YAMAHA

${ }_{L S} X_{2}$

ЛОКАЛЬНАЯ СЕТЬ Версия 3.0

РУКОВОДСТВО

Scanned by HansO 2005, original document supplied by Jetze Mellema

СОДЕРЖАНИЕ

Общие сведения о локальной сети 1
Назначение сети 1
Список дополнительных операторов Вейсика 2
Базовые функции ввода-вывода сети 21
Как обращаться к BIOS 21
Список функций сетьевой MSX-DOS BIOS 22
Classroom Network BIOS (for MSX-CP/M) 43
How to access the BIOS 43
NET-CP/M expansion BDOS calls 44
List of the MSX-CP/M network BIOS functions 47
Classroom Network Work Areas 62
Classroom Network System Materials 70
NUTL (network utility program) 72
Demonstration programs 74
Graphics demonstration program 83
$\mathbf{N S X}_{2}$ зарегистрированнь $и$ товарный знак фирмы ASCII

Общие сведения о локальной сети.

Назначение сети

Данная локальная сеть разработана для связи компьютеров в учебном классе. Она позволяет соеденять преподавателя и 15 учеников, давая при этом возможность обмена программами, данными и сообщениями, как между преподавателем и учеником, так и между двумя учениками. Сеть работает не только в Бейсике, но и в MSX-DISK-BASIC, MSX-DOS и MSX-CP/M.

Примечания: 1. Ниже, для простоты записи, вместо "компьютер преподавателя" и "компьютер ученика" будет употребляться "преподаватель" и "ученик".
2. Как и в предыдущих версиях сети, в Версии 3.0 при обращении ученика к дисководу, команды сети Бейсика временно отключаются.
3. Для работы сети используется специальное ОЗУ (2 кбайт) в сетьевом блоке, обычное ОЗУ при работе с сетью не используется. Для обращения к сетьевому ОЗУ, используйте карту памяти.
4. Вызов сетьевой BIOS (системы базовых функций ввода-вывода) из MSX-DOS или MSX-CP/M ссылается на рабочую область из 8 байт в основном ОЗУ.
5. Если при работающей сети невозможно запустить некоторые прикладные программы (например MSX Painter), воспользуйтесь командой NETEND, а после нее повторите вызов Вашей программы.

CALL HELP	выводит этот список с форматами.
CALL WHO	возвращает номер Вашего компьютера.
CALL SNDRUN	передача и запуск программы на Бейсике.
CALL SEND	передача программы на Вейсике.
CALL BSEND	передача программы в машинном коде или изображения с экрана.
CALL RECIEVE	прием программы на Бейсике.
CALL BRECIEVE	прием программы в машинных кодах или изображения с экрана.
CALL SNDMAIL	передача информации в почтовый ящик преподователя.
CALL RCVMAIL	прием информации из почтового ящика преподователя.
CALL MESSAGE	передача сообщения преподавателем.
CALL SNDCMD	передача команды.
CALL RUN	запуск программы на Вейсике у ученика.
CALL STOP	остановка программы на Бейсике у ученика
CALL POKE	запись числа в память к ученику или в сетьевое ОЗУ.
CALL PEEK	чтение числа из памяти у ученика и из сетьевого ОЗУ.
CALL PON	начало упорядоченного опроса.
CALL POFF	конец упорядоченного опроса.
CALL CHECK	проверка кто из учеников подключен к сети.
CALL TALK	передача сообщения учеником.
CALL ONLINE	включение в сеть (только после команды NETINIT)
CALL OFFLINE	отключение от сети (только после команды NETINIT).
CALL NETEND	выключение сети.
CALL NETINIT	инициализация сети.
CALL ENACOM	разрешение передачи учеником.
CALL DISCOM	запрещение передачи учеником.

HELP

[Формат] CALL HELP
[Функция] Показывает список команд с форматами.
Эта команда показывает список сетьевых команд Бейсика, которые используются при работе с сетью в классе. Экран должен быть в текстовом режиме. Так как наборы команд преподавателя и ученика различны, списки у них будут соответственно отличаться. У ученика, кроме того, указывается номер его компьютера. Эта функция у ученика работает вне зависимости от команды разрешения передачи (CALL ENACOM). Когда передача разрешена, в список добавляются команды: SEND, RECEIVE, BSEND, BRESEIVE и TALK.

WHO

[Формат] CALL WHO [(< переменная>)]
[Функция] Возвращает номер Вашего компьотера.
[Пример 1] CALL WHO (A) PRINT A 3

Эта команда возвращает номер компьютера, установленный при помощи переключателя в сетьевом блоке (для преподавателя - 0 , для учеников - 1-15). В этом примере, команда возвращает номер 3 ученика.
[Пример 2] CALL WHO 3
Когда переменная отсутствует, номер сразу выводится на экран. Для использования этого формата Вы должны быть в командном режиме.

BSEND

[Функция] CALL BSEND (<имя файла> [, [<номер ученика>] [, [$<$ начальный адрес $>][,[<$ конечный адрес $>][,[<S>]]]]$)
[Функция] Передача программ в машинном коде или изображения с экрана.
[Пример 1] CALL BSEN ("DATA.BIN",12,\&H8000)
Эта команда передает программу в машинных кодах или данные, записанные из Бейсика командой BSAVE или CALL BRECEIVE, по начальному адресу в память ученика, определенного номером. B этом примере файл "DATA.BIN" пересылается в память ученика номер 12 с начального адреса $\& \mathrm{H} 8000$. Если номер ученика не указан, программа или данные передается всем ученикам. Если не указан начальный адрес, программа или данные пересылаются с того адреса, с которого они были записаны.
[Пример 2] CALL BSEN (,12,\&H0100,\&H2000,S)
Когда Вы указываете $\langle S\rangle$, содержимое Вашего экрана (видеопамяти) копируется в видеопамять ученика с указанным номером. Перед передачей режим видеопроцессора в принимающем компьютере автоматически меняется на тот режим, в котором находится передающий. В этом примере содержимое видеопамяти преподавателя с адреса \& H 0100 до адреса $\& \mathrm{H} 2000$ передается по адресам с $\& \mathrm{H} 0100$ по $\& \mathrm{H} 2000$ на экран (в видеопамять) ученика номер 12. Когда номер ученика отсутствует, информация передается всем ученикам.

CALL BSEN (,12,,,S)
Когда используется $<S>$ и адреса не указаны, то вместо начального берется $\& H 0000$, а вместо конечного - $\& \mathrm{HFFFF}$.
[Пример 3] CALL BSEN ("VDAT.BIN",12,\&H0100,\&H2000,S)

Эта команда передает данные с экрана (из видеопамяти), записанные с помощью команд Бейсика BSAVE или CALL BRESEIVE с использованием $\langle S\rangle$, в область с начального по конечный адреса в видеопамять указаннофо ученика. Когда данные в видеопамять пересылаются из файла, режим видеопроцессора автоматически не устанавливается, т.е. $о н$ должен быть установлен до использования команды CALL BSEND. В этом примере данные из файла "VDATA.BIN" передаются по адресам с \&H0100 по $\& H 2000$ в видеопамять

ученика с номером 12. Если номер ученика не указан данные передаются всем ученикам. Если не указан начальный адрес данные будут пересылаться начиная с того адреса, с которого они были записанны. Если этот адрес больше чем конечный, то используется именно он, а конечный игнорируется. A если меньше, то данные будут посланны лишь до конечного адреса, указанного в команде CALL BSEN.

BRECEIVE

[Формат] CALL BRECEIVE (<имя файла> [,[<номер ученика>], [,[<начальный адрес>][,[<конечный адрес>][,<S>]]]]])
[Функция] Прием программы в машинных кодах или изображения с экрана.
[Пример 1] CALL BREC ("DATA.BIN",10,\&HA000,\&HB000)
Эта команда записывает программу в машинных кодах или данные из памяти, с начального адреса по конечный, в файл на диск. Формат для записи такой же, как и в команде Вейсика BSAVE, только стартовым адресом всегда является начальный. В этом примере содержимое памяти ученика номер 10 , с адреса $\& H A 000$ по $\& H B 000$, записывается в файл "DATA.BIN".
[Пример 2] CALL BREC (,10,\&H0100,\&H2000,S)
Когда используется $\langle\mathrm{S}\rangle$, содержимое экрана (видеопамяти) ученика с указанным номером принимается в видеопамять преподавателя. Перед этим видеопроцессор автоматически устанавливается в соответствующий режим. В этом примере содержимое видеопамяти ученика номер 10 с адреса \&H0100 по \& H 2000 пересылается по этим же адресам на экран (в видеопамять) преподавателя. При использовании $\langle\mathrm{S}\rangle$, если Вы не указываете начальный адрес, используется - \&H0000, а вместо конечного - \& HFFFF.
[Пример 3]

CALL BREC (" DATA.BIN ",12,\&H0100,\&H2000,S)

Содержимое экрана (видеопамяти) ученика принимается и записывается на диск. Формат для записи такой же, как и в команде Бейсика BSAVE при использовании $\langle S\rangle$. Так как записываемый файл (содержимое видеопамяти) не содержит информацию о режиме видеопроцессора, необходимо при использовании такого файла предварительно установить соответствующий режим. В этом примере данные с экрана (из видеопамяти) ученика номер 12 с адреса \&H0100 по \&H2000 записываются на диск, в файл с названием "VDATA.BIN".
При использовании $<\mathrm{S}\rangle$, если Вы не указываете начальный адрес, используется - \&H0000, а вместо конечного - \&HFFFF.

ENACOM

[Формат] CALL ENACOM ([< номер ученика >])
[Функция] Разрешает передачу учеником.
[Пример] CALL ENAC (12)

Эта команда разрешает указанному преподавателем ученику передачу в сеть. Этот пример разрешает связь ученику номер 12 , т.е. он может использовать команды CALL SEND, CALL RESEIVE, CALL BSEND, CALL BRESEIVE. При указании 0 передача в сеть разрешается всем ученикам. Ученик, которому передача разрешена, может посылать сообщения другим ученикам командой TALK.

DISCOM

[Формат] CALL DISCOM ([< номер ученика >])
[Функция] Запрещает передечу учеником.
[Пример] CALL ENAC (12)
Эта команда запрещает указанному преподавателем ученику передачу в сеть. Этот пример запрещает связь ученику номер 12 , т.е. он не может использовать команды CALL SEND, CALL RESEIVE, CALL BSEND, CALL BRESEIVE. При указании 0 передача в сеть запрещается всем ученикам. При начале работы с сетью, передача в сеть запрещена всем ученикам.

CHECK

[Формат]	CALL CHECK ([<переменная >] [, [<переменная >]])
[Функция]	Проверяет кто из учеников подключен к сети и кому из учеников разрешена передача в сеть.
[Пример 1]	CALL CHECK (A) PRINT BIN\$(A) 110110111101100
	Эта команда проверяет, кто из учеников подключен к сети и возвращает двоичное число, в котором младший разряд соответствует ученику номер 1 , следующий - номер 2 и т. д. Когда соответствующий бит равен 0 , это означает, что ученик подключен к сети, а когда равен 1 - отклочен от нее. В этом примере к сети подключены ученики номер 1, 2, 5, 10 и 13. Когда все ученики подключены, значение возвращаемой переменной равно 0 . То, что ученик отключен от сети означает: либо, что компьютер выключен или сеть физически от него отключена, либо, что это сделано программно при помощи команды CALL OFFLINE.
[Пример 2]	CALL CHECK (,B) PRINT BIN\$(B) 111111111101110
	Эта команда проверяет, кому из учеников разрешена передача в сеть, и возвращает двоичное число, в котором младший разряд соответствует ученику номер 1 , следующий - номер 2 и т. д. Когда соответствующий бит равен 0 , это означает, что передача в сеть этому ученику разрешена, а когда равен 1 - запрещена. В этом примере передача разрешена ученикам номер 1 и 5. Когда передача разрешена всем ученикам значение возвращаемой переменной равно 0 . Разрешение и запрещение передачи учеником в сеть производится соответственно командами CALL ENACOM и CALL DISCOM.

NETINIT

[Формат] CALL NETINIT

[Функция] Инициализация сети.
[Пример] CALL NETINIT
Эта команда используется для начала работы с сетью, если та не была инициализирована при включении компьютеров. В этом случае без подачи преподавателем этой команды сеть работать не будет. Обычно сеть инициализируется при вклюочении.

NETEND

[Формат] CALL NETEND
[Функция] Отключение сети.
[Пример] CALL NETEND
Эта команда используется для отключения сети, когда Вы хотите работать с прикладной программой, которая не может быть вызвана при работающей сети.

