavailable in PASE by
default. You must download and
compile it if desired.

mySQL is available as an
alternative database (it is fairly
common to use mySQL with PHP
applications).

Web server module PHP cannot be a Web server module.
It must be a CGI process only. This
matters only in extremely performance-
critical Web sites.

PHP can be installed as an
Apache module.

Database An Open Database Connectivity
(ODBC) driver is not necessary.

To use iSeries DB2 UDB, you must
download, install, and configure
iSeries ODBC Driver for Linux.
This UNIX-based ODBC is free
from IBM. It uses sockets to
communicate between the Linux
LPAR and the iSeries LPAR.

Factors to consider PHP in OS/400 PASE and Apache PHP in Linux LPAR
392 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://cvs.php.net/cvs.php?login=1

PHP as a CGI program
The next example shows a traditional HTML form that uses the Action tag to invoke a CGI
program when a user clicks the Submit button. In this example, the CGI program is actually a
PHP program that processes the fields in the HTML form and uses that information to query a
DB2 database.

The database we use is called SAMPLE. SAMPLE is actually shipped with V5R1. To create it,
follow the instructions in “Creating a sample database” on page 405.

Figure A-3 shows the basic HTML form that we use to perform a database query. Our system
name is LPAR3NVM.

Figure A-3 Basic HTML form used to perform a database query
Appendix A. Bringing PHP to your iSeries server 393

Figure A-4 shows the results of our query. Each record returned was placed in a table row.

Figure A-4 The result of the query

Example A-4 shows the dbqueryphp.php script where the actual work is done.

Example: A-4 The dbqueryphp.php script

<HTML>
<HEAD>
<TITLE>PHP DB Query Tester </TITLE>
</HEAD>
<BODY>
<!--dbqueryphp.php -->
<!--Called by dbqueryhtml.html -connect to sample db2 database and run an SQL
statement -->
<?php
 $host = $_POST['host'];
 $database = $_POST['database'];
 $query = $_POST['query'];
 if ($host && $database && $query) {
 $link =odbc_connect($host, "", "");
 if(!odbc_setoption($link,1,SQL_ATTR_COMMIT,SQL_TXN_NO_COMMIT)){
 echo "ERROR:unable to turn off commitment control!\n";
 }
 if(!odbc_setoption($link,1,SQL_ATTR_DBC_DEFAULT_LIB,$database)){
 echo "ERROR:unable to set default library to $database!\n";
 }
 $querynoslash =stripSlashes($query);
 $result =odbc_exec($link,$querynoslash);
?>
 Query performed:<?php echo ($querynoslash);?><HR>
 Results:

 <?php
 if ($result ==0):
 echo ("Error ".odbc_error().":".odbc_errormsg()."");
 elseif (odbc_num_rows($result)==0):
394 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

 echo("Query ran successfully");
 else:
 ?>
 <TABLE BORDER=1>
 <TR>
 <?php
 for ($i =0;$i <odbc_num_fields($result);$i++){
 echo("<TH>".odbc_field_name($result,$i+1)."</TH>");
 }
 ?>
 </TR>
 <?php
 while(odbc_fetch_into($result,$row_array)!=FALSE){
 echo("<TR>");
 for ($j =0;$j <odbc_num_fields($result);$j++){
 echo("<TD>".$row_array [$j] . "</TD>");
 }
 echo("</TR>");
 }
 echo("</TABLE>");
 endif;
 } elseif ($host || $database || $query) {
 echo("All three fields must be filled in for a query
");
 } else {
 echo("Use PHP to run an SQL Query on an iSeries database:
");
 }
?>
<HR>

<FORM ACTION=" <?php echo($_SERVER['PHP_SELF']) ?>" METHOD=POST>
<TABLE BORDER=1><TR>
<TD>iSeries Host:</TD>
<TD><INPUT TYPE=TEXT NAME="host" VALUE="<?php echo ($host);?>"></TD>
</TR></TABLE>

Library of the database to query:

<INPUT TYPE=TEXT NAME="database" VALUE="<?php echo ($database);?>">
<HR>
Please enter the SQL query to be run:

<TEXTAREA name="query" cols="40" rows="5">
<?php echo ($query); ?>
</TEXTAREA>

<INPUT TYPE=SUBMIT VALUE="Execute query">
</FORM>
<p>View PHP Source for this Query
</BODY>
</HTML>

The highlights include:

� odbc_connect: This is the “Open” of the database. The link variable is used by other
ODBC functions later in the script.

� odbc_exec: The variable filled in on the HTML form contains the string that we run as an
SQL statement. odbc_exe runs the SQL statement and returns results in the $result
variable.

� odbc_numfields: A function determines the number of columns that are returned for this
record. We use this value to place HTML <TH></TH> tags around each cell.
Appendix A. Bringing PHP to your iSeries server 395

Another PHP script
For one additional PHP example, let us include a script that works only in the OS/400 PASE
version of PHP. This example takes advantage of the fact that the OS/400 PASE “system”
command writes any spooled output, produced by a command, to standard output. That is,
you can run any commands with an OUTPUT(*PRINT) parameter in the OS/400 PASE shell
and have the results sent to STDOUT.

For example, if you're on the OS/400 PASE command line QP2TERM, you can type the
system wrkactjob command (for the Work with Active Jobs (WRKACTJOB) command of
OS/400) and see the results as they scroll across the screen. Our example, phpactjob, simply
formats this output into an HTML table. Figure A-5 shows the output of this script.

Figure A-5 PHP formats the result of Work with Active Jobs (WRKACTJOB) at an HTML table

Example A-5 shows the phpactjob source code. Note that we use reverse single quotation
marks (``) to run the Work with Active Jobs (WRKACTJOB) command and capture the
output. This output is then broken into lines by searching for the new line character “\n” using
the strtok function of PHP.

Example: A-5 Source code for PHPACTJOB

<html>
<head>
<title>PHPACTJOB Test PHP with WRKACTJOB Output</title>
</head>
<p>PHP Running WRKACTJOB in PASE

<?PHP
$lsout=`/QOpenSys/usr/bin/system 'wrkactjob'`;
396 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

$line = strtok($lsout,"\n");
print "<table border CELLSPACING=0 CELLPADDING=0 BGCOLOR=\"#96FB84\">";
print "<tr>";
print "<td><pre>";
print $line;
print "</pre></td>";
print "</tr>";
while ($line = strtok("\n"))
{
print "<tr>";
print "<td><pre>$line</pre></td>";
print "</tr>";
}
print "</table>";
print "thend";
?>
</body>
</html>

For more information
You have been introduced to PHP and how to use it on the iSeries server. Use this IBM
Redbook as a starting point to find other examples and documentation that can have you
running PHP in no time.

� PHP project Web site for help, tutorials, and examples about PHP

http://www.php.net

� OS/400 PASE on iSeries PartnerWorld Web site

http://www-919.ibm.com/developer/factory/pase/overview.html

� Linux on iSeries home page

http://www.iseries.ibm.com/linux

� A demo application showing PHP using ODBC Driver for Linux

http://www-1.ibm.com/servers/eserver/iseries/linux/odbc/guide/demoindex.html

This demo includes PHP using binary large objects (BLOBs) that contain employee
photos in the sample iSeries EMPLOYEE database.

� ASP to PHP Web site for ASP users who should consider migrating to PHP

http://asp2php.naken.cc/

Beware of PHP bugs
In the past, a few security holes were discovered in PHP. The most recently discovered one
involves the code for handling file uploads. This flaw lets hackers easily crash the PHP server
and possibly take it over remotely. The flaw affects PHP versions 4.2.0 and 4.2.1. CERT rates
the problem as critical.

The PHP Group announced a fix release, version 4.2.2, that all PHP users employing PHP’s
file-upload facility should install immediately. The fix is available on the Web at:

http://www.php.net/release_4_2_2.php
Appendix A. Bringing PHP to your iSeries server 397

http://www.php.net
http://www.php.net
http://www.php.net
http://www-919.ibm.com/developer/factory/pase/overview.html
http://www-919.ibm.com/developer/factory/pase/overview.html
http://www.iseries.ibm.com/linux
http://www.iseries.ibm.com/linux
http://www-1.ibm.com/servers/eserver/iseries/linux/odbc/guide/demoindex.html
http://www-1.ibm.com/servers/eserver/iseries/linux/odbc/guide/demoindex.html
http://asp2php.naken.cc/
http://www.php.net/release_4_2_2.php
http://www.php.net/release_4_2_2.php.

Prerequisites
This section assumes that you have the following hardware and software on your iSeries
server:

� 5722-SS1 OS/400 (5722-SS1) at V5R2: The same basic steps should work on an iSeries
server at V5R1

� 5722-SS1 Option 13 OS/400 System Openness Includes

� 5722-SS1 Option 33 OS/400 PASE

� 5722-DG1 IBM HTTP Server for iSeries: This Licensed Program Product (LPP) contains
the HTTP Server (powered by Apache), which is the only HTTP server for which PHP
works. Also, install the latest Apache group PTF package. For V5R2, the group PTF
package number is SF99098.

� The make command: You can find the make command in OS/400 PASE for V5R2. If you
are using V5R1 of OS/400, then you must download the make command. We recommend
that you use the GNU make command that can download from:

http://www.gnu.org/directory/gnu/make.html

� 5799-PTL PRPQ iSeries Tools for Developers (Optional): This toolkit is optional for this
work, but you may find it useful for some other similar projects. For details, see:

http://www.iseries.ibm.com/developer/factory/tools

We also assume that you have the following hardware and software on your build machine.
The build machine can be either a separate IBM Eserver pSeries® server running AIX or an
iSeries running OS/400 with the following software:

� The patch command: The patch command is included in OS/400 PASE in V5R2. If you
do not have a patch program on your system, try the GNU patch. The GNU patch program
is usually not on AIX or OS/400 machines. You can download version 2.5 (not 2.5.4) from:

ftp://ftp.gnu.org/pub/gnu/patch

To compile the source, follow these steps:

a. Untar the source using the tar command.
b. Type cd to go to the directory.
c. Perform a ./configure.
d. Run the make command.
e. Run the make install command.

� GNU gzip command: Compresses and decompresses files. You can download this from:

http://www.gnu.org/directory/GNU/gzip.html

Note: In this IBM Redbook, we assume that you are running at V5R2 of OS/400. If you
have OS/400 V5R2, then you must make sure that 5722-SS1 Option 33 OS/400 PASE
is installed.

Since OS/400 V5R1 supports some levels of AS/400 hardware that are not supported
by OS/400 PASE (requires a certain version (level) of PowerPC processor), you must
first determine whether your AS/400 hardware supports OS/400 PASE. You can find a
detailed list of processors on which OS/400 PASE can run on the Web at:

http://www-919.ibm.com/servers/eserver/iseries/developer/factory/pase/ehardware.html
398 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.as400.ibm.com/developer/factory/pase/ehardware.htm
http://www-919.ibm.com/servers/eserver/iseries/developer/factory/pase/ehardware.html
http://www-919.ibm.com/servers/eserver/iseries/developer/factory/pase/ehardware.html
http://www.gnu.org/directory/gnu/make.html
http://www.gnu.org/directory/gnu/make.html
http://www.gnu.org/directory/gnu/make.html
http://www.iseries.ibm.com/developer/factory/tools
http://www.iseries.ibm.com/developer/factory/tools
http://www.iseries.ibm.com/developer/factory/tools
ftp://ftp.gnu.org/pub/gnu/patch
http://www.gnu.org/directory/GNU/gzip.html
http://www.gnu.org/directory/GNU/gzip.html

� VisualAge C++ compiler for AIX: You can find information about this compiler at:

http://www.ibm.com/software/ad/vacpp/

If your build machine is AIX (not OS/400), you must match the AIX version to the target
OS/400 PASE version. That is, the application binary created on AIX needs to be
compatible with the version of OS/400 PASE in which you want to the application to run. To
help you plan this issue, see:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzalf/rzalfplanning.htm

We tested these instructions on AIX 4.3 and newer. Alternatively, V5R2 of OS/400 PASE
now supports installation of either the IBM VisualAge C++ Professional for AIX Version 6.0
or the IBM C for AIX Version 6.0 software products. This means you can compile OS/400
PASE applications within OS/400 PASE. A separate AIX system is not required. IBM
VisualAge C++ Professional for AIX Version 6.0 (5765-F56) and IBM C for AIX (5765-F57)
are separately available program products from IBM. Note that the VisualAge C++
Professional for AIX compiler product also includes the C for AIX compiler product.