POKE

[Формат]	CALL POKE (< число>,<адрес>,<номер ученика>,<N>)
[Функция]	Запись числа в память ученика или в сетьевое ОЗУ.
[Пример 1]	CALL POKE (100,\&H7800) для преподавателя/ученика
	Эта команда записывает указанное число по указанному адресу в сетьевое ОЗУ (\&H7800-\&H7FFF). В этом примере 100 записывается по адресу сетьевых сообщений $\& H 7800$.
[Пример 2]	CALL POKE (100,\&HB000,1) для преподавателя
	Эта команда записывает данное число по указанному адресу в память означенному ученику. Если в качестве номера указан 0 , то число записывается в память всем ученикам. В этом примере 100 записывается по адресу $\& \mathrm{HB} 000$ в память ученику номер 1.
[Пример 3]	CALL POKE ($100, \& \mathrm{H} 7 \mathrm{~A} 00,1, \mathrm{~N})$ для преподавателя
	Эта команда записывает данное число по указанному адресу в сетьевое ОЗУ (\&H7800-\&H7FFF) означенному ученику. В этом примере 100 записывается по адресу \&H7A00 в сетьевое ОЗУ ученику номер 1.

PEEK

[Формат]	CALL PEEK (< число>,<адрес>,<номер ученика>,<N>
[Функция]	Читает число из памяти ученика или из сетьевого ОЗУ.
[Пример 1]	CALL PEEK (A,\&H7800) для преподавателя/ученика
	Эта команда читает ячейку по данному адресу в сетьевом ОЗУ (\&H7800-\&H7FFF) и возвращает в указанной переменной. В этом примере читаются данные из ячейки сетьевых сообщений с адресом \&H7800 и возвращаются в переменной А.
[Пример 2]	CALL PEEK (A,\&HB000,1) для преподавателя
	Эта команда читает данные по данному адресу из памяти указанного ученика и возвращает значение в заданной переменной. Если в качестве номера указан 0 , то генерируется ошибка. В этом примере читаются данные из ячейки памяти с адресом \&HB000 ученика номер 1 и возвращаются в переменной A.
[Пример 3]	CALL PEEK (A,\&H7A00,1,N) для преподавателя
	Эта команда читает данные по данному адресу в сетьевом ОЗУ (\&H7800-\&H7FFF) указанного ученика и возвращает значение в заданной переменной. В этом примере читаются данные из ячейки сетьевого ОЗУ с адресом $\& H B 000$ ученика номер 1 и возвращаются в переменной А.

MESSAGE

[Формат] CALL MESSAGE (< сообшение > [, [< номер ученика>]])
[Функция] Передача сообщения преподавателем.
[Пример] CALL MESSAGE ("Hello !!",10)

Эта команда передает сообщение преподавателя одному или нескольким ученикам. Сообщение имеет максимальную длину 56 символов, но, когда оно высвечивается в 24 строке на экране ученика, его длина зависит от того, в каком режиме сейчас ученик. Если в момент передачи ученик находится в графическом режиме, то сообщение будет выведено к нему на экран, как только он выйдет в текстовой режим. Если параметр <номер ученика> пропущен, сообщение передается всем ученикам. Этот пример высвечивает сообщение "Hello !!" в 24 строке на экране у 10 ученика. Чтобы сообщение исчезло нажмите пробел.

Примечание: Если у ученика выключена индикация функциональных клавиш (режим KEYOFF), то сообщение будет двигаться вверх по мере заполнения экрана, т.е. будет рассматриваться как обычный текст.

TALK

[Формат] CALL TALK (< сообщение> [, [<переменная >]])
[Функция] Передача сообщения учеником.
[Пример] CALL TALK ("Не могу понять",B)
Когда ученику не разрешена передача, он может послать сообщение только преподавателю, а когда разрешена - и другим ученикам. Пользуясь этой командой, ученик должен определить номер ученика/преподавателя, используя переменную. Если значение переменной равно 0 , сообщение передается преподавателю. Если от 1 до 15 - соответствующему ученику. Если передача прошла успешно, в переменной возвращается 0 , если нет - 255 . Сообщение имеет максимальную длину 56 символов, но, когда оно высвечивается в 24 строке на экране, его длина зависит от того, в каком режиме сейчас компьютер. В этом примере сообщение "Не могу понять" передается преподавателю/ученику, определенному в переменной В.

SEND

[Формат] CALL SEND [([[<имя файла>] [, [<номер ученика>]]])]
[Функция] Пересылает ученику программу на Бейсике.
[Пример 1] CALL SEND ("A:TEST.BAS",0)

Эта команда считывает заданную программу на Бейсике с диска и посылает ее указанному ученику. Если ученик работает с программой на Бейсике, его программа будет стерта и он получит новую. Во время передачи у него на экране будет высвечено сообщение "Wait" (ждите), а как только пересылка будет закончена - сообщение "ОК". Если номер ученика опускается или равен 0 - программа передается всем ученикам. Эта команда не стирает содержимое памяти преподавателя и может быть использована в программном режиме. В этом примере программа на Бейсике "TEST.BAS" пересылается всем ученикам.
[Пример 2] CALL SEND (,10)

Эта команда передает программу, находящуюся в памяти преподавателя. В этом примере программа преподавателя пересылается ученику номер 10. Это команда может быть использована в программном режиме. Во время передачи, на экране ученика будет высвечено сообщение "Wait" (ждите). Если номер ученика опускается, программа передается всем ученикам.

SNDRUN

[Формат] CALL SNDRUN [([\ll имя файла >] [,<номер ученика >]]))]
[Функция] Пересылает ученику программу на Вейсике и запускает ее.
[Пример 1] CALL SNDRUN ("A:TEST.BAS",0)
Эта команда считывает данную программу на Бейсике с диска, посылает ее указанному ученику и запускает ее. Если ученик работает с программой на Бейсике, его программа будет стерта и он получит новую, которая и будет запущена. Во время передачи, на экране ученика будет высвечено сообщение "Wait" (ждите). Как только программа будет получена она сразу запускается. Если номер ученика опускается или равен 0 программа передается всем ученикам. Эта команда не стирает содержимое памяти преподавателя и может быть использована в программном режиме. В этом примере программа на Бейсике "TEST.BAS" пересылается и запускается у всех учеников.
[Пример 2] CALL SNDRUN $(, 10)$
Эта команда передает программу, находящуюся в памяти преподавателя и запускает ее у ученика. В этом примере программа преподавателя пересылается ученику номер 10 и запускается. Это команда может быть использована в программном режиме. Во время передачи на экране ученика будет высвечено сообщение "Wait" (ждите). Если номер ученика опускается, программа передается и запускается у всех учеников.

RECEIVE

[Формат] CALL RECEIVE ([< имя файла>], <номер ученика>)

[Функция] Принимает от ученика программу на Вейсике.
[Пример 1] CALL RECE ("B:TEST.BAS,14)

Эта команда принимает программу на Бейсике от указанного ученика и записывает ее на диск в заданный файл. Команда не стирает содержимое памяти преподавателя и может быть использована в программном режиме. Формат, в котором записывается файл такой же, как и при команде SAVE Бейсика. В этом примере программа ученика номер 14 записывается в файл "TEST.BAS". Если файл с таким именем уже есть на диске, старый будет стерт и взаменнего будет записана программа ученика. Если программа ученика в момент подачи команды работала, она будет остановлена и высветится сообщение "Wait" (ждите), а после окончания приема ее преподавателем - "OK".
[Пример 2] CALL RECE (,1)

Эта команда пересылает программу ученика в памлть преподавателя, стирая при этом программу находящуюся в памяти. Если команда используется в коммандном режиме, то старая программа прерывается в строке с этой командой, стирается, а взаменнее принимается программа ученика, после чего, высвечивается "ОК".
Во время приема на экране ученика высвечивается сообщение "Wait", а после чего - "OK". В этом примере программа ученика номер 1 пересылается в текстовом области памяти перполавателя.

SNDMAIL

[Формат] CALL SNDMAIL [([< номер ученика>])]
[Функция] Передает содержимое почтового ящика.
Почтовый ящик - это область памяти для передаваемой информации, которая резервируется как в памяти ученика, так и преподавателя. В каждом компьютере есть почтовый ящик для передачи и для приема. Под каждую из этих областей выделяется по 256 байт. Адреса почтовых ящиков записаны в рабочей области (смотрите соответствующий раздел). Передача заключается в пересылке содержимого передаточного ящика преподавателя в приемный ящик ученика. Почтовый ящик, таким образом - область для передачи данных. Как Вы ее будете использовать - полностью зависит от Bac.
[Пример 1] 10 FOR $\mathrm{L}=1$ TO 5
20 CALL SNDM (L) 30 NEXT 1

Эта команда копирует содержимое передающего ящика преподавателя в принимающие ящики учеников. В этом примере - копируется ученикам 1-5.
[Пример 2] CALL SNDM
Когда номер ученика пропущен, содержимое ящика преподавателя пересылается в ящики всех учеников, как в этом примере.

RCVMAIL

[Формат] CALL RCVMAIL (<номер ученика>)
[Функция] Принимает содержимое ящика.
[Пример] CALL RCVM (5)
Эта команда принимает содержимое передающего ящика ученика и записывает его в приемный ящик преподавателя. В этом примере - у пятого ученика.

SNDCMD

```
[Формат] CALL SNDCMD ( <команда> [, [ <номер ученика> ] ])
```


[Функция] Передает команду на Бейсике.

[Пример 1] CALL SNDC ("KEY OFF",3)

Эта команда передает указанному ученику команду на Бейсике и выполняет ее. В конце команды всегда добавляется код перевода каретки (CR). Если номер ученика пропущен, команда передается всем ученикам. В этом примере в результате выполнения команды, у ученика номер 3 перестают светиться функциональные клавиши.
Если команда набрана с ошибкой или это вообще не команда Вейсика, она все равно будет передана в компьютер ученика и он попытается ее выполнить. В этом случае ученик получит сообщение об ошибке. Будте внимательны, т.к. на компьютере преподавателя никакого сообщения не будет. Если во время передачи команды, у ученика работает программа, она будет остановленна, после чего передаваемая команда будет принята и выполнена.
[Пример 2] $10 \mathrm{~A} \$=$ "COLOR 15,4,7"
$20 \mathrm{~B} \$=\mathrm{CHR} \(13)
$30 \mathrm{C} \$=$ "CLS"
40 CALL SNDC ($\mathrm{A} \$+\mathrm{B} \$+\mathrm{C} \$)$

Можно посылать несколько команд одновременно. В этом примере у всех учеников выполняется команда "COLOR $15,4,7$ ", а затем - команда "CLS". При этом между отдельными командами надо вставлять код перевода каретки (CR).

RUN

[Формат] CALL RUN [([[<номер ученика >] [, [<номер строки > $]$])]
[Функция] Запускает программу на Вейсике у ученика.
[Пример 1] CALL RUN $(1,100)$

Эта команда запускает программу указнного ученика с заданного номера строки. В этом примере программа запускается с 100 строки у 1 ученика. Если в программе ученика не окажется 100 строки, эта команда вызовет ошибку, сообщение о которой появится на экране ученика. Если программа ученика была уже запущена, то она останавливается и начинается с указанной строки.
[Пример 2] CALL RUN
Когда номер строки опускается, программа запускается со своей первой строки. Когда опускается номер ученика, эта команда вызывает запуск программ на Бейсике у всех учеников.

STOP

[Формат] CALL STOP [(<номер ученика>)]
[Функция] Останавливает программу на Бейсике.
[Пример] CALL STOP (5)
Когда у указанного ученика запущена программа на Бейсике, эта команда останавливает ее. Когда номер ученика не указан, эта команда вызывает остановку программ на Бейсике у всех учеников. В этом примере останавливается программа у ученика номер 5. Действия вызываемые этой командой аналогичны действию CTRL-STOP. Например если ученик находится в режиме ожидания прямого ввода, то при выполнении этой команды будет переведена строка, если в момент передачи команды у ученика выполняется команда LIST, то вывод текста программы будет прерван, и т. д.

PON

[Формат] CALL PON
[Функция] Начинает упорядоченный опрос.
[Пример] CALL PON

Преподователь использует эту команду для начала упорядоченного опроса учеников. Помните, что если этот опрос не активирован, невозможно определить кто из учеников подключен к сети, а также невозможна какая-либо связь между учениками (TALK и т.д.). При инициализации сети, в том числе при включении компьютера преподавателя, сеть устанавливается в режим опроса.

POFF

[Формат] CALL POFF
[Функция] Прекращает упорядоченный опрос.
[Пример] CALL POFF
Эта команда прекращает упорядоченный опрос учеников. В этом режиме ученики не могут посылать сообщения при помощи команды TALK, а также невозможна всякая связь между учениками.

ONLINE

[Формат] CALL ONLINE
[Функция] Включает ученика в сеть.

[Пример] CALL ONLINE

Эта команда включает ученика в сеть после того, как он был отключен от нее при помощи команды CALL OFFLINE. Если ученик не включен в сеть какая-либо связь с ним невозможна. При включении компьютер подключается к сети.