� Perl scripting language: This is needed to install VisualAge C++. You can download Perl
to your iSeries from the Web at:

http://www.cpan.org/ports/index.html#os400

Installing PHP on the iSeries server
Follow these steps to download and prepare the PHP source files for compile.

Pre-preparation for installation
If you want to perform the complete installation on your iSeries server, you have to install
VisualAge C++ and Perl first.

Installing the Perl scripting language
Follow these steps:

1. Download the binary distribution (see “Prerequisites” on page 398 for the location of this
code).

2. Place it under the /home/yourid directory. The file should have the name
perl-5.8.0@18380-os400.tgz.

3. Start an OS/400 PASE terminal and change into the directory in which you placed the file.

Important: The installation steps described in the following sections use the PHP source
package. This package is patched for DB2 UDB for iSeries and then compiled. However,
we also found a Web page that provides PHP binary versions for iSeries. Go to:

http://www.mcind.com/php/

At the time of writing this publication, the Web site contained PHP up to version 4.3.5.

Note: To get an OS/400 PASE (instead of a Qshell) terminal session, enter the
following command from an OS/400 command line:

CALL QP2TERM
Appendix A. Bringing PHP to your iSeries server 399

http://www.mcind.com/php/
http://www.ibm.com/software/ad/vacpp/
http://www.ibm.com/software/ad/vacpp/
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzalf/rzalfplanning.htm
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzalf/rzalfplanning.htm
http://www.cpan.org/ports/index.html#os400
http://www.cpan.org/ports/index.html#os400

4. Use the following command to unzip the binary distribution:

gunzip perl-5.8.0@18380-os400.tgz

5. Change to the root directory (cd /) and run the command:

tar -xvf /home/yourid/perl-5.8.0@18380-os400.tar

The distribution is already archived from QOpenSys, so it places the files into the correct
directory path.

6. To finish the Perl installation, generate symbolic links for Perl commands:

ln -s /QOpenSys/perl/bin/* /QOpenSys/usr/bin

Installing VisualAge C++
As soon as you finish downloading the trial version of VisualAge C++ and complete the Perl
installation, install VisualAge C++ on your iSeries server:

1. Open a new, or return to your, OS/400 PASE terminal and create the source installation
directory. We use vacpkg in this example:

mkdir /QOpenSys/vacpkg

2. Place the VisualAge C++ distribution into this directory (using File Transfer Protocol
(FTP)). The file should be named vacpp.60.tnb.tar.Z.

3. In your terminal session, change to the directory /QOpenSys/vacpkg and extract the file:

gunzip vacpp.60.tnb.tar.Z

4. Use tar for extraction:

tar -xvf vacpp.60.tnb.tar

5. A work-around is needed to get a working installation and let the install script run correctly:

mv usr/sys/inst.images/vacpp.tnb usr/sys/inst.images/vacpp.lic
mv usr/sys/inst.images/vac.tnb usr/sys/inst.images/vac.lic

6. Restore the script:

restore -qf usr/sys/inst.images/vacpp.ndi ./usr/vacpp/bin/vacppndi

7. Use Perl to install the application:

perl usr/vacpp/bin/vacppndi -d /QOpenSys/vacpkg/usr/sys/inst.images -b /QOpenSys/vac600

The script takes a while to complete. Finally it installs VisualAge C++ into the directory
/QOpenSys/vac600.

8. Add the symbolic links for VisualAge:

ln -s /QOpenSys/vac600/usr/vacpp/bin/* /QOpenSys/usr/bin

After these two steps of pre-installation, you can continue with the installation of PHP itself.

Downloading PHP
Download the version of PHP you need for your iSeries server.

1. Download the tar file php-4.3.0.tar.gz for PHP 4.3.0 from the following Web site:

http://www.php.net

Note: We include the patch files for both the 4.3.0 and the older 4.2.2 versions of PHP.
These instructions, however, are written for version 4.3.0.
400 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.php.net
http://www.php.net

2. Using FTP, send this file to the machine on which you will build PHP. This may be the AIX
machine or the iSeries machine with the VisualAge compiler. We call this your build
machine.

3. Untar the file by using the following commands:

gunzip php-4.3.0.tar.gz
tar -xvf php-4.3.0.tar

Patching the source code file
A patch is required to run PHP on the iSeries server. We included patch files for both the 4.3.0
and the older 4.2.2 versions of PHP. The patch changes the default PHP DB2 support from
AIX DB2 to OS/400 DB2.

1. Download and save the patch file to the build machine. See Appendix D, “Additional
material” on page 421, for information about downloading the file. Download the patch file
into the same directory from which you ran the tar command.

2. Change directory (cd) to that directory and run the following patch command:

cd php-4.3.0
patch -p1 < ../php430.patch

The -p1 says to remove a level from the patch filenames, so it looks for
ext/odbc/php_odbc.c instead of php-4.3.0/ext/odbc/php_odbc.c.

This has the advantage that, if you download a version of PHP that has not changed too
much from the one for which we provided a patch, it works. For example, you can actually
use PHP 4.3.1 with the 4.3.0 patch because the files we patched did not change.

Locating iSeries-specific files
You must locate and bring to your build machine the following iSeries files:

� The sqlcli.h and the libdb400.exp files that contain DB2 UDB AS/400 support.

� The as400_libc.exp file is an iSeries-specific extension to the AIX file libc.a. This file is part
of 5722-SS1 Option 13 OS/400 - System Openness Includes.

Follow these instructions to obtain these files from your iSeries server:

1. Enter the following command:

CPY OBJ('/QIBM/include/sqlcli.h') TODIR('/home/yourid') TOCCSID(*STDASCII) DTAFMT(*TEXT)

2. Using FTP, place the /home/yourid/sqlcli.h file from your iSeries server to the build
machine.

3. Using FTP, send the libdb400.exp and as400_libc.exp files from the iSeries directory
/QOpenSys/QIBM/ProdData/OS400/PASE/lib to the AIX build machine.

Tip: During our installation and testing, we noticed that the best location to place the
php-4.3.0.tar.gz files is under the /home directory tree, when using your iSeries as the
build machine. The following configuration installs PHP in the directory /QOpenSys/php.

Note: Skip steps 2 and 3 if the build machine is your iSeries server.
Appendix A. Bringing PHP to your iSeries server 401

Preparing for the PHP compile
Follow these steps to prepare the files and directories needed for the successful compile of
PHP on your build machine. These steps assume that you are using ksh.

1. Set the CFLAGS, CC, and CPPFLAGS environment variables as follows. You must enter
the export CFLAGS=’.........’ command all on one line. There is no “\” continuation
character.:

– If the build machine is an AIX server, enter:

export CFLAGS='-ma -DPASE -I /home/yourid -bI:/home/yourid/libdb400.exp
-bI:/home/yourid/as400_libc.exp'
export CC=xlc
export CPPFLAGS=-qflag=e:e

– If the build machine is your iSeries server, enter:

export CFLAGS='-ma -DPASE -I /home/yourid
-bI:/QOpenSys/QIBM/ProdData/OS400/PASE/lib/libdb400.exp
-bI:/QOpenSys/QIBM/ProdData/OS400/PASE/lib/as400_libc.exp'
export CC=xlc
export CPPFLAGS=-qflag=e:e

2. Change to the php-4.3.0 directory using the cd command.

3. Change the authority to Execute on the files config.guess and config.sub. You can do this
by using the command:

chmod +x config.guess
chmod +x config.sub

4. Run the following command (it configures the script to install PHP in the directory
/QOpenSys/php). The continuation character (‘\’) is not necessary if you type it all on one
line.

 ./configure --with-ibm-db2 \
 --with-config-file-path=/QOpenSys/php/etc \
 --prefix=/QOpenSys/php/ \
 --enable-force-cgi-redirect \
 --without-mysql \
--disable-mysql

5. If you are compiling directly in OS/400 PASE on iSeries, add the following configure flags.

 --build=ibm-aix4.3.3.0 \
 --host=powerpc-ibm

The configuration should take some time to run. After it finishes, you need to make final
adjustments to the files listed in the following steps.

Note: The flags for -I and -bI are the uppercase format of the letter “i”.

Note: The continuation character (\) is not necessary if you type it all on one line.
402 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

6. Edit the Makefile:

remove -ldb2 from ODBC_LIBS
remove -ldb2 from EXTRA_LIBS

7. Edit the config_vars.mk file:

remove -ldb2 from ODBC_LIBS
remove -ldb2 -lbind from EXTRA_LIBS

8. Edit the main/build-defs.h file:

remove -ldb2 from PHP_ODBC_LIBS

9. Edit the main/php_config.h file:

Delete #define HAVE_MMAP 1
Delete #define HAVE_SETITIMER 1

If you run this on a V5R1 OS/400 server, edit:

Delete #define HAVE_STATVFS 1
Delete #define HAVE_PREAD 1
Delete #define HAVE_PWRITE 1

Compile (make)
You have two choices depending on whether you are compiling in AIX on the pSeries server
or in OS/400 PASE on the iSeries server.

Compiling in OS/400 PASE on the iSeries server

Note: The Makefile is generated with lines greater than 2048 characters. Some editors,
such as vi, cannot handle the long lines, so you need to use a different editor. Send the
Makefile, using FTP, to a different machine and back if necessary.

If you are compiling on your iSeries server, you can use the Edit File (EDTF) command,
but be careful with lines, that go beyond the window size. If you change such lines,
verify the correctness by using the Display File (DSPF) utility.

Note: PHP version 4.3.0 does not have a config_vars.mk. This step is for PHP version
4.2.2 only.

Tip: You can see that the ./configure command worked, when all of the configuration
files that should be changed contain the mentioned statements.

Note: When editing text files (such as Makefile, php-config.ini, or any other script) in a
Windows Notepad or WordPad, make sure to remove the carriage return (\r) from the file
before you use it. You can do this in OS/400 PASE by using the commands:

tr -d "\r" < Makefile > Makefile.new
mv Makefile.new Makefile

Note: To get a POS/400 ASE (instead of a Qshell) terminal session, enter the following
command from an OS/400 command line:

CALL QP2TERM
Appendix A. Bringing PHP to your iSeries server 403

Follow these steps if you are compiling the PHP source code on your iSeries server:

make
make install
mkdir /QOpenSys/php/etc
cp php.ini-dist /QOpenSys/php/etc/php.ini

This installs and puts all the files in the correct directory. You need write access to the
/QOpenSys directory.

At this point, you may skip to “Testing PHP” on page 405.

Compiling in AIX on the pSeries server
Follow these steps if you are compiling the PHP source code on your pSeries:

1. Edit the Makefile (see the note in step 6 on page 403 about the long lines of the Makefile)
for the line "install_targets =",remove "install-pear".

2. Enter the following commands in the order shown:

mkdir /tmp/QOpenSys

3. At the AIX prompt, run the following commands:

make
make install INSTALL_ROOT=/tmp/

This installs PHP into /tmp/QOpenSys/php.

4. Enter the following commands in the order shown:

mkdir /tmp/QOpenSys/php/etc
cp php.ini-dist /tmp/QOpenSys/php/etc/php.ini

5. Edit the Makefile (see the note in step 6 on page 403 about the long lines of the Makefile)
for the line "install_targets =",add "install-pear".

If the location of your home directory on your AIX box is different than the location of your
home directory in OS/400 PASE (for example, on AIX your home directory is
/usr/home/usr4/jdoe and on OS/400 PASE it is /home/john), replace all occurrences of
"/usr/home/usr4/jdoe/" to "/home/john/" in the Makefile. Make sure that you include the
first and last “/” so you don't lose your directory separator.

6. Enter the following commands in the order shown:

cd /tmp
tar -cvf ~/php430pasebin.tar QOpenSys
cd ~
tar -cvf php430pasesrc.tar php-4.3.0

7. Using FTP, send both php430pasebin.tar and php430pasesrc.tar to your home directory
on the iSeries server.

8. Enter the following commands in the order shown:

cd /
tar -xvf ~/php430pasebin.tar
cd ~
tar -xvf php430pasesrc.tar
cd php-4.3.0
make install-pear

Note: The following steps are all done in OS/400 PASE on the iSeries and not in AIX.
404 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Testing PHP
From the OS/400 PASE shell, run the command:

/QOpenSys/php/bin/php -v

This should tell you the version of PHP you have.