OFFLINE

[Формат] CALL OFFLINE

[Функция] Отключает ученика от сети.
[Пример] CALL OFFLINE
Эта команда отключает ученика от сети. Когда компьютер отключен от сети, он не может принять команду от преподавателя. Таким образом, эта команда используется, когда ученик хочет работать сам, без каких-либо прерываний от преподавателя. Чтобы снова включится в сеть, ученик должен использовать команду CALL ONLINE.

Данная сеть имеет систему стандартных функций ввода-вывода (BIOS), включающую в себя различные функции.
Обращаясь прямо к ней можно работать с сетью из программ на машинном языке в MSX-DOS.

Как обращаться к BIOS.
Для обращения к BIOS необходимо поместить номер функции в регистр C, первый адрес блока параметров в регистровую пару DE , а затем вызвать подпрограмму (CALL) по адресу F 989 H . Перед вызовом подпрограммы по этому адресу, неоходимо обратиться к подпрограмме по адресу F 98 EH , которая инициализирует сеть в MSX-DOS. Без инициализации, вызов любой стандартной функции вызовет ошибку.

Для окончания работы с сетью обратитесь к подпрограмме по адресу F984H. Этот обращение возможно только если система имеет сетьевое ПЗУ. Вы можете узнать, есть ли оно у Вас, проверив находится ли по адресу, который Вы вызываете, rst30 (F 7 H) или проверив идентификатор "RNT", который должен находится по адресам $4040 \mathrm{H}-4042 \mathrm{H}$ в сетьевом ПЗУ.

Таким образом:

Инициализация сети	F98EH
Oбращение к BIOS	F989H
Конец работы с сетью	F 984 H

Номер функции в регистре С
01H-1AH
Начальный адрес блока
параметров в регистровой паре DE начальный адерес блока параматров из 8 байтов.

Помните, что некоторые части BIOS используются только преподавателем, некоторые - только учеником, а некоторые как тем, так и другим. (Не забудьте также о том, что во время обращения ученика к диску с помощью сетьевого MSXDOS BIOS возможны паузы в работе системы).

Список функций сетъевой MSX-DOS BIOS.

Номер и название Функция

0	INIT	: Инициализация сеть.
1	INTON	: Разрешение прерываний по сети.
2	INTOFF	: Запрещение прерываний по сети.
3	PON	: Начало упорядоченного опроса учеников.
4	POFF	: Конец упорядоченного опроса учеников.
6	WHO	: Проверка номера.
8	SHEX	: Пересылка программы на машинном языке.
9	SHEXS	: Пересылка изображения (данных видеопамяти).
11	RHEX	: Прием программы на машинном языке.
12	RHEXS	: Прием изображения (данных видеопамяти).
13	MESS	: Передача сообшения от преподавателя ученику.
14	TALK	: Передача сообщения от ученика преподавателю.
15	SNDM	: Передача содержимого почтового ящика.
16	RNDM	: Прием содержимого почтового ящика.
17	POKE	: Запись в память.
18	PEEK	: Чтение из памяти.
19	SNDCMD: Передача команды.	
22	BREAK	: Передача кода остановки программы.
23	CHECK	: Проверка кто подключен к сети.
24	ENDNET: Конец работы с сетью.	
25	ENACOM: Разрешение связи между учениками.	
26	DISCOM : Запрещение связи между учениками.	

Функции $5,7,10,20,21$ не используются в MSX-DOS, т.к. они предназначены для работы в Бейсике.

5	HELP	: Высвечивает сетьевые команды Бейсика.
7	SEND	: Передача программы на Бейсике.
10	RECV	: Прием программы на Бейсике.
20	RUN	: Запуск программы на Бейсике.
21	STOP	: Остановка программы на Бейсике.

Cписок функций сетъевой MSX-DOS BIOS.

Номер и название

Функция

 Функции $5,7,10,20,21$ не используются в MSX-DOS, т.к. они предназначены для работы в Бейсике.

?: 467E,F18F,..

MSX-2 CP/M v2.2 NET-SHELL version

Classroom Network version 3.0

NPIP OPERATION MANUAL

[Функция] Разрешает прерывания по сети.
[Код] $\quad \mathrm{C}=01 \mathrm{H}$

[Возвращает]

Эта функция разрешает прерывания по работе с сетью. Без этой команды какая-либо связь в классе невозможна. После ее вызова компьютер готов к работе с сетью.

ФУНКЦИЯ 2: INTOFF

Преподаватель и ученик

[Функция] Запрещает прерывания по сети.
[Код]
$\mathrm{C}=02 \mathrm{H}$
[Возвращает]

Abstract

Эта функция запрещает прерывания по работе с сетью. Так как связь в классе поддерживается через прерывания процессора, когда они запрещены, какая-лйбо связь невозможна. Эта функция используется, если при работающей сети возникает необходимость ее отключить. Для того, чтобы снова начать работать с сетью, используйте Функцию 1 (INTON).

[Функция] Начинает упорядоченный опрос учеников.
[Код] $\quad \mathrm{C}=03 \mathrm{H}$

[Возвращает]

Эта функция начинает упорядоченный опрос учеников. Вез него невозможно правильно определить, кто из учеников подключен к сети (т.е. правильность работы Функции 24 CHECK не гарантируется), невозможен ткаже прием сообщений от учеников (Функция TALK). Помните, вызов Функции 1 (INTON), не означает что опрос начат, т.е. при ее вызове опрос отключен и его надо активировать отдельно.
[Функция] Прекращает упорядоченый опрос учеников.
[Код] $\quad \mathrm{C}=04 \mathrm{H}$
[Возвращает]

Прекращает упорядоченный опрос учеников. Для его начала используйте Функцию 3 (PON).
[Функция] Высвечивает список сетьевых команд Бейсика.
[Код]
$\mathrm{C}=05 \mathrm{H}$
[Возвращает]

Эта функция выводит на экран список сетьевых команд Бейсика. Этот список различен для преподавателя и ученика (см. выше). Для ученика эта функция высвечивает также его номер. Экран должен быть в текстовом режиме.

ФУНКЦИЯ 6: WНО
Преподаватель и ученик
[Функция] Возвращает номер Вашего компьютера.
[Код] $\quad \mathrm{C}=06 \mathrm{H}$
[Возвращает] $\mathrm{A}=$ номер преподавателя или ученика
$00 \mathrm{H}=$ преподаватель
$01 \mathrm{H}-0 \mathrm{FH}=$ ученики

Эта функция возвращает в регистре A, номер Вашего компьютера, установленный переключателем в сетьевом блоке. В классе не может быть несколько компьютеров с одинаковыми номерами, если это не так, воспользуйтесь переключателями в сетьевом блоке.
[Функция] Передает программу на Бейсике.

[Код]

$\mathrm{C}=07 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
00 H = всем ученикам
$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
PAR 2-3 = адрес блока контроля файлов (FCB)
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция читает программу на Вейсике с диска и пересылает ее ученику или всем ученикам. Файл с этой программой определяется в блоке контроля файлов (FCB) и должен быть открыт до вызова этой функции. Ученик должен находиться в режиме Бейсика.
[Функция 1] Передает программу на машинном языке из памяти.
[Код]

$$
\begin{aligned}
\mathrm{C}= & 08 \mathrm{H} \\
\mathrm{DE}= & \text { адрес блока параметров } \\
& \operatorname{PAR~} 1=\text { номер ученика } \\
& 00 \mathrm{H}-\quad=\text { всем ученикам } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика }
\end{aligned}
$$

PAR $2=0$
PAR 3-4 = начальный адрес ученика
PAR 5-6 = начальный адрес преподавателя
PAR 7-8 = конечный адрес преподавателя
[Bозвращает] CARRY OFF - функция выполнена нормально.
CARRY ON - ошибка.

Эта функция пересылает программу на машинном языке или данные из памяти преподавателя в память ученика или всех учеников.
[Функция 2] Передает файл на машинном языке.
[Код]

$$
\begin{aligned}
\mathrm{C}= & 08 \mathrm{H} \\
\mathrm{DE}= & \text { адрес блока параметров } \\
& \operatorname{PAR~} 1=\text { номер ученика } \\
& \quad 00 \mathrm{H} \quad=\text { всем ученикам } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика }
\end{aligned}
$$

PAR 2 л любое значение кроме 0
PAR 3-4 = начальный адрес у ученика (если указать0FFFFH - будет начальный адрес файла)
PAR 5-6 = адрес блока контроля файлов (FCB)
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция читает программу на машинном языке с диска и пересылает ее ученику или всем ученикам. Файл с этой программой определяется в блоке контроля файлов (FCB) и должен быть открыт до вызова этой функции.
[Функция 1] Передает изображение (данные видеопамяти).
[Код]

$$
\begin{aligned}
\mathrm{C}= & 09 \mathrm{H} \\
\mathrm{DE}= & \text { адрес блока параметров } \\
& \operatorname{PAR~} 1=\text { номер ученика } \\
& 00 \mathrm{H} \quad=\text { всем ученикам } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика }
\end{aligned}
$$

PAR $2=0$
PAR 3-4 = начальный адрес у ученика
PAR 5-6 = начальный адрес у преподавателя
PAR 7-8 = конечный адрес у преподавателя
[Возвращает] CARRY OFF - функция выполнена нормально.
CARRY ON - ошибка.

Эта функция пересылает изображение (данные видеопамяти) из видеопамяти преподавателя в видеопамять ученика или всех учеников.
[Функция 2] Передает файл на машинном языке.
[Код]
$\mathrm{C}=09 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
00 H = всем ученикам
$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
PAR 2 = любое значение кроме 0
PAR 3-4 = начальный адрес ученика (если указать 0 FFFFH - будет начальный адрес файла) будет начальный адрес файла)
PAR 5-6 = адрес блока контроля файлов (FCB)
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция читает изображение (данные видеопамяти) с диска и пересылает его ученику или всем ученикам. Файл с этими данными определяется в блоке контроля файлов (FCB) и должен быть открыт до вызова этой функции.
[Функция] Принимает программу на Бейсике.
[Код]
$\mathrm{C}=0 \mathrm{AH}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
01H - 0FH = номер отдельного ученика
PAR 2-3 = адрес блока контроля файлов (FCB)
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция принимает программу на Бейсике у указанного ученика и записывает ее на диск. Файл для программы на Бейсике должен быть определен в блоке контроля файлов (FCB) до вызова этой функции. Ученик должен быть в режиме Бейсика.

[Функция 1]	Принимает программу на машинном языке в память.
[Код]	$\mathrm{C}=0 \mathrm{BH}$
	$\mathrm{DE}=$ адрес блока параметров
	PAR 1 = номер ученика
	$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
	PAR $2=0$
	PAR 3-4 = начальный адрес ученика
	PAR 5-6 = конечный адрес ученика
	PAR 7-8 = начальный адрес преподавателя
[Возвращает]	CARRY OFF - функция выполнена нормально.
	CARRY ON - ошибка.
	Эта функция принимает программу на машинном языке или данные из памяти ученика в память преподавателя.
[Функция 2]	Передает программу на машинном языке в файл на диске.
[Код]	$\mathrm{C}=0 \mathrm{BH}$
	$\mathrm{DE}=$ адрес блока параметров
	PAR 1 = номер ученика
	$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
	PAR $2=$ любое значение кроме 0
	$\operatorname{PAR} 3-4=$ начальный адрес ученика
	PAR 5-6 = конечный адрес ученика
	PAR 7-8 = адрес блока контроля файлов (FCB)
[Возвращает]	CARRY OFF - функция выполнена нормально.
	CARRY ON - ошибка.
	Эта функция передает программу на машинном языке из памяти ученика и записывает ее на диск. Файл для этой программы должен быть определен в блоке контроля файлов (FCB) и открыт до вызова этой функции.

[Функция 1] Принимает изображение (данные видеопамяти).

[Код]
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция принимает изображение (данные видеопамяти) из видеопамяти ученика в видеопамять преподавателя.
[Функция 2] Передает изображение (данные видеопамяти) в файл на диске.
[Код] $\mathrm{C}=0 \mathrm{CH}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
PAR 2 = любое значение кроме 0
PAR 3-4 = начальный адрес ученика
PAR 5-6 = конечный адрес ученика
PAR 7-8 = адрес блока контроля файлов (FCB)
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция передает изображение (данные видеопамяти) ученика и записывает его на диск. Файл для этой программы должен быть определен в блоке контроля файлов (FCB) и открыт до вызова этой функции.
[Функция] Передает сообщение от учителя одному или нескольким ученикам.
[Код]

$$
\begin{aligned}
& \mathrm{C}=0 \mathrm{DH} \\
& \mathrm{DE}=\text { адрес блока параметров } \\
& \text { PAR } 1 \text { = номер ученика } \\
& 00 \mathrm{H} \text { = всем ученикам } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика } \\
& \text { PAR } 2-3=\text { адрес памяти, начиная с которого } \\
& \text { записано сообщение } \\
& \text { PAR 4-5 = длина сообщения }
\end{aligned}
$$

[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция передает сообщение учителя одному или всем ученикам. Если ученик находится в режиме Бейсика, сообщение будет выведено на экран. Если же ученик в MSXDOSe сообщение выведено не будет и для его обработки необходима специальная подпрограмма. Ее работа возможна, так как при принятии сообщения, выставляется специальный флаг, который и должен обрабатываться подпрограммой.
[Функция] Передает сообщение ученика учителю.

[Код]

$$
\begin{aligned}
& \mathrm{C}=0 \mathrm{EH} \\
& \mathrm{DE}=\text { адрес блока параметров } \\
& \text { PAR } 1 \text { = номер ученика } \\
& 00 \mathrm{H}=\text { преподаватель } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика } \\
& \text { PAR 2-3 = адрес памяти, начиная } с \text { которого } \\
& \text { PAR 4-5 = длина сообщения }
\end{aligned}
$$

[Возвращает] A $\begin{aligned} \text { A } & 00 \mathrm{H} \text { - сообщение записано нормально } \\ & \mathrm{FFH} \text { - осталось старое сообщение }\end{aligned}$
CARRY ON ошибка

Если ученикполучил разрешениеучаствовать всвязи посети, тоон может посылать сообщенияпреподавателю идругим ученикам. Еслнразрешение недано,то сообщенияот негомогут посылатьсятолько преподавателю.
(Для стираниясообщений нажимаютна любуюклавишу.)
[Функция] Передает содержимое почтового ящика.
[Код]
$\mathrm{C}=0 \mathrm{FH}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
00 H = всем ученикам
$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
[Bозвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция копирует содержимое преподавательского почтового ящика для передачи, в приемный почтовый ящик указанного или всех учеников. Изначально длина ящика равна 256 байтам, но она может быть изменена, указанием новой длины в рабочей области. Будьте внимательны, так как если длина передающего ящика преподавателя больше, чем приемного ящика ученика, то часть информации будет потеряна. Использование почтовых ящиков полностью зависит от Bac.

ФУНКЦИЯ 16 : RCVMAIL

[Функция] Принимает содержимое почтового ящика.
[Код]

$$
\begin{aligned}
\mathrm{C}= & 10 \mathrm{H} \\
\mathrm{DE}= & \text { адрес блока параметров } \\
& \text { PAR } 1=\text { номер ученика } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика }
\end{aligned}
$$

[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция принимает содержимое передающего почтового ящика ученика и записывает его в приемный ящик преподавателя. Количество информации зависит от длины передающего ящика ученика. Будьте внимательны, так как если длина его передающего почтового ящика больше, чем приемного ящика преподавателя, часть информации будет потеряна.
[Функция] Записывает в память.
[Код]
$\mathrm{C}=11 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
00 H = всем ученикам
$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
PAR 2-3 = адрес ячейки
PAR 4 = значение
PAR 5 = выбор
00 H - память ученика
01 H - сетьевая память ученика
02 H - Ваша сетьевая память
[Возвращает] CARRY OFF - фун்кция выполнена нормально.
CARRY ON - ошибка.

Эта функция, в зависимости от параметра PAR5, записывает указанное значение в обычную или сетьевую память отдельного или всех учеников, или (как для преподавателя, так и для ученика) записывает это значение в сетьевую память Вашего компьютера. Функция не проверяет в какое именно место памяти она пишет, и всегда выполняется нормально если только по указанному адресу не находиться ПЗУ или вообще отсутсвует память.

[Функция]	Читает из памяти.
[Код]	$\begin{aligned} \mathrm{C}= & 12 \mathrm{H} \\ \mathrm{DE}= & \text { адрес блока параметров } \\ & \text { PAR } 1= \\ & \quad \text { номер ученика } \\ & \text { PAR } 2-3= \\ & \text { адрес ячейки } 5 \\ & =\text { выбор } \\ & 00 \mathrm{H} \text { - память ученика } \\ & 01 \mathrm{H} \text { - сетьевая память ученика } \\ & 02 \mathrm{H}-\text { Ваша сетьевая память } \end{aligned}$
[Возвращает]	$\mathrm{A}=$ значение записанное по данному адресу. CARRY OFF - функция выполнена нормально. CARRY ON - ошибка. Эта функция, в зависимости от параметра PAR5, читает число, записанное по указанному адресу, из обычной или сетьевой памяти отдельного или всех учеников, или (как для преподавателя, так и для ученика) читает это значение из сетьевой памяти Вашего компьютера. Эта функция всегда выполняется нормально, кроме тех случаев, когда память по указанному адресу отсутствует.

ФУНКЦИЯ 19 : SNDCMD

[Функция] Передает команду на Бейсике.
[Код]
$\mathrm{C}=13 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров
PAR 1 = номер ученика
$00 \mathrm{H}=$ всем ученикам
$01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
PAR 2-3 = адрес памяти, начиная c которого записана команда
PAR 4-5 = длина команды
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция передает одному или всем ученикам команду на Бейсике и выполняет ее. После приема команды у ученика ее в конце прибавляется код возврата каретки (CR). Ученик(-и) должны быть в режиме Бейсика (эта команда может и не быть командой Бейсика, но если интерпритатор ее не поймет, у ученика появится сообщение об ошибке).
$\mathrm{C}=14 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров

$$
\text { PAR } 1 \text { = номер ученика }
$$

$$
00 \mathrm{H} \quad=\text { всем ученикам }
$$

$$
\text { 01H }-0 \mathrm{FH}=\text { номер отдельного ученика }
$$

PAR 2-3 = номер стартовой строки (если указан OFFFFH - первая строка программы)
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция запускает программу на Бейсике отдельного или всех учеников. Ученик(-и) должны быть в режиме Бейсика.
[Функция] Останавливает программу на Бейсике.
[Код]
$\mathrm{C}=15 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров PAR 1 = номер ученика

$$
00 \mathrm{H} \quad=\text { всем ученикам }
$$

$$
01 \mathrm{H}-0 \mathrm{FH}=\text { номер отдельного ученика }
$$

[Возвращает] CARRY OFF - функция выполнена нормально.
CARRY ON - ошибка.

Эта функция производит такое же действие, как если бы ученик нажал CTRL-STOP. Если ученик находится в режиме Бейсика происходит остановка программы или переход на начало следующей строки (в командном режиме). Если ученик находится в MSX-DOSe, то команда игнорируется.

ФУНКЦИЯ 22 : ВREAK
Преподаватель
[Функция] Передает код остановки.
[Код] $\quad \mathrm{C}=16 \mathrm{H}$
[Возвращает]
Эта функция посылает ученикам код остановки. Когда их компьютеры получают этот код во время связи, они сбрасывают все полученные до этого данные и становятся готовыми к приему.

[Функция] Проверяет, кто из учеников подключен к сети.

[Код]
[Возвращает]
$\mathrm{C}=17 \mathrm{H}$
$\mathrm{HL}=$ побитовая информация, кто подключен к сети.
H

0 : включен (ONLINE)
1: отключен (OFFLINE)
i...................................... \rightarrow всегда 0
$\mathrm{DE}=$ побитовая информация, кому разрешена работа с сетью.

D
BIT \quad F E D C B A 9 8 $\quad 7 \quad 6 \quad 5431210$

Эта функция проверяет, кто из учеников подключен к сети, кому из них разрешена связь с другими учениками. То что ученик отключен от сети означает, что его компьютер выключен или физически отключен от сети. Эта информация обновляется в каждом цикле упорядоченного опроса, если же опрос выключен, хранится последняя, полученная до его отключения информация. Информация о том, кому разрешена связь с другими учениками, зависит только от функций ENACOM и DISCOM.

[Функция]	Заканчивает работу сети.
[Код]	$\mathrm{C}=18 \mathrm{H}$
[Возвращает]	CARRY OFF - функция выполнена нормально. CARRY ON - ошибка
	Эта функция аналогична вызову подпрограммы по адресу F98EH, заканчивающей работу с сетью. Выключение сети бывает необходимо для работы с некоторыми прикладными программами, вызов которых невозможен при работающей сети. Для включения сети используйте вызов подпрограммы по адресу F98EH.

[Функция] Разрешает связь ученикам.
[Код]
$\mathrm{C}=19 \mathrm{H}$
$\mathrm{DE}=$ адрес блока параметров PAR1 = номер ученика
00 H = всем ученикам $01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция разрешает отдельному или всем ученикам связь между собой.
[Функция] Запрещает связь ученикам.
[Код] $\mathrm{C}=1 \mathrm{AH}$
$\mathrm{DE}=$ адрес блока параметров $\begin{aligned} \text { PAR1 }= & \text { номер ученика } \\ & 00 \mathrm{H}=\text { всем ученикам }\end{aligned}$ $01 \mathrm{H}-0 \mathrm{FH}=$ номер отдельного ученика
[Возвращает] CARRY OFF - функция выполнена нормально. CARRY ON - ошибка.

Эта функция разрешает отдельному или всем ученикам связь между собой.

Classroom Network BIOS (for MSX-CP/M)

The classroom network has a basic input/output system (BIOS) with a variety of functions. It is possible to carry out telecommunications with machine language programs on the MSX by accessing this BIOS directly.

How to access the BIOS

The BIOS is accessed by setting the function number in the C register, the lead address for the parameters in the DE register, and calling address 05 H . It is necessary to call the MSX-CP/M network initialization routine at address F97FH before calling address 05 H . Unless this is done, normal function calls will result in errors.

To end the machine language network, call address $\operatorname{F984H}$. These call addresses can only be used when the system has the classroom network ROM. You can check whether the system has the classroom network ROM by checking whether or not the call addresses start with F7H or by checking whether the 3-byte ID "RNT" is written into addresses 4040 H through 4042 H of the classroom network ROM.

Network initialization	$=$ address F97FH
Network BIOS entry	$=$ address 05 H
Network ending	$=$ address F 984 H

The function numbers for the C register The parameter address for the DE register

$$
=01 \mathrm{H}-12 \mathrm{H}
$$

$=$ the start address for an 8-byte parameter

Note that some parts of the BIOS can only be used by the teacher, some parts can only be used by the students, and some parts can be used by either the teacher or the students.

NET-CP/M Expansion BDOS Calls

Expansion BDOS calls are made exactly the same way as CP/M BDOS calls with Call 5 by setting the parameters in the registers.

- Set the function number in the C register.
- Set the other party's drive number in the B register.
- Set the FCB address in the DE register.
(FCBs for CP/M Version 2.2 are 36 bytes long, but expansion BDOS FCBs are 37 bytes long.)
- The values returned are set in the H and AF registers.
- The A register shows the BDOS status.
- CARRY OFF Function ended normally. CARRY ON Network error
- H register FFH Normal end

FEH Disk lock error
FDH BDOS busy
FCH Network error
FBH Broadcast error
0 CH Disk error
00H
Expansion BDOS calls are distinguished from regular BDOS calls by setting Bit 8 of the C register to 1 .

C register	Function
8 FH	NET-OPEN-FILE
90 H	NET-CLOSE-FILE
91 H	NET-SEARCH-FIRST
92 H	NET-SEARCH-NEXT
93 H	NET-DELETE-FILE
94 H	NET-READ-FILE
95 H	NET-WRITE-FILE
96 H	NET-MAKE-FILE
97 H	NET-RENAME-FILE
B3H	NET-SEARCH-END
B4H	NETWORK-BIOS
B5H	ERROR-CONTROL
B6H	NETWORK-CONTROL

1) $8 \mathrm{FH}-\mathrm{B} 3 \mathrm{H}$ are disk functions that return the same value in the A register as the regular BDOS functions. For more details, refer to the CP / M manual.
2) During the time that the functions for $8 \mathrm{FH} \sim \mathrm{B} 3 \mathrm{H}$ are operating (Directory SEARCH-FIRST to SEARCH-END), other BIOS functions are "busy" and operation is not possible.
3) The purpose of the B5H error-control function is to suppress display of the error message when a disk error occurs in CP / M.
(If the E register is 00 H , error messages are displayed; if the E register is 01 H , error messages are not displayed.)
4) The B 6 H network-control function is used to have the CP / M system set the Netend flag. (If the E register is 00 H , the network is active; if the E register is 01 H , the network is ended.)

The MSX-CP/M network BIOS is called by setting the parameters in the registers with the MSX CP/M extension with the 5 H call. The format is that B 4 H is set in the C register, the sub-function in the B register, and the lead address for the parameters in the DE register.