Configuring HTTP Server (powered by Apache) to use PHP
Edit the file httpd.conf using the Apache GUI interface. The key statements needed are:

ScriptAlias /php-bin/ /QOpenSys/php/bin/
AddType application/x-httpd-php .php
Action application/x-httpd-php /php-bin/php
ServerUserID userprofile
<Directory /QOpenSys/php/bin>
 Options +ExecCGI
 order allow,deny
 allow from all
</Directory>

Stop and start your HTTP Server (powered by Apache) Web server.

Creating a sample database
Here we can add the creation of the sample database as supplied with the system. Starting in
V5R1, a sample database is shipped with the system. This is explained on the DB2 Universal
Database Web site at:

http://www.ibm.com/servers/eserver/iseries/db2/sqldata.htm

To unpack and create the sample database, invoke the procedure from any SQL interface:

CALL QSYS.CREATE_SQL_SAMPLE('SAMPLE')

Here SAMPLE is the name of the schema that you want to create. However, currently the
sample PHP requires updates. For example, OS/400 PASE PHP runs as a CGI and cannot
use the $_SERVER ['PHP_AUTH_USER'] and $_SERVER ['PHP_AUTH_PW'] values.

Note: If you try running the PHP binary in OS/400 PASE and it dies with an illegal
instruction, check for the existence of a job log. Several things can cause an illegal
instruction signal and kill a OS/400 PASE application. If the illegal instruction was caused
by an unsupported system call, the name of the system call is specified in the job log.

The job log should tell you the name of the illegal instruction. Next find the corresponding
HAVE_ line in the php_config.h and delete it. Then recompile. This should only happen if
you're compiling on a version of AIX that supports certain syscalls that OS/400 PASE does
not support (in addition to the five noted earlier).

File permissions: If you can serve index.html without problems, but cannot serve
index.php, this is most likely due to the fact that PHP is running as OS/400 user profile
QTMHTTP1. QTMHTTP1 is the default OS/400 profile used for CGI applications. The
default OS/400 profile for serving static files is QTMHHTTP, which most likely has the
proper authorities.

To solve this problem, give access to both the file (read) and all the directories above the
file (read and execute) in the IFS to the user profile QTMHTTP1.
Appendix A. Bringing PHP to your iSeries server 405

http://www.ibm.com/servers/eserver/iseries/db2/sqldata.htm
http://www.ibm.com/servers/eserver/iseries/db2/sqldata.htm

Also, when connecting to a database, you may normally use something like this example:

$dsn = "DRIVER=iSeries Access ODBC Driver;SYSTEM=$isdb_system;DBQ=$isdb_database";
$db = odbc_connect($dsn, $user, $password);

In OS/400 PASE, you use something like this example:

$db = odbc_connect($isdb_system, "", "");
odbc_setoption($db, 1, SQL_ATTR_DBC_DEFAULT_LIB, $isdb_database);

Limitations
Since PHP runs as a CGI application and not as an Apache module, some things do not work
in this implementation on the iSeries server:

� HTTP authentication does not work, so any script that tries using the variables
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] does not work. You need to
use user accounts and make a form that gets the user name and password and sets a
cookie instead.

� PHP_SELF does not work. There is a bug in the CGI version of PHP 4.3.0 that corrupts
the $_SERVER['PHP_SELF'] variable. For more details about this bug, see the PHP page:

http://bugs.php.net/bug.php?id=21261

By the time you read this, that page may have a patch that fixes the issue. If it does, then
apply the patch. If it doesn't, use the fix suggested by tapken@engter.de in the bug report,
which says to follow these steps:

a. Create a file called “self_fix.php” in /QOpenSys/php/lib/php/ with the following script:

<?
 $_SERVER['SCRIPT_NAME'] = substr($_SERVER['PATH_TRANSLATED'],
 strlen($_SERVER['DOCUMENT_ROOT']));
 $PHP_SELF = $SCRIPT_NAME = $_SERVER['PHP_SELF'] = $_SERVER['SCRIPT_NAME'];
?>

b. In /QOpenSys/php/etc/php.ini, look for the line that says:

auto_prepend_file =

c. Change this line to:

auto_prepend_file = self_fix.php

This should fix the $_SERVER['PHP_SELF'] bug.

� PHP and Net.Data both use the SQL Call Level Interface (CLI) application programming
interface (API) to access the database. The problem arises when two different applications
use the SQL CLI interface in the same job. Unfortunately, the SQL CLI provides no way to
isolate different applications that use the SQL CLI. Within a job, there is only one SQL
environment handle. Anyone who uses the SQL CLI uses the same environment handle.

Note: It does not matter which user ID and password you use when you connect to the
ODBC database. It uses the authority of the user profile that is running the Web server
process. Use the ServerUserID directive in the Apache configuration to change this. It is
actually somewhat of a security hole if you allow others to make a Web page and do not
configure the Apache Web server to run the under a different user.

Note: Since this is a bug in PHP, there is no support if these steps do not solve the
problem. See the restriction statement at the beginning of this chapter for more
information.
406 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://bugs.php.net/bug.php?id=21261
http://bugs.php.net/bug.php?id=21261

When Net.Data performs a database operation and then PHP comes in to do the same,
problems occur. PHP and Net.Data cannot coexist within the same CGI job if the both
interact with the database. This is true for any CGI application that uses the SQL CLI.

If you want to use the same HTTP server for both applications, you can circumvent this by
ensuring that Net.Data runs under one user profile and PHP under another. Unfortunately,
about the only way to enforce this in your HTTP Server (powered by Apache) is to use
basic authentication to force the HTTP server to adopt the authority of a different user
profile for each of the clients. This, of course, is not always an option.

PHP 4.2.2 errata
The biggest change from 4.2.2 to 4.3.0 was the configuration process. To make this
document apply to 4.2.2, make the following changes to the steps listed in the previously
sections as noted:

� For “Locating iSeries-specific files” on page 401:

– Step 6 on page 403: Ignore the note about the long line Makefile because it does not
exist.

– Step 7 on page 403: PHP version 4.3.0 does not have config_vars.mk. This step is for
PHP version 4.2.2 only.

� For “Compiling in AIX on the pSeries server” on page 404, follow these steps instead. This
is because it does not use PHP itself to try to install PEAR.

cd php-4.2.2
make
cd ..
tar -cvf php422pasesrc.tar php-4.2.2

Using FTP, send the tar file to OS/400 PASE.

The following steps are all done in OS/400 PASE on the iSeries and not in AIX:

cd ~
tar -xvf php422pasesrc.tar
cd php-4.2.2
make install
Appendix A. Bringing PHP to your iSeries server 407

408 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Appendix B. Bringing Tomcat Version 5.5 to
your iSeries server

Tomcat is a servlet and JavaServer Pages (JSP) container that is used in the official
Reference Implementation for the Java servlet and JSP technologies. The Java servlet and
JSP specifications are developed by Sun under the Java Community Process.

Tomcat is developed in an open and participatory environment and released under the
Apache Software License. Tomcat is intended to be a collaboration of the best-of-breed
developers from around the world.

The iSeries supports Tomcat Version 3.2.4 as a component of 5722-DG1. See Table 2-2 on
page 20 for details of the packaging on the iSeries. You can learn about the IBM supported
version of the Tomcat server on the iSeries in 9.2, “Apache Software Foundation’s Jakarta
Tomcat on iSeries” on page 197.

It may not be so surprising that the HTTP Server (powered by Apache) administrative GUI
also uses the built-in Jakarta Tomcat servlet container engine at version 3.2.4 to generate the
content.

Why would you spend the extra time and effort to bring Tomcat Version 5.5 to your iSeries
server? Tomcat 5.5, compared to Version 3.2, offers a lot of enhancements for your iSeries
server. It implements the Servlet 2.4 and JSP 2.0 specifications. The Eclipse Java
Development Tools (JDT) is now the default compiler in Jasper. For a complete listing of the
old and new functions, see the Jakarta Tomcat home page at:

http://jakarta.apache.org/tomcat

Jakarta Tomcat Version 5.5 on iSeries is not supported by IBM. We provide these instructions
for you to download a public domain open-source copy of ASF Jakarta Tomcat so you can
implement the new functions on your iSeries server. This chapter explains how to get the new
version of Tomcat to your iSeries server.

B

Attention: Jakarta Tomcat Version 5.5 on iSeries is not supported by IBM. Use it at your own risk.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 409

http://jakarta.apache.org/tomcat

Software prerequisites
At the time of writing this redbook, the latest available version of Jakarta Tomcat was 5.5.1,
which we use for this implementation. Tomcat 5.5.2 was still alpha code. Here is a detailed list
of all software requirements:

� 5722-SS1 i5/OS at V5R3: The same basic steps should work on an iSeries server at
V5R2.

� 5722-SS1 Option 30 i5/OS - Qshell Interpreter

� 5722-DG1 IBM HTTP Server for iSeries: This is not mandatory, because Jakarta Tomcat
Version 5 has a built-in Web server that can serve the included examples. Nevertheless
we highly recommend it, so that you can configure your HTTP Server (powered by
Apache) to connect to the Tomcat servlet engine.

� 5722-JV1 Developer Kit for Java

� 5722-JV1 Option 5 Java Developer Kit 1.3 or 5722-JV1 Option 5 Java Developer Kit
1.4: The Jakarta Tomcat server needs it to run.

� Binary distribution of Jakarta Tomcat version 5.5.1: You can download it from:

http://archive.apache.org/dist/jakarta/tomcat-5

You may also want to check the following site for archived versions:

http://archive.apache.org/dist/jakarta/tomcat-5/archive/

� Binary distribution of Jakarta Tomcat version 5.5.1 compatibilty package: You can
find the compatibility package for a specific Tomcat version in the corresponding bin
directory.

� Jakarta Tomcat connector mod_jk for AJP 1.3 on your iSeries: You can download this
(as a ready made save file) from:

http://www.apache.de/dist/jakarta/tomcat-connectors/jk/binaries/iseries/

Select the version of the zipped mod_jk file you need and download it to your PC. We
tested with v1.2.6.

Installation
The installation procedure is divided into three steps as explained in the following sections:

1. Install Tomcat 5.5 on your iSeries server.
2. Install the Tomcat 5.5 compatibility package.
3. Start Tomcat 5.5 on the iSeries server.

Note: For releases prior to V5R3, an OS/400 PTF corrects several Qshell problems.
We recommend that you install this PTF:

� V5R1: SI08114
� V5R2: SI08117

Tip: We used the binary ZIP distribution (file named jakarta-tomcat-5.5.1.zip and
jakarta-tomcat-5.5.1-compat.zip) of Tomcat 5.5 for the installation. If you do not have
ZIP available on your iSeries server, see Appendix C, “Bringing Zip and Unzip to
OS/400 PASE and Qshell environments” on page 419.
410 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://archive.apache.org/dist/jakarta/tomcat-5
http://archive.apache.org/dist/jakarta/tomcat-5/archive/
http://www.apache.de/dist/jakarta/tomcat-connectors/jk/binaries/iseries/

4. Install mod_jk connector.
5. Configure your HTTP Server (powered by Apache).

Installing Tomcat 5.5 on your iSeries server
Follow these steps to install Tomcat 5.5 on your iSeries server:

1. Download the binary distribution of Jakarta Tomcat 5.5.1 to your iSeries and place it in the
/home directory. Name this file jakarta-tomcat-5.5.1.zip.

2. Start a Qshell terminal by entering Start QSH (STRQSH) on the 5250 command line.

3. Enter the following command to make /home your current working directory:

cd /home

4. Enter the following command to unzip the file:

unzip jakarta-tomcat-5.5.1.zip

Unzip places the file in the /home directory as /jakarta-tomcat-5.5.1.