- Function No. \quad Set B4H in the C register.
- Sub-function No. Set in the B register.

Lead address for the parameters Set in the DE register.
The values returned are set in the AF, HL, and DE registers.
B register

01H	INTON	Enables hardware interrupts through telecommunications.
02H	INTOFF	Disables hardware interrupts through telecommunications.
03H	PON	Starts polling of the students.
04H	POFF	Stops polling of the students.
05H	CHECK	Checks which students are connected to the network.
06H	WHO	Checks the teacher or student number.
07H	ENACOM	Enables telecommunications between students.
08H	DISCOM	Disables telecommunications between students.
09H	POKE	Writes to memory.
0 AH	PEEK	Reads to memory.
0BH	MESS	Sends messages from the teacher to students.
0 CH	TALK	Sends messages from students to the teacher.
0DH	SNDCMD	Sends a command.
0EH	SEND-VRAM-REGISTER	Sends the VRAM register.
0FH	RECEIVE-VRAM-REGISTER	Receives the VRAM register.
10H	SEND-VRAM-DATA	Sends VRAM data.
11H	RECEIVE-VRAM-DATA	Receives VRAM data.
12H	BREAK	Sends a break code.

List of the MSX-CP/M Network BIOS Functions

Function 1 INTON

[Function] Enables hardware interrupts through telecommunications.
[Path] $\quad \mathrm{B}=01 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
[Parameters returned] None
This function enables hardware interrupts through telecommunications. Classroom network telecommunications are impossible unless this function is executed. When Netinit is executed, the teacher computer and the student computers are put into Inton mode.

Function 2 INTOFF

[Function] Disables hardware interrupts through telecommunications.

[Path] \quad| $\mathrm{B}=02 \mathrm{H}$ |
| :--- |
| $\mathrm{C}=\mathrm{B} 4 \mathrm{H}$ |

[Parameters returned] None

This function disables hardware interrupts through telecommunications. Since telecommunications in the classroom network are carried out by processing interrupts to the CPU, when hardware interrupts are disabled no telecommunications are possible whatsoever. This function is used when it would be a problem if telecommunications took place.
When a student or the teacher is in Intoff mode and wishes to resume telecommunications through the classroom network, he or she executes Function 1, Inton.

Function 3 PON

[Function] Starts polling of the students
[Path] $\quad \mathrm{B}=03 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$

[Parameters returned] None

This function starts polling of the students. Unless the students are polled, it is impossible to check which students are connected to the classroom network, the teacher can not receive messages from the students, and telecommunications between the students are impossible. When Netint is executed, polling is set on.

Function 4 POFF

[Function] Stops polling of the students
[Path] $\quad B=04 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
[Parameters returned] None
This function stops polling of the students. To restart polling, execute Function 3, Pon.

Function 5 CHECK

[Function] Checks which students are connected to the network.
[Path]
$\mathrm{B}=05 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
[Parameters returned] $\mathrm{HL}=$ bit map of the connections to the network.

$\mathrm{DE}=$ bit map of the students for whom telecommunications are enabled.

This function checks which students are connected to the network and which of those telecommunications are enabled for. When a student is not connected to the network, this means that the student's computer is powered off or in some other way physically not connected or that hardware interrupts have been disabled. The connection bit map is updated every time the teacher polls the students, but if polling is stopped, the connection bit map from before the polling is retained. The telecommunications enabled bit map is only updated by the Enacom and Discom functions.

Function 6 WHO

[Function] Check a teacher or student number.

[Path

$\mathrm{B}=06 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
[Parameters returned] $\mathrm{A}=$ the teacher or student number $00 \mathrm{H}=$ teacher $01 \mathrm{H}-0 \mathrm{FH}=$ students

This function places the value set by the DIP switch in the network unit in Register A. The value is 00 H for the teacher or $01 \mathrm{H}-0 \mathrm{FH}$ for a student. More than one student can not have the same student number. If they do, reset the DIP switches in the network unit.

Function 7 ENACOM

[Function] Enables student telecommunications.

This function enables telecommunications for the student whose number is specified.

Function 8 DISCOM

[Function] Disables student telecommunications

This function disables telecommunications for the student whose number is specified.

Function 9 POKE

[Function] Writes numbers to network memory and student memory.

> [Path]
> B $=09 \mathrm{H}$
> $\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
> $\mathrm{DE}=$ lead parameter address
> PAR $1=$ student number
> $00 \mathrm{H}=$ all students
> $01 \mathrm{H}-0 \mathrm{FH}=$ that one student
> PAR 2-3 $=$ write address
> PAR $4=$ write value
> PAR $5=$ Option
> $00 \mathrm{H}=$ Student memory
> $01 \mathrm{H}=$ Student network memory
> $02 \mathrm{H}=$ Network memory
> [Parameters returned] CARRY OFF Function ended normally. CARRY ON Error

This function writes the numerical value into the specified address of the student memory or network memory or into the network memory. This function does not check whether the specified address is in memory. This function ends normally even if the specified address is in ROM or does not exist at all.

Function 10 PEEK

[Function] Reads a number from network or student memory
[Path]
B $=0 \mathrm{AH}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
$\mathrm{DE}=$ lead parameter address

$$
\begin{aligned}
\text { PAR } 1= & \text { student number } \\
& 01 \mathrm{H}-0 \mathrm{FH}=\text { that one student }
\end{aligned}
$$

PAR 2-3 $=$ write address PAR $5=$ Option
$00 \mathrm{H}=$ Student memory
$01 \mathrm{H}=$ Student network memory
$02 \mathrm{H}=$ Network memory
[Parameters returned] $\mathrm{A}=$ value written at the specified address CARRY OFF Function ended normally. CARRY ON Error

This function reads the numerical value from the specified address of the student's memory or into the network memory. This function ends normally even if nothing at all is connected to the specified address.

Function 11 MESSAGE

[Function] Sends a message from the teacher to one or all of the students.
[Path]
B $=0 \mathrm{BH}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
$\mathrm{DE}=$ lead parameter address
PAR 1 = student number
$00 \mathrm{H}=$ all students
$01 \mathrm{H}-0 \mathrm{FH}=$ that one student
PAR 2-3 $=$ the lead address for the memory in which the message
is written
PAR 4-5 $=$ the length of the message
[Parameters returned] CARRY OFF Function ended normally.
CARRY ON Error
This function sends a message from the teacher to one or all of the students. The message sent can be up to 567 characters long, but when displayed on the 24th row of the student's screen, the length of the message that can be displayed is determined by the width of the current screen. If the student is not in text mode, the message is displayed when the student goes into text mode.
(To erase the message, input a key.)

Function 12 TALK

[Function] Sends a message from a student.
[Path] $\quad \mathrm{B}=0 \mathrm{CH}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
$\mathrm{DE}=$ lead parameter address
PAR 1 = student number
$00 \mathrm{H}=$ teacher
$01 \mathrm{H}-0 \mathrm{FH}=$ that one student
PAR 2-3 = the lead address for the memory in which the message is written
PAR 4-5 $=$ the length of the message
[Parameters returned] $A=00 \mathrm{H}$ message stored successfully
$=\mathrm{FFH}$ message left from the last time
CARRY ON error
If telecommunications are not enabled for the student, he or she can only send messages to the teacher. If telecommunications are enabled for the student, he or she can send also messages to other students. (To erase the message, input a key.)

Function 13 SNDCMD
[Function] Sends a command.
[Path]
B $=0 \mathrm{DH}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
$\mathrm{DE}=$ lead parameter address
PAR $1=$ student number
$00 \mathrm{H}=$ all students
$01 \mathrm{H}-0 \mathrm{FH}=$ that one student
PAR 2-3 = lead address for the memory the command is written in
PAR 4-5 = command length
[Parameters returned] CARRY OFF Function ended normally. CARRY ON Error

This function sends a command to one or all students and runs it. The student receiving this command enters CTRL-U before receiving it and adds a carriage return code to the end of the command after receiving it.

Function 14 SNDVR

```
[Function] Sends the VRAM register.
[Path]
    B =0EH
    C = B4H
    DE = lead parameter address
        PAR 1 = student number
            00H = all students
                01H-0FH = that one student
        PAR 2 = option
                            00H = current pallet
                FFH = pallet specification
        PAR 3-4 = register and pallet data lead address
        PAR 5-6 = VRAM start address
        PAR 7-8 = VRAM end address
[Parameters returned] CARRY OFF Function ended normally.
        CARRY ON Error
```

This function sends the VRAM register and pallet data. This VRAM register and pallet data change the screen mode for the receiver. Note that the VRAM start and end addresses are used when VRAM data is sent with Function 16.
(A student for which communication is enabled by Function 7 ENACOM can use up to Functions $14 \sim 17$.)
(Specification for PAR 2 option data)

PAR $2=00 \mathrm{H}$			PAR $2=\mathrm{FFH}$		
PAR 3-4 \rightarrow			PAR 3-4 \rightarrow		8 BYTE
Address	Register Data	8 BYTE	Address	Register Data	
				Pallet Data	32 BYTE

Function 15 RECVR

[Function] R	Receives the VRAM register.
[Path]	B $=0 \mathrm{FH}$
	$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
	$\mathrm{DE}=$ lead parameter address
	PAR $1=$ student number
	$00 \mathrm{H}=$ all students
	$01 \mathrm{H}-0 \mathrm{FH}=$ that one student PAR $2=$ option
	$00 \mathrm{H}=$ current pallet
	FFH $=$ pallet specification
	PAR 3-4 = register and pallet data lead address
	PAR 5-6 = VRAM start address
	PAR 7-8 = VRAM end address
[Parameters returned]	CARRY OFF Function ended normally. CARRY ON Error

This function receives the VRAM register and pallet data.

Function 16 SNDVRAM

[Function] Sends VRAM data.
[Path]
B $=10 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
$\mathrm{DE}=$ lead parameter address
PAR $1=$ student number
$00 \mathrm{H}=$ all students
$01 \mathrm{H}-0 \mathrm{FH}=$ that one student
PAR 3-4 = Start address for the VRAM data buffer
[Parameters returned] CARRY OFF Function ended normally. CARRY ON Error

This function sends 128 bytes beginning from the specified start address for the VRAM data buffer and writes it into the VRAM of the recipient starting at the VRAM start address specified in Function 14.

Function 17 RECVRAM

[Function] Receives VRAM data.

[Path]
B $=11 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
$\mathrm{DE}=$ lead parameter address
PAR $1=$ student number
$00 \mathrm{H}=$ all students
$01 \mathrm{H}-0 \mathrm{FH}=$ that one student
PAR 3-4 = Address for the receive data buffer PAR 5-6 = Address of the VRAM to be received
[Parameters returned] CARRY OFF Function ended normally.
CARRY ON Error
This function receives 128 bytes beginning from the VRAM address specified by PAR 5-6 and sets the data into the receive buffer specified by PAR 3-4.

Function 18 BREAK

[Function] Sends a break code.
[Path] $\quad \mathrm{B}=12 \mathrm{H}$
$\mathrm{C}=\mathrm{B} 4 \mathrm{H}$
[Parameters returned] None
This function sends a break code to all the students. When a student's computer receives a break code during telecommunications, it throws out the data received up till then and resets the network's internal states.

Classroom Network Work Areas

Version 3.0 of the classroom network has 2 kbytes of RAM. This section presents a map of those 2 kbytes and explains the various work areas of the network system. The notation is as shown below. The length of each work area is given in bytes.

Label (address, length) contents

		- Contents
PAR 1	($7 \mathrm{C} 78 \mathrm{H}, 1$)	BIOS Parameter 1 area
PAR 2	(7C79H,1)	BIOS Parameter 2 area
PAR 3	(7C7AH,1)	BIOS Parameter 3 area
PAR 4	($7 \mathrm{C} 78 \mathrm{H}, 1$)	BIOS Parameter 4 area
PAR 5	(7C7CH,1)	BIOS Parameter 5 area
PAR 6	(7C7DH,1)	BIOS Parameter 6 area
PAR 7	(7C7EH,1)	BIOS Parameter 7 area
PAR 8	(7C7FH,1)	BIOS Parameter 8 area
SMSADR	(7C80H,2)	Send message area address
RMSADR	(7C82H,2)	Receive message area address
SMLADR	(7C84H,2)	Send mail area address
RMLADR	(7C86H,2)	Receive mail area address
W-STATUS	(7C88H,1)	Status of network BDOS call
W-FCBARD	(7C89H,2)	Network PCB area address
W-DMAADR	(7C8BH,2)	Network DMA buffer address
U-FLGS	(7C8DH,1)	Net-CP/M register flag
U-STATUS	(7C8EH,3)	Status area, H register, and AF register for CP / M
BDOS		
U-FCBARD	(7C91H,2)	User FCB address save area
U-DMAADR	(7C93H,2)	User DMA buffer save area
BIOSA	(7C95H,2)	Disk BASIC DISK BIOS entry address
BIOSB	(7C97H,2)	MSX-CP/M background BDOS entry address
BIOSC	(7C99H,2)	BASIC call address
BIOSF	(7C9BH,1)	Current network system flag

bit 76543210 ---- NULL non initilize

DSPFLG $\quad(7 \mathrm{C} 9 \mathrm{CH}, 1) \quad$ Screen display control flag

ADR1	$(7 \mathrm{C} 9 \mathrm{DH}, 1)$	Sender's number
ETBX	$(7 \mathrm{C} 9 \mathrm{EH}, 1)$	Packet ETB, ETX area
CMND	$(7 \mathrm{C} 9 \mathrm{FH}, 1)$	Packet command area
ADR2	$(7 \mathrm{CAOH}, 1)$	Receiver's number
LNGTH	$(7 \mathrm{CA} 1 \mathrm{H}, 2)$	Packet length area
BUFFR	$(7 \mathrm{CA} 3 \mathrm{H}, 2)$	Send buffer address
O-FLGS	$(7 \mathrm{CA5H}, 1)$	Communications status flag

bit 76543210 ---- Return bit

O-FLGSS
O-SENDF

O-STATUS
(7CA8H,1)
$\begin{array}{ll}\text { (7CA6H,1) } & 0 \text { flag save area } \\ \text { (7CA7H,1) } & \text { Communications right flag (teacher only) }\end{array}$

Communications control and error status
bit $76543210-$ - - ACK (Send Ack nowledge) or END (Receiving end)

$1 \begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	(Teacher)
1111	WAK (Waiting Acknowledge) or
1111	
111	SQE (Sequence error)
111	
$\begin{array}{llll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$	(Student)
1111	
11111	TIM (time out) or SQE (Sequence error)
111	--- CNT (Continue Flag)
1111L	--- SME (Sum check error)
11.	--- PAE (Parity error)
)	--- FRE (Framing error)
--	- OVE (Over run error)
---	---- Send data ready

TMVFL	(7CA9H,1)	T1 timer set flag
TM1CT	(7CAAH,2)	T1 timer counter
TM1FL	(7CACH,1)	T1 timer time out flag
TM2CT	(7CADH,2)	T2 timer counter
TM2FL	(7CAFH,1)	T2 timer time out flag
TM3CT	(7CBOH,2)	T3 timer counter
TM3FL	(7CB2H,1)	T3 timer time out flag
O-ENQF	(7CB3H,1)	Enquiry control flag (teacher only)
O-GENEC	(7CB4H,1)	Polling sub-interval counter
O-INTRV2	(7CB5H,1)	Polling sub-interval " 03 H "
MESADR	(7CB6H,1)	Receive message control flag
MESLNG	(7CB7H,2)	Message receive length
SAV25F	(7CB9H,1)	Message display control flag
COMMAP	(7CBAH,2)	Telecommunications enabled bit map
COMMAPS	(7CBCH,2)	Telecommunications enabled bit map save (teacher only)
U-ERROR	(7CBEH,48)	Broadcast status area
R-CTRL	(7CEEH,1)	Reception data
R-ADR1	(7CEFH,1)	Sender number for reception
R-ADR2	(7CFOH,1)	Receiver number for reception
R-CMND	(7CF1H,1)	Reception command area
R-LNGTH	(7CF2H,2)	Reception packet length area
R-SUM	(7CF4H,2)	Reception sum check counter
R-ETBX	(7CF6H,1)	Reception ETB, ETX area
RECADR	(7CF7H,2)	Reception address set area
FILSIZ	(7CF9H,4)	Disk BASIC file size area
RECFB	(7CFDH,2)	Disk BASIC FCB address save area
KEYFLG	(7DFFH,1)	Receive key code flag
NXTRTN	(7DO0H,2)	Receive next routine address
ACTMAP	(7DO2H,2)	Active bit map
DOWNTL	(7DO4H,16)	Error counter table area
ERRMPA	(7D14H,2)	Error bit map
INTRV	(7D16H,1)	Polling interval " 08 H "
VDPC	(7D17H,1)	Polling interval counter
COUTLN	(7D18H,2)	Receive data length
MATCH	(7D1AH,1)	Receive command matching area

COULNG	(7D1BH,2)	Receive sum check area
SLOT	(7D1DH,1)	Slot address
POLFLG	(7D1EH,1)	Polling control flag
MAILLN	(7D1FH,2)	Mail area length 256 bytes
PAKLNG	(7D21H,2)	Maximum length per packet 56 bytes
MYSLOT	(7D23H,1)	Current state area
OH-KEYI	(7D24H,5)	Old H key 1 area
OH-NEWS	(7D29H,5)	Old H news area
OH-READ	(7D2EH,5)	Old H read area
OH-MAIN	(7D33H,5)	Old H main area
H-REC	(7D38H,5)	Receive interrupt hook
VERSION	(7D3DH,1)	Version 3.0 " 00 H "
CALBAS	(7D3EH,5)	Calbas routine for the network
SYSCAL	(7D43H,12)	Syscal routine for the network
CALSLT	(7D4FH,5)	Calslt routine for the network
bb-TMPP	(7D54H,2)	Receive buffer address pointer
LOOPC	(7D56H,1)	Receive processing control flag
LOOPF	(7D57H,1)	Version number display flag for disk BASIC
SAVSTK	(7D58H,2)	Stack save area
H-ERRDS	(7D5AH,2)	Network disk error hook address
H-ERRDP	(7D5CH,2)	Network Disk Error Hook Address
SLTS-SV	(7D5EH,1)	Slot save area
SLTM-SV	(7D5FH,1)	Slot save area
SLTI-SV	(7D6OH,1)	Slot save area
SLT4S-SV	(7D61H,1)	Slot save area
SLT4M-SV	$\cdot(7 \mathrm{D} 62 \mathrm{H}, \mathrm{l})$	Slot save area
SLT4I-SV	(7D63H,1)	Slot save area
REG35-SAV	(7D64H,1)	MCS Register 35 save area
V-SCRMOD	(7D65H, $)$	VDP screen mode area for reception
V-LINLEN	(7D66H,1)	VDP line length for reception 40 or 80
V-REGDAT	(7D67H,8)	VRAM register save area
V-PLTDAT	(7D6FH,32)	VRAM pallet save area
V-REGDARP	(7D8FH,2)	VRAM register pointer for reception
V-PATBASS	(7D91H,8)	Sprite pattern save area
V-ATRBASS	(7D99H,4)	Sprite attribute save area
SPRPOAT	(7D9DH,4)	Sprite data area
V-SAV25A	(7DAIH,2)	25-line VRAM address save area
V-SAV25D	(7DA3H,80)	25-line VRAM data save area

In MSX-CP/M, the BIOS shown below is in the same addresses as the BASIC BIOS and the main ROM BIOS for BASIC can be used. The user can use BASIC sub-ROM BIOS calls as MSX-CP/M expansion functions.

RDLST (000CH)

[Function]	Selects the slot corresponding to the value of A and reads one byte of that slot's memory. When this routine is called, interrupts are disabled and remain so even after this execution of this routine is completed.
[Input]	The slot number in A
	[F 000 EEPP]

Basic slot number (0-3)
Expansion slot number (0-3)
" 1 " when specifying an expansion slot

The address for the memory read into HL
[Output] The value of the memory read into A
[Registers] AF, BC, DE

WRSLT (0014H)

[Function] Selects the slot corresponding to the value of A and writes one byte into that slot's memory. When this routine is called, interrupts are disabled and remain so even after this execution of this routine is completed.
[Input] The slot is specified by A (in the same manner as for Rdsit). The write address is set in HL and that value in E .
[Output] None
[Registers] AF, BC, D

CALSLT (001CH)

[Function]	Calls out a routine for another slot (inter-slot routine)
[Input]	The slot is specified with the upper 8 bits of the IY register (in the same manner as for Rdslt). The address being called is set in IX.
[Output]	Depends on the routine called.
[Registers]	Depends on the routine called.

ENASLT (0024H)

[Function] Selects the slot corresponding to the value of A and enables it. When this routine is called, interrupts are disabled and remain so even after this execution of this routine is completed.
[Input] The slot is specified by A (in the same manner as for Rdsit).
[Output] None
[Registers] All

CALLF (0030H)

[Input] As explained in the previous paragraph
[Output] Depends on the routine called.
[Function]
[Registers]

Calls out a routine for another slot in the following manner:
RST 30H
n is the slot number (the same as for Rdslt). nn is the address called.

AF ; other registers depend on the routine called.

SUBROM (DA36H)

[Function] Calls the sub-ROM with an inter-slot call this way:

LD	IX, SUBROM ENTRY
CAL	SUBROM (Address DA36H)
DEFW	015 FH

[Input] Set the address to be called in IX, then make the call as shown in the previous paragraph.
[Output] Depends on the routine called.
[Registers] The rear registers and IY are reserved.

Classroom Network System Materials

Here are the names of the demonstration software and network utility files for the systems (MSX disk BASIC, MSX-DOS, and MSX- CP/M) used in the classroom network.

1) MSX disk BASIC demonstration software
a) Educational demonstration Run "EXER".

Files used:
EXER
EXERCISR
CRE
ANSWER
MENU
b) Graphics demonstration Run "CAL".

Files used:
CAL
VDISP
JAN.CAL
FEBRUARY.CAL
MARCH.CAL
APRIL2.CAL
IMAGE2.CAL
JUN.CAL
JULY.CAL
FALL.CAL
SEPTEMI.CAL
OCTOBER.CAL
CARP.CAL
FIRE.CAL
2) Utilities for the MSX disk BASIC network system

File used: LINCHK.BAS
3) MSX-DOS NETWORK SYSTEM

Files used MSX DOS.SYS
COMMAND.COM
AUTOEXEC.BAT
NETINIT.COM
NUTL.COM
4) MSX-CP/M NETWORK SYSTEM

Files used

(Floppy disk version)	(ROM version)
BASIC.COM	BASIC.COM
NUTL.COM	NUTL.COM
NPIP.COM	NPIP.COM
MOVCPM.COM	XDIR.COM
ASM.COM	SXUB.COM
DDT.COM	SUBMIT.COM
DUMP.COM	
ED.COM	
LOAD.COM	
XSUB.COM	
SUBMIT.COM	
PIP.COM	
STAT.COM	
SYSGEN.COM	
FORMAT.COM	
SETLIMIT.COM	

NUTL (network utility program) for MSX-CP/M

Nutl runs on the MSX-CP/M network system. There are different functions for the teacher and for the students. Inputting the number for a command that can not be used causes an error. During processing of any command, a help screen can be displayed by pressing the INS key and the processing can be returned to the previous level input state by pressing the ESC key. Since the system returns to the net command input state when execution of a command is complete, when finished with Nutl, simply press the return key.
(For details on each command, see the section on the network BIOS for MSX-CP/M.)

1) Student commands
$1=$ Online Network
$2=$ Offline Network
6 = Check My - No
9 = Poke
$10=$ Peek
$12=$ Send Message
$18=$ Network Initialize
$19=$ Network End
2) Teacher commands

$$
\begin{aligned}
3 & =\text { Polling Online } \\
4 & =\text { Polling Offline } \\
5 & =\text { Check line or Communication } \\
6 & =\text { Check My }- \text { No } \\
7 & =\text { Communication Enable } \\
8 & =\text { Communication Disable } \\
9 & =\text { Poke } \\
10 & =\text { Peek } \\
11 & =\text { Send Message } \\
13 & =\text { Send Key Command } \\
18 & =\text { Network Initialize } \\
19 & =\text { Network End }
\end{aligned}
$$

NUTL (Network Utility Program) for MSX-DOS

NUTL runs on the MSX-DOS network system and is used only by the teacher. During processing of each command, a help screen can be displayed by pressing the INS key and the immediately previous input state can be returned to by pressing the ESC key. After each command has been executed, the system returns to the Net Command input state, so to end NUTL, just press the return key.

$$
\begin{aligned}
0 & =\text { Network initialization } \\
3 & =\text { Polling online } \\
4 & =\text { Polling offline } \\
6 & =\text { Check My-No } \\
8 & =\text { Send hex or binary } \\
9 & =\text { Send VRAM } \\
10 & =\text { Receive hex or binary } \\
12 & =\text { Receive VRAM } \\
13 & =\text { Send message command } \\
15 & =\text { Sending mail } \\
16 & =\text { Receiving mail } \\
17 & =\text { Poke command } \\
18 & =\text { Peek command } \\
19 & =\text { Send key command } \\
23 & =\text { Check line or communication } \\
24 & =\text { Network end } \\
25 & =\text { Communication enable } \\
26 & =\text { Communication disable }
\end{aligned}
$$

Demonstration programs

1. Files

- EXER
- ANSWER
- MENU
- CRE
- EXERCISE
- AUTOEXEC.BAS

Start-up program; executed by the teacher. The teacher sends the Answer program to the students and has them run it, then the teacher executes the Menu program.