Another method to unzip the jakarta-tomcat-5.5.1.zip file is to use jar. Assuming you put
the zip file in a directory called /home, the following commands unzip it into /home using
jar:

qsh
cd /home
jar -xf jakarta-tomcat-5.5.1.zip

5. Enter the following command to change into this directory:

cd /home/jakarta-tomcat-5.5.1/bin

6. Set the environment variables as shown in Figure B-1 using the Work with Object Links
(WRKLNK) command. Start a new 5250 session to your iSeries. On the 5250 command
line, enter:

WRKLNK ‘/home/jakarta-tomcat-5.5.1/bin/*’

Another option for this is to press F12 from the Qshell command line and then work with
the 5250 command line. When you finish, enter STRQSH on the 5250 command line to
restart your Qshell session. It returns you to where you left off earlier.

7. Edit the setclasspath.sh file. Select 2 (Edit). See Figure B-1:

a. Add the following line:

export -s JAVA_HOME=/qibm/proddata/java400/jdk13

b. Change the line to read:

if [! -r "$JAVA_HOME"/bin/java -o ! -r "$JAVA_HOME"/bin/javac];

Tip: We used the binary ZIP distribution (file named jakarta-tomcat-5.5.1.zip) of Tomcat
5.5 for the installation. If you do not have ZIP available on your iSeries server, see
Appendix C, “Bringing Zip and Unzip to OS/400 PASE and Qshell environments” on
page 419.
Appendix B. Bringing Tomcat Version 5.5 to your iSeries server 411

Figure B-1 Editing the setclasspath.sh file: Setting the environment variables

8. At this point, verify that ports 8080 and 8009 are available on your iSeries server. You can
do this by using the 5250 command Work with TCP/IP Network Status (NETSTAT) and
select option *CNN. If you need to change the port number on which the server listens,
you can refer to the Jakarta Tomcat documentation at:

http://jakarta.apache.org/tomcat

Installing the Tomcat 5.5 compatibility package
Tomcat 5.5. requires, by default, the Java 2 Standard Edition Runtime Environment version
5.0 (also known as JDK 1.5) or later. To run Tomcat 5.5 on earlier versions of Java Runtime
Environments (JRE), you need to install an additional package. This package is called the
compat package and provides support to run Tomcat 5.5 under JDK 1.3 or JDK 1.4. Refer to
“Software prerequisites” on page 410 for a description about how to obtain the package.

Follow these steps to install the Tomcat 5.5.1 compatibility package on your iSeries server:

1. Download the binary distribution (jakarta-tomcat-5.5.1-compat.zip)of Jakarta Tomcat 5.5.1
compatibility package to your iSeries and place it in the /home directory. Name this file
jakarta-tomcat-5.5.1-compat.zip.

 Browse : /home/jakarta-tomcat-5.5.1/bin/setclasspath.sh
 Record : 1 of 49 by 14 Column : 1 79 by 79
 Control :

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
 ************Beginning of data**************

Set CLASSPATH and Java options

$Id: setclasspath.sh,v 1.8 2004/07/26 22:01:19 markt Exp $

 export -s JAVA_HOME=/qibm/proddata/java400/jdk13 7a
Make sure prerequisite environment variables are set
if [-z "$JAVA_HOME"]; then
 echo "The JAVA_HOME environment variable is not defined"
 echo "This environment variable is needed to run this program"
 exit 1
fi
if [! -r "$JAVA_HOME"/bin/java -o ! -r "$JAVA_HOME"/bin/javac]; then 7b
 echo "The JAVA_HOME environment variable is not defined correctly"

 F3=Exit F10=Display Hex F12=Exit F15=Services F16=Repeat find
 F19=Left F20=Right

Note: We edited out the variable for the Java debugger because we did not have this
option on the system. If you have this option on the system, this statement does not
have to be edited. The statement we removed was:

! -r "$JAVA_HOME"/bin/jdb -o
412 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://jakarta.apache.org/tomcat

2. Start a Qshell terminal by entering Start QSH (STRQSH) on the 5250 command line.

3. Make /home your current working directory by entering the command:

cd /home

4. Enter the following command to unzip the file:

unzip jakarta-tomcat-5.5.1-compat.zip

Unzip places the following files into the existing directory structure under
/jakarta-tomcat-5.5.1:

– jmx.jar: Stored in /home/jakarta-tomcat-5.5.1/bin directory
– xercesImpl.jar: Stored in /home/jakarta-tomcat-5.5.1/common/endorsed directory
– xml-apis.jar: Stored in /home/jakarta-tomcat-5.5.1/common/endorsed directory

Starting Tomcat 5.5 on the iSeries server
You have prepared the iSeries server to start the Tomcat server. Perform the following steps
to start Tomcat:

1. Return to the Qshell terminal.

2. Change the directory to the Tomcat bin directory.

cd /home/jakarta-tomcat-5.5.1/bin

3. Start the Tomcat server using the following command:

./startup.sh

You should see the startup environment variables being set as shown in Figure B-2.

Figure B-2 Setting the startup environment

Note: The directory to place the jakarta-tomcat-5.5.1-compat.zip file needs to be the
same directory you placed the Tomcat 5.5.1 file (jakarta-tomcat-5.5.1.zip) in. The
reason for this location is that when the compressed file will be unzipped, the unzip
process assumes that the Tomcat 5.5.1 directory (jakarta-tomcat-5.5.1) already exists
as a sub-directory of the store location. In this case, it is the /home directory.

Note: If you receive an error upon starting the server, check your authorities for these
files. You can do this by entering the following command from the /bin directory:

ls -l

You must have read and execute authorities for all the files in this directory. If not, enter
the following command to grant the proper authorities you need for these files:

chmod 755 *

 $
 > ./startup.sh
 Using CATALINA_BASE: /home/jakarta-tomcat-5.5.1
 Using CATALINA_HOME: /home/jakarta-tomcat-5.5.1
 Using CATALINA_TMPDIR: /home/jakarta-tomcat-5.5.1/temp
 Using JAVA_HOME: /qibm/proddata/java400/jdk13
 $
Appendix B. Bringing Tomcat Version 5.5 to your iSeries server 413

4. Verify your server is starting by entering the 5250 command Work with Active Jobs
(WRKACTJOB). Look for the QP0ZSPWT job as highlighted in Figure B-3.

Figure B-3 Job QP0ZSPWT verifies that your Tomcat 5.5 server is started

Your server should be operational after the status changes to TIMW.

5. To verify that your Tomcat server is operational and functioning, open a browser and enter
the following Uniform Resource Locator (URL):

http://your.server.name:8080

You see the window shown in Figure B-4.

 Work with Active Jobs FRA821
 10/04/04 14:41:53
 CPU %: .5 Elapsed time: 00:00:17 Active jobs: 222

 Type options, press Enter.
 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
 8=Work with spooled files 13=Disconnect ...

 Opt Subsystem/Job User Type CPU % Function Status
 QINTER QSYS SBS .0 DEQW
 QPADEV000F BARLEN INT .1 CMD-WRKACTJOB RUN
 QPADEV000G BARLEN INT .0 CMD-TELNET SELW
 QP0ZSPWT BARLEN BCI .1 JVM-org.apache TIMW
 QZSHSH BARLEN BCI .0 PGM-QZSHSH TIMW
 QZSHSH BARLEN BCI .0 PGM-QZSHSH TIMW

 Bottom
 Parameters or command
 ===>
 F3=Exit F5=Refresh F7=Find F10=Restart statistics
 F11=Display elapsed data F12=Cancel F23=More options F24=More keys

Note: Using the previous steps, the Tomcat server starts in the interactive subsystem. To
start the Tomcat server in a batch mode, you can submit the job as follows:

SBMJOB CMD(QSH CMD('/home/jakarta-tomcat-5.5.1/bin/startup.sh')) JOB(TOMCAT551)
JOBQ(QSYSNOMAX)

You can end the Tomcat server in an orderly fashion by entering the following command on
a 5250 command line:

SBMJOB CMD(QSH CMD('/home/jakarta-tomcat-5.5.1/bin/shutdown.sh')) JOB(TOMCATEND)
JOBQ(QSYSNOMAX)
414 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Figure B-4 Apache Jakarta Project Web page

You have now finished installing Tomcat on your iSeries server. The next step is to install the
mod_jk connector.

Installing mod_jk connector
If one application is written in Java using the servlet application programming interface (API),
a connector is needed to route the requests from the Web server to the servlet engine. In this
case, a Web server-specific connector is needed. We already have a connector on the
iSeries, QZTCJK, which you can use with Tomcat V3.2.4. If you are using Tomcat V5.5, then
this is an unsupported scenario.

QZTCJK runs an older version of the AJP13 protocol. However older versions of the mod_jk
plug-in, like the one on the iSeries, may run into problems with newer Tomcat versions
because they enhanced the protocol. The only out-of-process Tomcat that QZTCJK is
supported with is the one that is shipped with the iSeries. It is configurable by the
administrative GUI. At this time, QZTCJK with the AJP13 protocol is not supported with
Tomcat 5.5.

Tip: After you work out the bugs from this process, you can use the Create Java Program
(CRTJVAPGM) command and OPTIMIZE parameter to make the Jakarta TomCat 5.5 Java
Archive (JAR) files run faster.

Note: “Software prerequisites” on page 410 provides a link to download this connector.
You can download this connector to your PC and then send it to your iSeries server using
File Transfer Protocol (FTP). It is in the form of a save file (SAVF) and you have to restore it
to library MOD_JK.
Appendix B. Bringing Tomcat Version 5.5 to your iSeries server 415

1. Unzip the MOD_JK_126.ZIP file on your PC.

2. Send the Save File (SAVF) to the iSeries using a Windows command line FTP as shown in
Figure B-5. It is assumed that the SAVF was unzipped to the PC drive C:\.

Figure B-5 Sending the MOD_JK connector via FTP to your iSeries

3. Restore the SAVF to the iSeries. Enter the following 5250 command:

RSTLIB SAVLIB(MOD_JK) DEV(*SAVF) SAVF(MOD_JK_126)

Configuring your HTTP Server (powered by Apache)
The last step is to configure your HTTP server to use the new connector. To do this, you
manually edit the configuration file of one of your existing servers. You need to add several
lines to the configuration file:

LoadModule jk_module /QSYS.LIB/MOD_JK.LIB/MOD_JK.SRVPGM
JkWorkersFile /www/tomitso1/conf/workers.properties
JkLogFile /www/tomitso1/logs/jk.log
JkLogLevel debug
JKMount /jsp-examples/* worker1

Here are the steps to edit the configuration file as demonstrated in Figure B-6:

1. From the IBM Web Administration for iSeries interface, select the server instance.

2. In the left navigation frame, under Tools, select Edit Configuration File (not shown).

3. Add the LoadModule directive to the configuration file. This should be your first entry in the
configuration file:

LoadModule jk_module /QSYS.LIB/MOD_JK.LIB/MOD_JK.SRVPGM

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\>ftp fra821
User (fra821.frankfurt.de.ibm.com:(none)): barlen
331 Enter password.
Password:
230 BARLEN logged on.
ftp> bin
200 Representation type is binary IMAGE.
ftp> quote site nam 1
250 Now using naming format "1".
ftp> put MOD_JK_126.SAVF /qsys.lib/qgpl.lib/mod_jk_126.savf
200 PORT subcommand request successful.
150 Sending file to member MOD_JK_126 in file MOD_JK_126 in library QGPL.
250 File transfer completed successfully.
ftp: 7687680 bytes sent in 15.04Seconds 4,71Kbytes/sec.
ftp>
416 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

4. Add the following remaining four directives as shown in Figure B-6, immediately before the
first directory directive:

JkWorkersFile /www/tomitso1/conf/workers.properties
JkLogFile /www/tomitso1/logs/jk.log
JkLogLevel debug
JKMount /jsp-examples/* worker1

Click OK to save your new configuration.

Figure B-6 Your new HTTP Server (powered by Apache) Tomcat out-of-process configuration

5. Copy the server.xml file from the Tomcat configuration to the HTTP Server (powered by
Apache) configuration. This file is located in /home/jakarta-tomcat-5.5.1/conf. Copy it into
into <ServerRoot>\conf.

6. Create a file named workers.properties in the same <ServerRoot>\conf directory in which
you placed the server.xml file. Add the following lines of information:

worker.list=worker1
worker.worker1.type=ajp13
worker.worker1.port=8009
worker.worker1.host=fra821

7. Restart your HTTP Server (powered by Apache) and test your out-of-process Tomcat
server. Use this URL in a Web client:

http://host.domain/jsp-examples/

Note: The JKLoglevel debug directive is not necessary for the server to work, but it is
convenient to have if you experience any problems and need to debug your server.
Appendix B. Bringing Tomcat Version 5.5 to your iSeries server 417

You see the JSP Samples page as shown in Figure B-7.