Student program; the student inputs numbers to answer the questions displayed on the screen.

Teacher's management program The teacher uses this program to monitor the progress of the students and to enable or disable telecommunications between students.

A program that randomly creates problems for the students to answer

The problem file created by Cre
Runs Exer.
2. Start up
(1) Double check that the correct cable is connected. To double check which students are currently online, enter the following from the teacher's keyboard:

- CHECK (A,B)
? RIGHT\$ (" $000000000000000 "+$ BIN \$ (A) , 15)

For example, if the display is " 111110000000000 ", this means that Students $1-10$ are currently connected to the network.
If what the screen displays is not the same as the actual situation, check the cables and the DIP switch settings for the student numbers again.
(2) Starting up the program

After starting up all the students, starting up the teacher's system automatically starts the program.
(When executing (1) Test, press CRTL-STOP to stop the program, then run the test.)

After a short wait, 10 problems are displayed on the student screens and the cursor appears. A short while later, the menu is displayed on the screen.
(3) Student processing

The students input the answers to the problems. Only numbers and minus (-) may be input. The arrow keys, INS, DEL, BS, and the return key may be used. Pressing the ESC key during input cancels that input. Pressing the ESC key with the cursor at the head of the problem ends the answer for that problem and the grade is calculated. When telecommunications between students are enabled, students can Talk to each other by pressing the T key. At this time, the following message is displayed at the bottom of the screen:

To whom (0,15)?
Input 0 to send a message to the teacher or a number from 1 to 15 to send a message to the student with that number.
Entering the desired message on the next row sends the message to specified recipient (if telecommunications between students are enabled).
(4) Teacher processing

The meaning of the menu items

2. (2 or F2 key) The last problem and answer for each student

3. (3 or F3 key) Monitors the screen of the specified student. When a student number (1-15) is input, that student's screen is displayed.
4. (4 or F4 key) Enables telecommunications between students
5. (5 or F5 key) Disables telecommunications between students. The default setting is disable mode.
6. (6 or F6 key)

Sends a message to the specified student.

EXER

```
10 SNDRUN("answer",0
    20 GOSUB 70
    30_ BSEN (,0,8H0,8H400,S)
    40 -SINDM
    50 -POKE(1,MS,0,N)
    OD RUN"menu"
    70 CLS:SCREEN 0:WIDTH(40):KEY OFF
    80 MS =&H7900
    90 OPEN"exercise" FOR INPUT AS #1
    100 GOSUB 230
    110 FOR I=1 TO 10
    120 F=I*8-6+MS
    130 LINE INPUT #1,A$:B$=LEFT$(A$,20)
    140 FOR J=0 TO 7
    150 _POKE(ASC(MID$(A$,41+J,1)),F+J)
    160 NEXT J
    170 LOCATE 5,I*2
    180 PRINTB$
    190 NEXT I
    O0 CLOSE #1
    210 POKE (D,MS):_FOKE (&HFF,MS+1)
    220 RETURN
    230 LOCATE 3,1:PRINT"ProbLem";:LOCATE 18,1:PRINT"Answer"
    240 LOCATE 10,23:PRINT"ESC to finish";:LOCATE 28.23:PRINT"score( )":
    250 RETURN
```

```
ANSWER
    10 CLS:SCREEN |:WIDTH(40):KEY OFF
    30 MS=&H7900:MR=&H7BDO:_POKE (D,MS): FOKE(&HFF,MS+1):CN=0
    4D FOR I=2TO127:_POKE(O,MS+I):NEXT I
    50 PEEK(S,MS)
    60 IF S<>1 THEN 50
    70 BEEP:BEEP:BEEP
    80 WHO(N):LOCATE1,0:PRINT"Student :";N;
    90 GET DATE D$:GET TIME T$
    100 LOCATE 20,0:PRINTD$;:LOCATE30,0:PRINTLEFT$(T$,5)
    120 I=1:QX=20:QL=8
    130 QY=I*2:QA$=AT$(I):GOSUB1000:AT$(I)=OA$
    140 GOSUB420
    150 IFQK=27 THEN 250
    160 IFQK=30 THEN GOSUB630:GOTO380
    170 IFQK=31 OROK=13 THEN GOSUB630:GOT0200
    80 IFQK=84 ORQK=116THEN GOSUB630:GOSUB550:GOT0130
    190 GOT0130
    200 I=I+1:IF I<11 THEN 130
210 LOCATE 10,23:PRINT"Finish (y/n) ? ";
220 YN$=INKEY$:IF YN$=""THEN 220
230 PRINTYN$:
240 IF YN$="y" OR YN$="Y" THEN 260 ELSE LOCATE 10,23:PRINT"ESC to finish ";:GO
T0120
260 POKE (2,MS)
270 SC=0:GOSUB 460
300 SC$=STR$(SC):LOCATE 34,23,0:PRINTSC$;
310 B$=INKEY$
320 IF B$="" THEN 310
340 IF B$="e" OR B$="E" THEN 370
350 IF B&="t" OR B$="T" THEN GOSUB 550
360 GOTO 310
370 END
380 I=I-1:IF I=0 THEN I=10
390 GOTO 130
420 GET TIME T$:IF TX$=LEFT$(T$,5) THEN450
430TX$=LEFT$(T$,5):LOCATE30,0,0:PRINTTX$;
440 LOCATE 20,I*2,1
450 RETURN
460 FOR I=1T010:S=8*I-6+MS:R=8*I-6+MR:Y=0:R$=""
470 FOR K=0TOP
480 PEEK(SD,S+K): PEEK(RD,R+K):R$=R$+CHR$(RD)
490 IF SD<>RD THEN Y=1
500 NEXT K
510 IF Y=0 THEN SC=SC+1:GOTO530
520 LOCATE 28,I*2,0:PRINT"-->";R$
5 3 0 ~ N E X T ~ I ~
540 RETURN
550 LOCATE1,21,0:PRINT"To whom (0..15) ":LOCATE1T,21:INPUTA
560 IF A<0 OR A>15 THEN 550
570 LOCATE 1,22,1:LINEINPUTA$
5 7 5 \text { IF A=0 THEN 590}
580 PEEK(B,MR):IFB<>1 THEN 600
590 TALK(AS,A)
600 LOCATE1,21,0:PRINTSPACE$(38)
610 LOCATE1,22,0:PRINTSPACE$(38)
6 2 0 ~ R E T U R N
630 IFQZ=OTHENRETURN
640 A=VAL (QA$):ANS=LEFT$ (STR$ (A) +SPACE $ (8),8)
650 J=I*8-6+MS:AN=VARPTR (AN$):AD=PEEK (AN+2)*256+PEEK (AN+1)
S60 FOR K=DTOT
670 _POKE(PEEK(AD+K),J+K)
6 8 0 ~ N E X T ~ K ~
690. CN=CN+1:IF CN=16 THEN CN=0
TQO _POKE(CN*16+I,MS+1):RETURN
10D0-QC=1:Q2=Q:QS=0:GOSUB1330:QT$=LEFT$(QA$+SPACE$(QL),QL)
1010 G0SUB1340
1020 LOCATEQX+QC-1,QY,1
1030 QK$=INKEY$:IF QK$ $="THEN1030
1040 QK=ASC(QK$)
1050 IFQK=127THEN1290
1060 IFQK=1160ROK=84THEN1150
1070 IFQK=8THEN1260
1080 IFQK=13THEN1150
1090 IFQK=18THEN1200
1100 IFQK=45THEN1210
1110 IF47<QKANDQK<58THEN1220
```

```
1120 ONOK-26GOTO1140,1160,1180,1150,1150,1220
1130 GOT01030
140 IFQC < > 1THEN1DOD
1150 GOSUB1340:QA$=QT$:RETURN
1160 QS=0:GOSUB1330:IFQC=QLORMID$(OT$,QC)=SPACE$(QL-QC+1)THEN1D2D
1170 QC=OC+1:GOTO1020
1180 QS=0:GOSUB1330:IFQC<>1THENQC=QC-1
1190 GOT01020
1200 QS=(QS+1)MOD2:GOSUB1330:GOTO1020
1210 IFQC<>1 THEN1030
1220 QZ=1:IFQC=QLTHENMID$(QT$,QC,1)=QK$:GOTO1010
1230 IFQS=OTHENMID$(QT$,QC,1)=QK$:OC=QC+1:GOTO1010
1240 Q|\ $="":IFQC<>1THENOW$=LEFT$(QT$,QC-1)
1250 QT$=QW$+QK$+MIDS(QT$,QC,QL-QC):QC=QC+1:GOTO1010
1260 QZ=1:IFQC=1THENQT $=RIGHT$(QT$,QL-1) +" ":GOTO1010
1270 IFQC=2THENDT$=RIGHT$(OT$,QL-1)+" ":QC=QC-1:GOTO1010
1280QT$=LEFT$(QT$,QC-2)+RIGHT$(QT$,QL-QC+1)+" ":QC=QC-1:GOTO1D1D
1290 IFQC=1 THENQT$=RIGHT$(QT$,QL-1)+" ":QZ=1:G0TO1010
1300 IFQC=QLTHENQT$=LEFT$(QT $,QL-1)+" ":QZ=1:GOT01010
1310 IFMID$(QT$,QC)=SPACE$(QL-QC + 1) THEN1030
1320 QT$=LEFT$(QT$,QC-1)+RIGHT$(QT$,QL-QC)+" ":QZ=1:G0T01010
1330 POKE&HFCAA,QS:RETURN
1340 LOCATEQX,QY,Q:PRINTQT$:RETURN
```

```
MENU
10 CLEAR 3000
    10 CLEAR 3000 
    |0 GOSUB 120
40 GOSUB 240
50 A$=INKEY$
60 IF A$="" THEN 50
70 KY=ASC(AS):IF 48<KY AND KY<56 THEN KY=KY-48:GOT0 100
80 IF 128<KY AND KY<136 THEN KY=KY-128:GOTO 100
9 0 \text { GOTO 50}
100 ON KY GOTO 320,860,1190,1400,1410,1460,1420
110 GOTO 50
120 CLS:SCREEN 0:WIDTH(40):KEY OFF
130 MS=&H790D:MR=&H7BDD:G$(D)=" -":G$(1)=" O":G$(2)=" X'
140 FOR I=1TO 10
150 KEY I,CHR$(&H8Q+I)
160 NEXT I
170 DIM X$(10),PD(15)
180 OPEN"exercise" FOR INPUT AS #1
190 FOR I=1 TO 10
200 LINEINPUT #1, X$(I)
210 NEXT I
220 CLOSE #1
230 RETURN
240 CL.S:LOCATE 18,1:PRINT"Menu"
250 LOCATE 4,3:PRINT"1. Status in Progress (ALL)"
260 LOCATE 4,5:PRINT"2. Last problem & answer (ALL)"
270 LOCATE 4,7:PRINT"3. Display Student's screen (Each)"
280 LOCATE 4,9:PRINT"4. Enable inter-student Talk (AlL)"
290 LOCATE 4,11:PRINT"5. Disable inter-student Talk (ALL)"
300 LOCATE 4,13:PRINT"6. Talk to student (Each/AlL)"
310 RETURN
320 GOSUB 630
330 _ CHECK(A,B)
340 \overline{A}$=RIGHT$("ODODOOOODODODOD"+BINS (A),15):EF=D
350 FOR I=1TO 15
360 IF MID$(A$,16-I,1)="1" THEN GOSUB 690:GOTO 550
370 LOCATE 5,I+4:PRINTRIGHT$(STR$(I),2);
380 PEEK(M,MS+1,I,N)
\ FEEK(M,MS+1,I,N)
400 PD(I)=M
410 RCVM(I)
420 FOR K=1 T0 10:F=K*8-6+MR
430 SP (K)=\varnothing
440 PEEK(IM,F)
450 IF M=0 THEN 520
460 SP (K)=1
470 FOR J=0 TO 7
4 8 0 ~ P E E E K ( A X , F + J )
490 \overline{A}O=ASC(MID$(X$(K),41+J,1))
500 IF AX<>AD THEN SP(K)=2:J=?
510 NEXT J
520 NEXT K
```



```
540 'GOSUB 840
550 K$=INKEY$
560 IF K$="" THEN 590
570 IF K }=\mathrm{ =CHR$(27) THEN EF=1:I=15:GOTO 590
580 IF K$=CHR$(132) THEN GOSUB }77
590 NEXT I
600 GOSUB 1430
610 IF EF=0 THEN 330
620 GOTO 40
630 CLS:GET DATE D$:GET TIME T$
640 LOCATE 20,0:PRINTD$;:LOCATE30,0:PRINTLEFT$(T$,5)
650 LOCATE 20,2:PRINT"Problem no."
6 6 0 ~ L O C A T E ~ 2 , 3 : P R I N T " S t u d e n t " ; : L O C A T E 1 0 , 3 : P R I N T " 1 ~ 2 ~ 2 ~ 3 ~ 4 ~ 4 ~ 5 ~ 6 ~ 6 ~ 7 ~ 8 ~ 8 ~ 9 ~ 1 0 " ~
670 FOR I=1TO15:PD(I)=0:NEXT I
6 8 0 ~ R E T U R N ~
690 LOCATE 5,I+4:PRINT" .";
7OD LOCATE 8,I+4
710 FOR L=1T010:PRINT" .";:NEXT L
720 RETURN
70 LOCATE 8,I+4
740 FOR K=1TO10
750 PRINTG$(SP(K));:NEXT K
760 RETURN
770 FORPL=0TO23
780 CN=0:BF$=""
```

```
790 X=VPEEK (PL*40+CN
800 IF }X=0\mathrm{ THEN }83
8 1 0 ~ I F ~ X = 1 3 ~ T H E N ~ 8 3 0 ~
820 BF $=BF$+CHR$(X):CN=CN+1:IF CN<40 THEN 790
830 LPRINT BF$
840 NEXTPL
850 RETURN
860 GOSUB 1110
870 _CHECK(A,B)
880 \overline{A}$=RIGHT$("000000000000000"+BIN$ (A), 15):EF=D
890 FOR I=1 T015
900 IF MID$(A$,16-I,1)="1" THEN GOSUB 1170:GOTO 1030
910 LOCATE 1,I+4:PRINTRIGHT$(STR$(I),2);
920 PEEK(M,MS+1,I,N)
930 IF PD (I)=M THEN 1030
940 PD (I) =M
950 M=M MOD 16:IF M<1 OR M>10 THEN 1030
960 F=M*8-6+MS
970 LOCATE 4,I+4:PRINTRIGHT$(STR$ (M),2);
980 LOCATE 8,I+4:PRINTLEFT$(X$(M),15);MID$(X$(M),41,8);
990 FOR J=0TOT
1000 PEEK(AX,F+J,I,N)
1010 PRINTCHR$(AX);
1020 NEXT J
1030 K$=INKEY$
1040 IF K$="" THEN 1070
1050 IF K }$=CHR$(27) THEN EF=1:I=15:GOTO 1070
1060 IF K$=CHR$(132) THEN GOSUB 770
107D NEXT I
1080 GOSUB 1430
1090 IF EF=0 THEN 870
1100 GOTO 40
1110 CLS:GET DATE D$:GET TIME T$
1120 LOCATE 20,D:PRINTD$;:LOCATE 30,0:PRINTLEFT$(T$,5)
1130 LOCATE 1,2:PRINT"St Problem";
1140 LOCATE23,2:PRINT"Right Answer":
1150 FOR I=1T015:PD(I)=0:NEXT I
1160 RETURN
1170 LDCATE 1,I+4:PRINT" .";SPACE$(35)
1180 RETURN
1190 CLS
1200 PRINT"Student no. (1..15) ";:INPUT N
1210 IF N<1 OR N>15 THEN PRINT"Reenter.":GOTO 1200
1220 GOSUB 1390
1230 IF MID$(AS,16-N,1)="1" THEN PRINT"Student ";N;"is not connected.":GOTO 1200
1240 BREC(,N,&H0,&H400,S)
1240 - F$=""
1260 K$$=INKEY$
1270 IF K$="" THEN 1260
1280 Y=ASC(K$)
1290 IF Y}=2.7\mathrm{ THEN 40
1300 IF Y=132 THEN GOSUB 770:GOTO 1240
1310 IF Y>48 AND Y<58 THEN 1340
1320 IF Y=13 THEN 1350
1330 GOTO 1240
1340 Y$=Y$+K$:GOTO 1260
1350 M=VAL (Y$):IF M<1 OR M>15 THEN 1240
1360 GOSUB 1390
1370 IF MIU$(A$,16-M,1)="1" THEN BEEP:BEEP:BEEP:GOTO 1250
1380 N=M:GOTO 1240
1390 _CHECK (A,B):A$=RIGHT$("000000000000000"+BIN$(A),15):RETURN
1400 ENAC (D):POKKE(1,MR,D,N):GOTO40
1410 -DISC(D): POKE(D,MR,D,N):GOTO4D
1420 GOSUB 770:GOTO 40
1430 GET TIME T$:IF TX$=LEFT$(T$,5) THEN 1450
1440 TX$=LEFT$(T$,5):LOCATE30,0,0:PRINTTX$;
1450 RETURN
1460 LOCATE1,21,0:PRINT"To whom (0..15) ";:LOCATE17,21:INPUTA
1470 IF A<0 OR A>15 THEN 1460
1480 LOCATE1,22,1:LINEINPUTA$
1490 IF A=0 THEN _MESS(A$):GOTO 1510
1500 _MESS(A$,A)
1510 LOCATE1,21,0:PRINTSPACE$(8)
1520 LOCATE1,,22,D:PRINTSPACE$(8)
1530 GOTO 40
1540 PEEK(FL,&H7CA5):_POKE(0,8H7CA5)
1550 EF$=RIGHT$("00000000"+BIN$(FL),7):IF LEFT$(EF$,1)="1" THEN 1570
1560 END
1570 ER=ER+1:RESUME
```