Figure B-7 Sample page from your HTTP Server (powered by Apache) and Tomcat server
418 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Appendix C. Bringing Zip and Unzip to OS/400
PASE and Qshell environments

Zipping documents and directories has become common. It is also possible to use Zip
functions on iSeries with a little help from AIX.

Follow these steps to bring Unzip and Zip to your iSeries server:

1. Go to the following FTP site and download the archives:

ftp://ftp.info-zip.org/pub/infozip/UNIX/AIX/

In our case, we downloaded these files:

– zip23x-aix43.zip: For compressing (zip) files
– unz550x-aix5L.tar.Z: For uncompressing (unzip) files

2. Place these files somewhere on your iSeries server. We use /home/zip in this case.

3. Sign on to your iSeries and start an OS/400 Portable Application Solutions Environment
(OS/400 PASE) terminal with the command:

CALL QP2TERM

4. Change into the directory, using the command:

cd /home/zip

5. The unzip file is a compressed file. Uncompress the file:

uncompress unz550x-aix5L.tar.Z

6. Untar the remaining file:

tar -xvf unz550x-aix5L.tar

It creates the directory unzip-5.50.

C

Important: IBM does not support Zip and Unzip on the iSeries server. We provide these
instructions for you to download a public domain copy of the software tool so you can
implement the new functions on your iSeries server.
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 419

ftp://ftp.info-zip.org/pub/infozip/UNIX/AIX/

7. Change to this directory (cd unzip-5.50) and enter the unzip command. Now you can see
whether it is working. To run the command from every directory, copy the unzip file into the
directory /QOpenSys/usr/bin (PATH):

cp unzip /QOpenSys/usr/bin

8. Check whether unzip is really working. The Zip program on our system is packed, so we
can try on that. Verify that you are in the directory in which the file zip23x-aix43.zip is
located. Then enter the following command:

unzip -d ./zip zip23x-aix43.zip

This creates a directory named zip and places all files into that directory.

9. Change into this directory:

cd zip

10.Enter the zip command to see if the program is working.

11.For making the command available in every OS/400 PASE terminal session, copy the
program into the /QOpenSys/usr/bin directory.

12.If you want to use both commands in Qshell, make another copy of the programs into the
directory /usr/bin. The Zip and Unzip functions will be available for the next QSH terminal.
420 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Appendix D. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246716

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the redbook form
number, SG246716.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name Description

ReadMe-02.txt Contains instructions on how to handle the files after you download
them from the Internet.

tcp52dmast.zip This is a zipped directory of /tcp52dmast and all its subdirectories. You
can find all the ITSOco Web site and configuration files here.

tcp52lmast.savf This is an iSeries Save File (*SAVF) object that contains library
TCP52LMAST and other iSeries-specific objects to support some
examples in this IBM Redbook. It was saved with a target release of
V5R3.

D

© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 421

ftp://www.redbooks.ibm.com/redbooks/SG246716
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

tcp52lmast.savfv5r2 This is an iSeries Save File (*SAVF) object that contains library
TCP52LMAST and other iSeries specific objects to support some
examples in this IBM Redbook. It was saved with a target release of
V5R2.

tcp52lmast.savfv5r1 This is an iSeries Save File (*SAVF) object that contains library
TCP52LMAST and other iSeries specific objects to support some
examples in this IBM Redbook. It was saved with a target release of
V5R1.

php422pase.patch This is a patch file used for Appendix A, “Bringing PHP to your iSeries
server” on page 387.

php430pase.patch This is a patch file used for Appendix A, “Bringing PHP to your iSeries
server” on page 387.

php432pase.patch This is a patch file used for Appendix A, “Bringing PHP to your iSeries
server” on page 387.

The V4R5 and V5R1-based versions of this redbook also included examples. They are still
available from the ITSO Web site.

File name Description

ReadMe-00.txt Contains instructions on how to handle the files after you download
them from the Internet.

itsoDir.zip This is a zipped directory of /ITSO and all its subdirectories. You can
find all the ITSOco Web site and configuration files here.

itsoapache.savf This is an iSeries Save File (*SAVF) object that contains library
ITSOAPACHE and other iSeries-specific objects to support some
examples in this IBM Redbook. It was saved with a target release of
V5R1.

itsoapache.savfv4r5 This is an iSeries Save File (*SAVF) object that contains library
ITSOAPACHE and other iSeries-specific objects to support some
examples in this IBM Redbook. It was saved with a target release of
V4R5.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 6 MB minimum
Operating System: Windows
Processor: Any
Memory: Any

How to use the Web material
Download the material and then follow the instructions found within the ReadMe-02.txt file.
422 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 426.

� IBM HTTP Server Powered by Apache on RS/6000, SG24-5132

� V4 TCP/IP for AS/400: More Cool Things Than Ever, SG24-5190

� Clustering and IASPs for Higher Availability on the IBM Eserver iSeries Server,
SG24-5194

� Building AS/400 Internet-Based Applications with Java, SG24-5337

� Who Knew You Could Do That with RPG IV? A Sorcerer's Guide to System Access and
More, SG24-5402

� AS/400 Internet Security: Implementing AS/400 Virtual Private Networks, SG24-5404

� Web Enabling AS/400 Applications with IBM WebSphere Studio, SG24-5634

� AS/400 HTTP Server Performance and Capacity Planning, SG24-5645

� AS/400 Internet Security: Developing a Digital Certificate Infrastructure, SG24-5659

� AS/400 Internet Security Scenarios: A Practical Approach, SG24-5954

� AS/400 XML in Action: PDML and PCML, SG24-5959

� Application Service Provider Business Model: Implementation on the iSeries Server,
SG24-6053

� IBM Eserver iSeries Wired Network Security: OS/400 V5R1 DCM and Cryptographic
Enhancements, SG24-6168

� Implementation and Practical Use of LDAP on the IBM Eserver iSeries Server,
SG24-6193

� Domino and WebSphere Integration on the IBM Eserver iSeries Server, SG24-6223

� Managing OS/400 with Operations Navigator V5R1 Volume 1: Overview and More,
SG24-6226

� Building Java Applications for the iSeries Server with VisualAge for Java 3.5, SG24-6245

� IBM Eserver iSeries Printing VI: Delivering the Output of e-business, SG24-6250

� Java and WebSphere Performance on IBM Eserver iSeries Server, SG24-6256

� Managing OS/400 with Operations Navigator V5R1 Volume 5: Performance Management,
SG24-6565

� WebSphere Application Server V5 for iSeries: Installation, Configuration, and
Administration, SG24-6588

� IBM Lotus Domino 6 for iSeries Implementation, SG24-6592

� IBM Eserver iSeries e-business Handbook: A V5R1 Technology and Product Reference,
SG24-6711
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved. 423

� iSeries IP Networks: Dynamic!, SG24-6718

� WebSphere Development Studio Client for iSeries V5.0, SG24-6961

� OS/400 V5R1 Virtual Private Networks: Remote Access to the IBM Eserver iSeries
Server with Windows 2000 VPN Clients, REDP-0153

� Enabling Web Services for the IBM Eserver iSeries Server, REDP-0192

� WebSphere Development Tools for iSeries Generating Web Front Ends to Existing
Applications, REDP-0516

� WebSphere Application Server - Express V5.0 for iSeries, REDP-3624

� WebSphere for the IBM Eserver iSeries Server Server Buying and Selling Guide,
REDP-3646

Other resources
These publications are also relevant as further information sources:

� HTTP Server for iSeries Programming, GC41-5435

� iSeries Performance Capabilities Reference Version 5, Release 3, SC41-0607

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

� Software Installation V5R2, SC41-5120

� Performance Tools for iSeries, SC41-5340

� TCP/IP Configuration and Reference, SC41-5420

� Ahmad, Afrasiab; Antony, Mathew; Chittneden, Sean; Chopra, Vivek; Link, Michael;
Sarang, Poornachandra; Wadlow, Stephen G.; Wainwright, Peter. Professional Apache
2.0. Wrox Press Inc., May 2002. ISBN 1-861007-22-1.

� Bloom, Ryan B. Apache Server 2.0: The Complete Reference. Osborne/McGraw-Hill,
June 2002. ISBN 0-07-222344-8.

� Bowen, Rich et. al. Apache Server: Unleashed. Sams, 2000. ISBN 0-672-31808-3.

� Ford, Andrew and Estabrook, Gigi. Apache: Pocket Reference. O’Reilly & Associates,
2000. ISBN 1-56592-706-0.

� Kabir, Mohammed J. Apache Server 2 Bible with CD-ROM. John Wiley & Sons, March
2002. ISBN 0-7645-4821-2.

� Laurie, Ben et. al. Apache: The Definitive Guide. O’Reilly & Associates, 1999. ISBN
1-56592-528-9.

Referenced Web sites
These Web sites are also relevant as further information sources:

� IBM HTTP Server for iSeries

http://www.ibm.com/eserver/iseries/software/http

� IBM HTTP Server for iSeries documentation

http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm

� TCP/IP for OS/400

http://www.ibm.com/servers/eserver/iseries/tcpip
424 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.ibm.com/eserver/iseries/software/http
http://www-1.ibm.com/servers/eserver/iseries/software/http/docs/doc.htm
http://www.ibm.com/servers/eserver/iseries/tcpip
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

� Software Installation Guide

http://www.ibm.com/iseries/infocenter

� Apache Software Foundation

http://www.apache.org

� ApacheToday news and information online

http://www.apachetoday.com

� Apache Week news and information online

http://www.apacheweek.com

� Onlamp news and information online

http://www.onlamp.com/apache/

� Web-based Distributed Authoring and Versioning (WebDAV)

http://www.webdav.org/

� iSeries Network

http://www.iseriesnetwork.com

� IGNITe/400 iSeries On Demand Business user group

http://www.ignite400.com

� Net.Data manuals and documentation

http://www.ibm.com/eserver/iseries/software/netdata/docs/doc.htm

� Sample CGI programs

http://www.ibm.com/eserver/iseries/software/http/examples/

� Easy400, CGI Web development tools Web site for iSeries

http://www-922.ibm.com/easy400p/easy400p01.html

This site includes a link to download the CGIDEV2 ILE-RPG CGI Development Toolkit.

� i/net makes a series of Web servers for the iSeries server

http://www.inetmi.com/iseries/

� Netcraft

http://www.netcraft.com/survey/

� NetObjects

http://www.netobjects.com/

� The IBM Eserver and IBM TotalStorage Lab Services

http://www.ibm.com/servers/eserver/services/

� IBM developerWorks

http://www.ibm.com/developerworks

� IBM alphaWorks

http://www.alphaworks.ibm.com/

� IBM PartnerWorld

http://www.ibm.com/partnerworld

� Many excellent third-party Web sites focus on different aspects of the iSeries. Here is a
partial list:

– Search400.com

http://search400.techtarget.com/
 Related publications 425

http://www.apache.org
http://www.ibm.com/iseries/infocenter
http://www.apachetoday.com
http://www.apacheweek.com
http://www.onlamp.com/apache/
http://www.webdav.org/
http://www.iseriesnetwork.com
http://www.ignite400.com
http://www.ibm.com/eserver/iseries/software/netdata/docs/doc.htm
http://www.inetmi.com/iseries/
http://www.netcraft.com/survey/
http://www.netobjects.com/
http://www.ibm.com/eserver/iseries/software/netdata/docs/doc.htm
http://www.ibm.com/eserver/iseries/software/http/examples/
http://www.ibm.com/eserver/iseries/software/http/examples/
http://www-922.ibm.com/easy400p/easy400p01.html
http://www.ibm.com/servers/eserver/services/
http://www.ibm.com/developerworks
http://www.alphaworks.ibm.com/
http://www.ibm.com/partnerworld
http://search400.techtarget.com/

– IGNITe/400

http://www.ignite400.org/

– Common

http://www.common.org/

– Midrange Computing Press Online

http://www.mcpressonline.com/

– iSeries Network

http://www.iseriesnetwork.com/

– Eserver Magazine, iSeries edition (formerly iSeries Magazine)

http://eservercomputing.com/iseries/

� SPECweb99 from Standard Performance Evaluation Corporation (SPEC)

– http://www.specbench.org/osg/web99/
– http://www.specbench.org/osg/web99ssl/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
426 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ignite400.org/
http://www.common.org/
http://www.mcpressonline.com/
http://www.iseriesnetwork.com/
http://eservercomputing.com/iseries/
http://www.specbench.org/osg/web99/
http://www.specbench.org/osg/web99ssl/
http://www.ibm.com/services/

Index

Symbols
*VLDL 54
+MultiViews 384
.htaccess 62, 102

Numerics
2058 e-business Cryptographic Accelerator 300
3DES 139
404 "Page Not Found" 305
4758 e-business Cryptographic Coprocessor 300

national language support (NLS) 381

A
access control 101, 102
access log reporting 10
AccessFileName (directive) 62
active threads 303
Add Cluster Node Entry (ADDCLUNODE) command 365
Add TCP/IP Interface (ADDTCPIFC) command 362
AddLanguage (directive) 384
AddOutputFilterByType (directive) 250
Administrative Console 39, 49
administrative GUI

delete 27
enabling SSL 137
enhancements 33
Manage 38
manage 27
national language support (NLS) 376
rename 27
restart 27
Setup 37
start 27
stop 27
TCM 56

Advanced Single Server Edition 193
AES 138
AIX binaries 388
ajp12 (Tomcat) 200
ajp13 (Tomcat) 200
alias (directive) 80, 91
All Servers tab 37
Allow (directive) 102
AllowCONNECT (directive) 143
AllowOverride (directive) 62, 102, 104
Apache history 3
Apache Portable Runtime (APR) 12, 311

see modules
Apache server version 351
Apache, market share 4
APACHEDFT 41, 43
Application Servers tab 37
application, ITSOco 24
© Copyright IBM Corp. 2002, 2003, 2005. All rights reserved.
APR (Apache Portable Runtime) 12, 311
ASF Jakarta Tomcat, see Tomcat
ASF Tomcat Servers 37, 40
asynchronous I/O 14, 228
authentication 6, 55, 101

by a validation list 108
by Kerberos tickets 120
by LDAP entries 113
by OS/400 user profiles 105
failure 325

authentication failure 326
AuthName (directive) 104
authorities for administration 22
authorities for Tomcat 201
AuthType (directive) 104
automatic expiration management 11
Autostart 43

B
Base Edition 193
Base64 105
Base64 encoding 108
basic authentication 6, 103

LDAP 113
OS/400 user profile 105
validation list 108

benchmark, SPECweb99 223
binaries, AIX 388
BrowserMatch 244
buckets and brigades 313
bytes received 305
bytes sent 305

C
cache processing (seconds) 305
cache responses 305
cache target, TCM 263, 272
cached (seconds) 305
CacheLocalFD (directive) 237
CacheLocalFile (directive) 237
CacheLocalFileMmap (directive) 237
CacheLocalSizeLimit (directive) 236
CERN 3, 173
CGI 302

initialization at server startup 234
Change CRG Primary (CHGCRGPRI) command 369
Change HTTP Attributes (CHGHTTPA) command 52
Change Job Queue Entry (CHGJOBQE) command 364
Change Network Attributes (CHGNETA) command 362
Change TCP/IP Attributes (CHGTCPA) command 232
CHGCRGPRI command 369
CHGHTTPA command 52
CHGJOBQE command 364
CHGNETA command 362
 427

CHGTCPA (Change TCP/IP Attributes) command 232
child job, multi-threaded 228
cipher 138
cipher suite list 138
client authentication 7
client side digital certificate 139
clustered hash table 356
clustering, see high availability (HA)
collection services 12, 346
Command Module Structure 318
Common Gateway Interface (CGI) 9, 160

Net.Data 161
PHP 388

Common Tasks and Wizards 37, 50, 178
communications trace 256, 353
compat package 412
compression 13, 240, 241

BrowserMatch 244
by MIME type 250
DEFLATE 242
input filters 241
logging 252
output filters 241, 242
SetEnvIf 244

conf/httpd.conf 46
CONFIG 178
configuration directives 59
configuration directory listings 63
configuration recommendations 63
configuration structure 60
container areas 42
contexts 59, 60

directory 60, 64
file 60
global context 60
location 60
VirtualHost 60, 75, 76, 80, 95, 128

cookies 339
co-processors, cryptographic 300
copy into memory method 237
Create Cluster (CRTCLU) command 364
CRTCLU command 364
Cryptographic Accelerator, 2058 300
Cryptographic Access Provider 19
Cryptographic Coprocessor, 4758 300
customer module 302

D
data compression 241
data source, TCM 263, 272
DB2WWW 161
DEFAULT 178
defending the IFS, see security
Delete Communications Trace (DLTCMNTRC) command
291, 353
delete HTTP server 27
denial of service, see performance
Deny (directive) 102
DES 138
digital certificate 53

Digital Certificate Manager (DCM) 19, 127
national language support (NLS) 375

directive
AccessFileName 62
AddLanguage 384
AddOutputFilterByType 250
alias 80, 91
Allow 102
AllowCONNECT 143
AllowOverride 62, 102, 104
AuthName 104
AuthType 104
CacheLocalFD 237
CacheLocalFile 237
CacheLocalFileMmap 237
CacheLocalSizeLimit 236
configuration 59
Deny 102
DocumentRoot 76, 80, 91
DynamicCache 238
ErrorLog 76, 80, 91
FRCACacheLocalFileStartUp 290
FRCACookieAware 297
FRCAEnableFileCache 290
FRCAEnableProxy 294
FRCAEndofURLMarker 297
FRCAMaxCommBufferSize 298
FRCAMaxCommTime 298
FRCAProxyCacheRefreshInterval 294
FRCAProxyPass 292, 294
FRCARandomizeResponse 298
HAModel 367
HostNameLookups 231
HotBackup 229
JkAsfTomcat 199
JkLogFile 199
JkLogLevel 199
JkMount 199
JkMountCopy 199
JkWorkersFile 199
KeepAliveTimeout 231
LanguagePriority 384
LimitRequestBody 233
LimitRequestFields 233
LimitRequestFieldSize 233
LimitRequestLine 233
LimitXMLRequestBody 233
Listen 76, 80, 91, 128
LiveLocalCache 237
LmURLCheck 367
LoadModule 128, 143, 197
LogMaintHour 333
mod_status 345
NameVirtualHost 89, 91, 95
Order 62, 102
PasswdFile 104
ProxyNoConnect 143
ProxyPass 143
ProxyPassReverse 143
ProxyReceiveBufferSize 143
428 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

ProxyRequests 143
ProxyVia 143
Require 102
ServerAdmin 76, 80, 91
ServerAlias 92
ServerName 76, 80, 91
SetEnvIfNoCase 244
SSLAppName 128
SSLCacheDisable 128
SSLCipherSpec 138
SSLEnable 128
SSLVersion 138
ThreadsPerChild 228
Tomcat 199
UseCanonicalName 96
UserID 104
VirtualDocumentRoot 95, 97
VirtualDocumentRootIP 95
VirtualScriptAlias 95
VirtualScriptAliasIP 95

Directive Index 48
directory context 60
directory listing configuration 15, 63
directory name interpolation 95
directory walk 61
Display Cluster Information (DSPCLUINF) command
364, 365
Display CRG Information (DSPCRGINF) command 369,
370
Display Network Attributes (DSPNETA) command 361
Display Subsystem Description (DSPSBSD) command
236, 363
Display System Value (DSPSYSVAL) command 376
Display the Configuration File Tool 46
Display User Profile (DSPUSRPRF) command 375
DLTCMNTRC command 291, 353
DMPCMNTRC command 353
DMPUSRTRC command 341
document base directory 199
document list 56
DocumentRoot (directive) 76, 80, 91
Domino plug-in 11
DSPCLUINF command 364, 365
DSPCRGINF command 369
DSPNETA command 361
DSPSBSD command 236, 363
DSPSYSVAL command 376
DSPUSRPRF command 375
Dump Communications Trace (DMPCMNTRC) command
353
Dump User Trace (DMPUSRTRC) command 341
dynamic content 235
dynamic data 157

allow SSI to call CGI 160
Common Gateway Interface (CGI) 160
Net.Data 161
server-side includes (SSI) 158

dynamic virtual hosting 6
DynamicCache (directive) 238

E
Edit File (EDTF) command 47
Edit Object Authority (EDTOBJAUT) command 108
EDTF command 47
EDTOBJAUT command 108
EIM (Enterprise Identity Mapping) 114, 121
encryption key 138
encryption protocol 138
encryption, see security
End Communications Trace (ENDCMNTRC) command
291, 353
ENDCMNTRC command 291, 353
Enterprise Identity Mapping (EIM) 114, 121
error responses 305
ErrorLog (directive) 76, 80, 91
European Laboratory for Particle Physics (CERN) 173
expiration management, automatic 11
External Cache Communication Protocol (ECCP) 264

F
Fast Response Cache Accelerator (FRCA) 281

directives, all 296
implementation

local cache 288
reverse proxy 292

introduction 282
limitations 286
local cache hit scenario 284
local cache miss scenario 283
Network File Cache (NFC) 287
reverse proxy hit scenario 286
reverse proxy miss scenario 285

file context 60
forward proxy 142, 143
FRCA Proxy 303
FRCA Stats 302
FRCA, see Fast Response Cache Accelerator (FRCA)
FRCACacheLocalFileStartUp (directive) 290
FRCACookieAware (directive) 297
FRCAEnableFileCache (directive) 290
FRCAEnableProxy (directive) 294
FRCAEndofURLMarker (directive) 297
FRCAMaxCommBufferSize (directive) 298
FRCAMaxCommTime (directive) 298
FRCAProxyCacheRefreshInterval (directive) 294
FRCAProxyPass (directive) 292, 294
FRCARandomizeResponse (directive) 298

G
General Server Configuration 43
global context 60
Global Server Settings 51
GO LICPGM command 374
group 54
group file 52, 54
group PTFs 21
GUI configuration and administration, create HTTP Serv-
er 24
GUI, Admin, see administrative GUI
 Index 429

H
HAModel (directive) 367
handshaking, SSL 137
hash algorithm 138
headers control 15
high availability (HA) 14, 355

clusters 356
implementation 359
liveness monitor 356
packaging 19, 20
peer model 359
primary or backup with a network dispatcher model
358
primary or backup with takeover IP model 356, 359
takeover IP 356

HostNameLookups (directive) 231
HotBackup (directive) 229
HTTP Server (original) 6, 20
HTTP Server (powered by Apache) 20

testing 24
HTTP Server overview

access log reporting 10
Apache Portable Runtime (APR) 12
CGI 9
delete 27
Domino plug-in 11
dynamic virtual hosting 6
features 4
high availability 14
LDAP 9
local memory cache 8
manage 27
mod_deflate 13
persistent connection 5
proxy caching 7
PTFs 24
rename 27
requirements 18
restart 27
reverse proxy caching 8
server-side includes (SSI) 9
software installation 23
start 27
stop 27
Tomcat 11
TRCTCPAPP 12
Triggered Cache Manager (TCM) 13
Version 1.1 5
virtual host 6
Web usage mining 10
Web-based Distributed Authoring and Versioning
(WebDAV) 10
Webserver Search Engine 10
WebSphere Application Server plug-in 11

HTTP Server statistics 39
HTTP server trace 257, 341
HTTP Servers tab 37
HTTP Version 1.1 5
HTTP virtual host 72
httpd.conf 46

hypertext pre-processor, see PHP

I
I/O, asynchronous 14, 228
i5/OS 174
IASP 14
IBM HTTP Server for iSeries 18
IBM i5/OS 174
IBM Tivoli Web Administration tool 114
IBM Tivoli Web Site Analyzer 340
idle threads 303
IFS security, see security
IIS, Microsoft 4
in-context configuration 60
index 56
Information Center 36
Information Development xv
inline protection 189
inline protection setup 189
in-process, see Tomcat
Internet Daemon (INETD) 363
Internet Printing Protocol (IPP) for NLS 380
Internet Server Provider (ISP) 96
Internet Users and Groups 51, 52
IP takeover 356
IP-based

implementation of virtual hosts 77
virtual host 74

iSeries Navigator 5, 24, 362
iSeries Network xv, 388
iSeries Tasks page 34, 35
iSeries Tasks page for NLS 375
ITSOco Web application 24

J
J2EE 191
Jakarta Tomcat, see Tomcat
Java 2 Enterprise Edition (J2EE) 191
Java Developer Kit (JDK) 18, 20
jk_module 197
JkAsfTomcat (directive) 199
JkLogFile (directive) 199
JkLogLevel (directive) 199
JkMount (directive) 199
JkMountCopy (directive) 199
JkWorkersFile (directive) 199
jni (Tomcat) 200

K
Keep the file descriptor open method 237
KeepAliveTimeout (directive) 231
Kerberos 120

keytab 123
service accounts 124

key length 138

L
language support, see national language support (NLS)
430 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

language, for Web administration GUI 35
LanguagePriority (directive) 384
LDAP 9

authentication 113
authentication error 325, 326
IBM Tivoli Directory Server Web Administration tool
114
store HTTP configurations 9

level of Apache server 351
Licensed Program Product (LPP), installing 23
LimitRequestBody (directive) 233
LimitRequestFields (directive) 233
LimitRequestFieldSize (directive) 233
LimitRequestLine (directive) 233
LimitXMLRequestBody (directive) 233
Listen (directive) 76, 80, 91, 128
LiveLocalCache (directive) 237
liveness monitor 356
LmURLCheck (directive) 367
LoadModule (directive) 128, 143, 197
local cache, see performance
location context 60
log expiration 333
log maintenance 333
LogCycle 11
logging 11, 230, 331
LPP (Licensed Program Product) 23

M
Manage Application Server 50
manage HTTP server 27
Manage page GUI, see administrative GUI
Manage tab 37
mass dynamic 74, 94
MD5 138
memory map of the file method 237
Microsoft IIS 4
migration (original to Apache)

directives and services not supported 175
equivalent directives 176
functional differences 176
how to 177
new directives 176
report details 183
testing 188

MIME (Multipurpose Internet Mail Extensions) 241, 313,
381
mod_deflate 13, 240
mod_header.c 315
mod_jk 415
mod_status 345
modules 312

compile, link, export 319
debugging 322
design overview 312
example source code 315
how to 315

Monitor Server option 39
multi-homed server 72
Multipurpose Internet Mail Extensions (MIME) 241, 313,

381
multi-threaded child job 15, 228

N
name-based

implementation 89
virtual host 74

named protection 189
NameVirtualHost (directive) 89, 91, 95
National Center for Supercomputing Application (NCSA)
3, 173
national language support (NLS) 373

4758 Cryptographic Coprocessor 381
administrative GUI 376
Digital Certificate Manager (DCM) 375
Internet Printing Protocol (IPP) 380
iSeries Tasks page 375
secondary languages, install 374
Web site 381

NCSA (National Center for Supercomputing Application)
3, 173
ND server 39, 50
Net.Data 20, 161

logs 340
macro 56

Netcraft survey 4
NetObjects’ Fusion 24
Network Authentication Service (NAS) 123
Network Deployment (ND) server 39, 50
network dispatcher 358
Network File Cache (NFC) 287
non-cache processing (seconds) 305
non-cache responses 305
non-cached (seconds) 305
normal connections 303

O
object dependency graph (ODG), TCM 263
On Demand Business 191
on demand business 191
Operations Navigator 5
Options +MultiViews 384
Order (directive) 62, 102
origin server 285
OS/400

installing options 23
integration 3
software products and options 18
user profile authentication 105

OS/400 Portable Application Solutions Environment
(OS/400 PASE) 19, 387, 388
out-of-process, see Tomcat

P
Page Not Found 305
PasswdFile (directive) 104
pattern 60
peer model 359
 Index 431

performance 223
asynchronous I/O 228
CGI initialization at server startup 234
collection services 12, 346
components of 226
denial of service 233
dynamic caching 237
Fast Response Cache Accelerator (FRCA) 281
global parameters 227
HostNameLookups 231
HotBackup 229
KeepAliveTimeout 231
local cache

how to 238
introduction to 8
tracing 239

logging 12, 230
mod_deflate 13, 240
TCP buffer size 232
threads 228
Triggered Cache Manager (TCM) 259
zen of 226

performance tools reports 348
Perl 157
persistent connection 5
phases 313
PHP 399

binary version 399
bugs 397
code example 390, 393, 396
configure HTTP Server 405
installation on iSeries 399
limitations 406
on iSeries 391
prerequisites 398
what is 388
why 389

powered by Apache, see Apache
primary or backup with a network dispatcher model 358
primary or backup with takeover IP model 356, 359
Print Communications Trace (PRTCMNTRC) command
291, 353
problem determination 323

HTTP server trace 341
logging 331
Net.Data 340
startup parameters 351
status codes 352

profile swapping 142
property form 42, 43
Proxy 302
proxy caching 7
proxy chaining 154
proxy server, see security
ProxyNoConnect (directive) 143
ProxyPass (directive) 143
ProxyPassReverse (directive) 143
ProxyReceiveBufferSize (directive) 143
ProxyRequests (directive) 143
ProxyVia (directive) 143

PRTCMNTRC command 291, 353
PTFs 21, 24

Q
Qshell Interpreter 20, 419
question mark icon 36
QZHAPREG (register application with DCM) 131, 137

R
RC4 138
Real Time Server Statistics 13, 49, 175, 301

Absolute tab 303
Averages tab 305
Delta 303
General tab 303

realm 103
recommendations, configuration 63
Redbooks Web site 426

Contact us xv
register application with DCM (QZHAPREG) 131, 137
rename HTTP server 27
request handling 313
request routing 59, 61

.htaccess 62
directory walk 61
example 62

requests 303, 304
requests rejected 303
Require (directive) 102
requirements for HTTP Server 18
response handler 313
responses 303, 304
restart HTTP server 27
reverse proxy 142, 145, 285, 292
reverse proxy caching 8

S
scripting

CGI 160
language 387
Net.Data 161
Perl 157
PHP

search engine 307
search index 56
Search Setup 51
secondary languages 374
security 101

access control 101, 102
administrative GUI SSL 137
authentication 101
Base64 105
basic authentication 103

LDAP 113
OS/400 user profile 105
validation list 108

client side digital certificate 139
encryption 7, 102
432 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

forward proxy 142, 143
proxy chaining 154
proxy server 142
reverse proxy 142, 145
SSL client authentication 139
SSL handshaking 137
TLS upgrade 136

server area 42, 48
server authentication 7
server handled 302
server performance, see performance
Server Properties 43
server root directory 46
server trace 257, 341
ServerAdmin (directive) 76, 80, 91
ServerAlias (directive) 92
ServerName (directive) 76, 80, 91
server-side 387
server-side includes (SSI) 9, 158
SetEnvIfNoCase (directive) 244
Settings 51
Setup page GUI, see administrative GUI
Setup page, GUI

see administrative GUI
SHA 138
Shared Memory Control (QSHRMEMCTL) 23
software installation for HTTP Server 23
SPECweb99 benchmark 223
SSI to call CGI 160
SSL 302
SSL client authentication 139
SSL connections 303
SSL encryption, see security
SSL_RSA_WITH_3DES_EDE_CBC_SHA 139
SSL_RSA_WITH_DES_CBC_SHA 139
SSLAppName (directive) 128
SSLCacheDisable (directive) 128
SSLCipherSpec (directive) 138
SSLEnable (directive) 128
SSLVersion (directive) 138
Start Communications Trace (STRCMNTRC) command
291, 353
start HTTP server 27
Start PDM (STRPDM) command 163
Start Performance Tools (STRPFRT) command 348
Start TCP/IP Server (STRTCPSVR) command 341
startup parameters 351
static content 235
status codes, HTTP 352
stop HTTP server 27
STRCMNTRC command 291, 353
STRPDM command 163
STRPFRT command 348
STRTCPSVR command 341
SunONE 4
Survey, Netcraft 4

T
takeover IP 356
task 42

Tasks, iSeries 34
Tasks, iSeries for NLS 375
TCM page, GUI

see administrative GUI
TCM tab 51
TCM, see Triggered Cache Manager (TCM)
TCP send buffer size (TCPSNDBUF) 232
TCP/IP configuration 72
TCP/IP Connectivity Utilities 18
testing 24
thread safe 15
threads 228
ThreadsPerChild (directive) 228
TLS encryption, see security
Tomcat 11, 40, 302

ajp12 200
ajp13 200
authorities 201
comparison with WebSphere Application Server 194,
195
directives 199
directory structure 198
how it works 197
in-process 197, 198, 203
jk_module 197
jni 200
log files 202
out-of-process 197, 198, 208
overview 194
packaging 20
version 5.5 409
workers.properties 200, 220

Toolbox for Java 20
tools 42
total (seconds) 305
trace communications 256
Trace TCP/IP Application (TRCTCPAPP) command 12,
341
trace, HTTP server 257, 341
trigger handler, TCM 262, 273
Triggered Cache Manager (TCM) 13, 19, 51, 259

authorization 261
cache target 263, 272
data source 263, 272
directory structure 261
documentation 261
hosts 271
how it works 262
implementation 264
object dependency graph (ODG) 263
packaging 20
system requirements 260
trigger handler 262, 273
trigger message 265

U
Uniform Resource Locator (URL) 34
Unzip 419
URL 34
UseCanonicalName (directive) 96
 Index 433

user authentication 101
user profile 52
user profile authorities 22
UserID (directive) 104

V
V5R3 174
validation list 52, 54
validation list authentication 108
verify TCP/IP Connection (PING) 364
version of Apache server 351
virtual host 6, 71, 80

how to
IP-based 78
mass dynamic 95
name based 90

IP-based 74
IP-based implementation 77
mass dynamic 74, 94
name based 74
name-based implementation 89
overview 75
SSL/TLS encryption 128

Virtual IP Address (VIPA) 72, 362
VirtualDocumentRoot (directive) 95, 97
VirtualDocumentRootIP (directive) 95
VirtualHost context 60
VirtualScriptAlias (directive) 95
VirtualScriptAliasIP (directive) 95
VisualAge C++ 400
VT100 client 275

W
WAR (Web Application Archive) 197
Web Administration for iSeries 5, 33, 35
Web application 171, 191

ITSOco 24
Web Application Archive (WAR) 197
Web application serving 191
Web browser 22
Web Cache Control Protocol (WCCP) 264
Web Crawler 307, 309
Web server market share 4
Web server performance, see performance
Web usage mining 10
Web-based Distributed Authoring and Versioning (Web-
DAV) 10
WebDAV 10
Webserver Search Engine 10, 20, 55, 307
Webserver Web Crawler 20
WebSphere 302
WebSphere Administrative Console 39, 49
WebSphere Application Server 20

Advanced Edition 193, 195
Base Edition 193
comparison with Tomcat 194, 195
express 193
Network Deployment Edition 193
overview 193

plug-in 11
Single Server Edition 195
Standard Edition 193

WebSphere Development ToolSet 19
WebSphere Edge Server 358
wizard 42
wizard to create the HTTP Server 24
work area frame 57
Work with Active Jobs (WRKACTJOB) command 294
Work with Object Links (WRKLNK) command 47
Work with Relational Database Directory Entries
(WRKRDBDIRE) display 164
Work with System Values (WRKSYSVAL) command 23
workers.properties, Tomcat 200, 220
WRKACTJOB command 294
WRKLNK command 47
WRKSYSVAL command 23

X
X.500 directory 113

Z
Zeus 4
Zip 419
zlib 240
ZOC/Pro 275
434 IBM HTTP Server (powered by Apache): An Integrated Solution for IBM Eserver iSeries Servers

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 HTTP Server (pow

ered by Apache): An Integrated Solution for IBM
 ~

 iSeries Servers

®

SG24-6716-02 ISBN 0738481802

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

IBM HTTP Server
(powered by Apache)che)
An Integrated Solution for IBM Eserver iSeries Servers

Fully exploit the
integrated power of
IBM i5/OS and Apache

Study the new
administration GUI,
SSL proxy, security,
and compression

Extend ASF Jakarta
Tomcat 5.5, PHP, APR,
and modules

This IBM Redbook helps you to plan, install, configure, troubleshoot,
and understand the HTTP Server (powered by Apache) running on the
IBM Eserver iSeries server. It introduces the HTTP Server
(powered by Apache) and identifies all the necessary components to
install and configure your first Apache-based Web server running on
your iSeries server. It includes a quick guide to the Apache contexts
and request routing. It also introduces the iSeries’ unique graphical
user interface (GUI) for further configuration and customization.

This redbook explains how to use virtual hosts, secure your server,
and serve dynamic data with server-side includes (SSI), Common
Gateway Interface (CGI), Net.Data, and Hypertext Preprocessor (PHP).
It details the steps required to implement Web application serving
with Java featuring the Apache Software Foundation’s (ASF) Jakarta
Tomcat. Advanced topics include how to achieve the best
performance by using local caches, mod_deflate, Triggered Cache
Manager (TCM), and Fast Response Cache Accelerator (FRCA).

This redbook also introduces the Webserver Search Engine, problem
determination, high availability (HA), and national language support
(NLS) considerations. It includes an example of extending the core
features of your HTTP Server (powered by Apache) via Apache
Portable Runtime (APR) support.

To complete the discussion, this redbook includes appendices about
bringing PHP and Tomcat Version 4.1 to your iSeries server, and
bringing Zip and Unzip functions to the OS/400 Portable Application
Solutions Environment (OS/400 PASE) and Qshell environments.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Foreword
	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	January 2005, Third Edition

	Part 1 Zen and the art of the HTTP server
	Chapter 1. ‘Powered by Apache’ means OS/400 integration
	1.1 HTTP Server (powered by Apache) features
	1.1.1 HTTP Version 1.1
	1.1.2 GUI configuration and administration
	1.1.3 Virtual hosts
	1.1.4 Authentication
	1.1.5 SSL and TLS
	1.1.6 Proxy caching
	1.1.7 Local memory cache
	1.1.8 Server-side includes
	1.1.9 CGI programming
	1.1.10 LDAP support
	1.1.11 Webserver Search Engine and Web Crawler
	1.1.12 Web-based Distributed Authoring and Versioning
	1.1.13 Access log reporting and Web usage mining
	1.1.14 Log rollover and maintenance
	1.1.15 Domino plug-in
	1.1.16 WebSphere Application Server plug-in
	1.1.17 Apache Software Foundation’s Jakarta Tomcat
	1.1.18 Apache Portable Runtime and modules
	1.1.19 Support for the TRCTCPAPP command
	1.1.20 Collection Services performance data
	1.1.21 Real-time server statistics
	1.1.22 Triggered Cache Manager
	1.1.23 Fast Response Cache Accelerator
	1.1.24 Compression
	1.1.25 Highly available HTTP server
	1.1.26 Support for IASPs
	1.1.27 Asynchronous I/O
	1.1.28 Denial of service
	1.1.29 Miscellaneous

	1.2 For more information

	Chapter 2. From zero to powered by Apache
	2.1 Before you start
	2.1.1 Software
	2.1.2 User profile authorities
	2.1.3 Web browser

	2.2 Software installation
	2.2.1 Installing LPPs and OS/400 options
	2.2.2 Installing PTFs
	2.2.3 Installing the ITSO example Web application (optional)

	2.3 Testing the HTTP Server (powered by Apache) installation
	2.3.1 Your first HTTP Server (powered by Apache) via a wizard

	Chapter 3. The new GUI: IBM Web Administration for iSeries
	3.1 Welcome page: iSeries Tasks page
	3.2 Header images to access information for help
	3.3 Tabbed pages for easy navigation
	3.3.1 Setup tab: Common tasks and wizards
	3.3.2 Manage tab
	3.3.3 Advanced tab
	3.3.4 Related links page

	Chapter 4. Quick guide to Apache contexts and request routing
	4.1 In-context configuration
	4.2 Apache server request routing
	4.3 Request routing example
	4.4 Configuration recommendations
	4.5 Configuring directory listings

	Part 2 How to...
	Chapter 5. Virtual hosts
	5.1 HTTP virtual host overview
	5.1.1 The way TCP/IP is configured
	5.1.2 The way the HTTP server will be configured
	5.1.3 The way the HTTP server will handle visitor requests

	5.2 HTTP Server (powered by Apache) virtual host overview
	5.2.1 Additional resources

	5.3 Virtual hosts: IP-based implementation
	5.3.1 IP-based virtual host: Problem scenario
	5.3.2 IP-based virtual host: Solution overview
	5.3.3 IP-based virtual host: Step-by-step implementation

	5.4 Virtual hosts: Name-based implementation
	5.4.1 Name-based virtual hosts: Problem overview
	5.4.2 Name-based virtual host: Solution overview
	5.4.3 Name virtual host: Step-by-step implementation

	5.5 Virtual hosts: Mass dynamic implementation
	5.5.1 Mass dynamic virtual host: Problem scenario
	5.5.2 Mass dynamic virtual host: Solution overview
	5.5.3 Mass dynamic virtual host: Step-by-step implementation

	Chapter 6. Defending the IFS
	6.1 Access control
	6.2 Basic authentication
	6.2.1 Authentication by OS/400 user profiles
	6.2.2 Authentication by a validation list
	6.2.3 Authentication by LDAP entries

	6.3 Authenticating users via Kerberos
	6.3.1 Getting ready for Kerberos authentication
	6.3.2 Implementing Kerberos Web authentication

	6.4 Encrypting your data with SSL and TLS
	6.4.1 Enabling SSL
	6.4.2 TLS upgrade
	6.4.3 Enabling SSL for the ADMIN instance
	6.4.4 SSL handshaking
	6.4.5 Client-side digital certificates

	6.5 Proxy server: Protecting direct access
	6.5.1 Forward proxy
	6.5.2 Reverse proxy
	6.5.3 SSL proxy
	6.5.4 Proxy chaining

	6.6 For more information

	Chapter 7. Serving dynamic data
	7.1 Server-side includes
	7.2 Everything dynamic with CGI support
	7.3 Net.Data: A ready-made scripting tool
	7.3.1 Implementation: Setting up the Net.Data environment
	7.3.2 Configuring your HTTP Server (powered by Apache) for CGI
	7.3.3 Testing your HTTP Server (powered by Apache) and Net.Data macro

	7.4 For more information

	Part 3 Building a Web application
	Chapter 8. Migration from HTTP Server (original) to (powered by Apache)
	8.1 A look at HTTP Server (original) and (powered by Apache)
	8.1.1 Directives and services not supported
	8.1.2 Equivalent directives
	8.1.3 Functional differences
	8.1.4 New HTTP Server (powered by Apache) directives

	8.2 An example migration
	8.2.1 Initial situation: HTTP Server (original) configuration
	8.2.2 Migration steps
	8.2.3 Result: HTTP Server (powered by Apache) configuration

	8.3 Testing your migration

	Chapter 9. Web application serving
	9.1 Web application servers for the iSeries server
	9.1.1 Comparing WebSphere Application Server and ASF Jakarta Tomcat
	9.1.2 When to use WebSphere Application Server versus ASF Jakarta Tomcat

	9.2 Apache Software Foundation’s Jakarta Tomcat on iSeries
	9.2.1 ASF Jakarta Tomcat directory structure
	9.2.2 ASF Jakarta Tomcat directives
	9.2.3 ASF Jakarta Tomcat authorities
	9.2.4 ASF Jakarta Tomcat log files

	9.3 In-process implementation with ASF Jakarta Tomcat
	9.3.1 Creating HTTP Server (powered by Apache)
	9.3.2 In-process Tomcat configuration

	9.4 Out-of-process implementation with ASF Jakarta Tomcat
	9.4.1 Creating the ASF Tomcat server
	9.4.2 Creating the link between the HTTP and ASF Tomcat servers
	9.4.3 Testing the out-of-process ASF Tomcat server

	Chapter 10. Getting the best performance from HTTP Server (powered by Apache)
	10.1 iSeries Web server performance components
	10.2 Web server: Global performance values
	10.2.1 Threads and asynchronous I/O
	10.2.2 Process control: HotBackup
	10.2.3 Logging
	10.2.4 HostNameLookups
	10.2.5 KeepAliveTimeout
	10.2.6 TCP buffer size
	10.2.7 Denial of service
	10.2.8 CGI initialization at server startup

	10.3 Web server: Specific performance values
	10.3.1 HTTP Server (powered by Apache) local cache
	10.3.2 HTTP Server (powered by Apache) proxy cache

	10.4 Increasing throughput with compression
	10.4.1 Compression considerations
	10.4.2 Example configurations
	10.4.3 Logging
	10.4.4 Controlling the compression environment
	10.4.5 For more information

	10.5 Triggered Cache Manager
	10.5.1 TCM system requirements
	10.5.2 TCM documentation
	10.5.3 TCM directory structure and authorization
	10.5.4 How the TCM server works
	10.5.5 Configuring a working TCM example

	10.6 Fast Response Cache Accelerator
	10.6.1 What FRCA is
	10.6.2 How FRCA local cache works
	10.6.3 How FRCA reverse proxy cache works
	10.6.4 FRCA limitations
	10.6.5 FRCA configuration examples
	10.6.6 Miscellaneous FRCA directives beyond the online help
	10.6.7 The FRCA challenge
	10.6.8 For more information

	10.7 Cryptographic coprocessors
	10.8 Real Time Server Statistics
	10.9 References

	Chapter 11. Getting started with Webserver Search Engine and Web Crawler
	11.1 iSeries Webserver Search Engine
	11.2 iSeries Webserver Search Engine Web Crawler

	Chapter 12. Apache Portable Runtime: Extending your core functionality
	12.1 Apache module design overview
	12.1.1 Documentation and resources

	12.2 Creating a module for the iSeries server
	12.2.1 The task at hand
	12.2.2 Source code and comments
	12.2.3 Compiling, linking, and exporting your service program
	12.2.4 Activating via configuration
	12.2.5 Testing header_module
	12.2.6 Debugging

	Chapter 13. Problem determination: When things do not go as planned
	13.1 The art of problem determination
	13.2 Tools of the trade
	13.2.1 Working with configuration files
	13.2.2 Job logs
	13.2.3 Server logs
	13.2.4 Net.Data logs and traces
	13.2.5 HTTP server trace
	13.2.6 Collection Services performance data
	13.2.7 Other startup parameters
	13.2.8 HTTP status codes
	13.2.9 Communications trace
	13.2.10 Additional resources

	Chapter 14. High availability
	14.1 Highly available Web server cluster on the HTTP server
	14.1.1 Primary or backup with takeover IP model
	14.1.2 Primary or backup with a network dispatcher model
	14.1.3 Peer model

	14.2 A working primary or backup with takeover IP model
	14.2.1 Problem definition
	14.2.2 Solution definition
	14.2.3 Assumptions
	14.2.4 How to

	14.3 For more information

	Chapter 15. National language considerations
	15.1 Installing secondary languages
	15.2 Net.Data based: iSeries Tasks page and DCM
	15.3 Servlet based: Administration GUI
	15.4 Other programs linked from iSeries Task page
	15.4.1 Internet Printing Protocol server for the iSeries server
	15.4.2 WebSphere family
	15.4.3 4758 Cryptographic Coprocessor

	15.5 Serving your own Web site in the world’s languages

	Part 4 Appendixes
	Appendix A. Bringing PHP to your iSeries server
	Programming with PHP on the iSeries server
	What PHP is
	Why PHP
	A code example

	PHP on the iSeries server
	PHP as a CGI program
	Another PHP script

	For more information
	Beware of PHP bugs
	Prerequisites

	Installing PHP on the iSeries server
	Pre-preparation for installation
	Downloading PHP
	Patching the source code file
	Locating iSeries-specific files
	Preparing for the PHP compile
	Compile (make)
	Testing PHP
	Configuring HTTP Server (powered by Apache) to use PHP
	Creating a sample database
	Limitations
	PHP 4.2.2 errata

	Appendix B. Bringing Tomcat Version 5.5 to your iSeries server
	Software prerequisites
	Installation
	Installing Tomcat 5.5 on your iSeries server
	Installing the Tomcat 5.5 compatibility package
	Starting Tomcat 5.5 on the iSeries server
	Installing mod_jk connector
	Configuring your HTTP Server (powered by Apache)

	Appendix C. Bringing Zip and Unzip to OS/400 PASE and Qshell environments
	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