CRE

```
10 DEF FN RD=INT(RND(-TIME)*18)-9
20 DEF FN R (X,Y)=INT(RND (-TIME)*Y)+X
30 I1=FNR (4,3):I2=FNR(2,3):IX=I1+I2-5
40 ON IX GOTO S0,70,80,90,100
50 GOTO 30
0013=2:GOTO 110
70 Iる=FNR(1,2):GOTO 110
80 I 3=FNR (0,5):GOTO 110
90 I =FNNR (0,2):GOTO 110
10013=0
110 I }4=10-\textrm{I}1-12-1
120 OPEN"evercise" FOR OUTPUT AS #1
130 A M =SPACE$(8):PT$=" 10 ":N|S=SPACE$(4)
140 FOR 1=1TOI1:A=0:P$="":FOR J=1TO2:GOSUB220:NEYT J:GOSUB 250:NEXT I
150 FOR I=1TOI2:A=0:P$="":FOR J=1TO3:GOSUB220:NEXT J:GOSUB 250:NEXT I
160 IF I3=0 THEN 180
170 FOR I=1TOI3:A=0:P$="":FOR J=1TO4:GOSIB220:NEXT J:GOSUB 250:NEXT I
180 IF I4=0 THEN 200
190 FOR I=1TOI4:A=\emptyset:P$="":FOR J=1T05:GOSUB220:NEXT J:GOSUB 250:NEXT I
200 CLOSE #1
210 END
220 PO=FNRD:A=A+FD:PD$=STR$(PD):IF LEFT&(PD$,1)=" "THEN PO$="+"+MID$(PD$,2)
230 F&=P$+PD$
240 RETUFN
250 A$=LEFT$(STR$(A)+SPACE$ (8), 8):IF LEFT$(P$,1)="+" THEN P$=MID$(P$.2)
260 P$=LEFT$(P$+"="+SPACE$(40),40)
270 PRINTP$;A$:AX$;PT$;NU$
280 PRINT#1,P$;A$;AX$;PT$;NU$
200 RETJRN
```


Graphics demonstration program

1. Entering the Cal call on the teacher's terminal sends the calendar graphics screen (1-12) for the student number to each student.
2. After the graphics screens have been sent to all the students, inputting " S " on the teacher's terminal, then inputting a student number receives that student's graphics screen on the teacher's screen.

VDISP

```
10 _POKE (0, &H7900): _POKE (0,8H7901
    DEFINT A-Z
    DIM X1(62),Y1(62),X2(62),Y2(62),X3(62),Y3(62),X4(62),Y4(62)
    DIM DM(12),C1(12),C2(12),C3(12),C4(12),C5(12)
    WHO(M)
    IF M<1 THEN M=1:GOTO 80
    IF M>12 THEN M=M-12:GOTO 70
    VDP(9)=&H4A
    T0=0
    100 GOSUB 430
    10 COLOR 4,4,4
    GOSUB 1150
    30 GET DATE T$
    140 A=PEEK(&H2B) : B=(A AND (&H70))
    150 IF (B/16)=1 GOTO 480
    160 IF (B/16)=2 GOTO 520
    170 YY$=MID$(T$,1,2) : YY=VAL(YY$) : TY=YY
    180 MM$=MID$(T$,4,2): MO=VAL(MM$):TM=MO
    190 DD$=MID$(T$,7,2) : DD=VAL(DD$)
    200 IF TM<>0 GOTO 220
    210 T0=1 : TM=1 : MO=1
    220 IF DD<>0 GOTO 240
230 TO=1 : DD=1
240 SCREEN5:SET PAGE 0,0:CLS
250 _POKE (M,&H7900)
260 PEEK (N.&H7900)
270 IF N <>0 THEN 260
280 SET PAGE 0,0
290 COLOR 4,0,1
300 OPEN "gre:" FOR OUTPUT AS #1
310 ON INTERVAL=60 GOSUB 920 : INTERVAL ON
320 GOSUB 560
330 INTERVAL OFF
340 IF T0<>1 GOTO 360
350 PSET (18,170),C4(MO) : COLOR C4(MO),0,1 : PRINT #1,"Please set date."
360 GOSUB 940
370 _PEEK(L,&H7901)
380 IF L=&HFF THEN 410
390 IF L=LX THEN 360
400 INTERVAL ON:LX=L:GOTO 360
4 1 0 ~ I F ~ L = L X ~ T H E N ~ 3 7 0 ~
420 INTERVAL OFF:LX=L:GOTO 370
```



```
4 4 0 ~ F O R ~ I = 1 ~ T O ~ 1 2 ~
450 READ C1(I),C2(I),C3(I),C4(I),C5(I)
460 NEXT I
470 RETURN
480 YY$=MID$(T$,7,2): YY=VAL(YY$): TY=YY
490 MM$=MID$(T$,1,2) : MO=VAL(MM$) : TM=MO
500 DD$=MID$(T$,4,2) : DD=VAL(DD$)
510 GOTO 200
52@ YY$=MID$(T$,7,2): YY=VAL(YY$): TY=YY
530 MM$=MID$(T$,4,2): MO=VAL(MM$) : TM=MO
540 DD$=MID$(T$,1,2) : DD=VAL(DD$)
550 GOTO 200
560 IF YY=0 THEN MY=2000 ELSE MY=1900 Y YY
570 IF MY=INT((MY)/4)*4 THEN RESTORE 1330 ELSE RESTORE 1320
580 FOR I=0 TO 12
590 READ DM(I)
SOD NEXT I
6 1 0 Z = M Y - 1 9 0 1
620 YT!=365*Z+INT (Z/4)
630 MT=DM(MO-1)
640 IF YT!>=32389 THEN YT!=YT!-32389
650 M=(YT!+MT+2) MOD ?
660 N=1
670 FOR Y=110 TO 160 STEP 9
680 FOR X= 150+M*15 TO 250 STEF 15
690 AS =MID$(STR$(N),2)
700 GOSUB 760
710 M=D
720N=N+1
730 IF N=DM(MO)-DM(MO-1)+1 GOTO 750
740 NEXT X,Y
750 RETURN
760 INTERVAL OFF
```

```
770 COLOR C4(MO)
780 DRAW "BM=x; =y;"
790 FOR I \(=1\) TÓ LEN(A\$)
800 IF \(N=10\) fOTO 820
810 DRAld "br6"
820 IF YY<>TY GOTO 860
830 IF MO<>TM GOTO 860
840 IF \(N<>D D\) GOTO 860
850 COLOR C5 (MO), 0,1
860 PRINT \#1, \(\operatorname{MIDS}(A \$, I, 1)\);
870 DRAW "BL2"
880 COLOR C4 (MO), 0,1
890 NEXT I
900 INTERVAL ON
910 RETURN
\(920 \mathrm{BC}=1\)
930 COLOR BC
940 GET TIME T\$
950 \(\mathrm{HH} \$=\mathrm{MID} \$(T \$, 1,2): \mathrm{HH}=\mathrm{VAL}(\mathrm{HH} \$)\)
\(960 \mathrm{MM}=\mathrm{MID} \Phi(T \$, 4,2): M M=V A L(M M \$)\)
970 SS\$=MID \(\$(T \$, 7,2): S S=V A L(S S \$)\)
980 IF SS=TS THEN RETURN ELSE TS=SS
990 IF \(H H>=12\) THEN \(H H=H H-12\)
\(1000 \mathrm{I}=\mathrm{HH} * 5+\mathrm{INT}(\mathrm{MM} / 12)+1\)
1010 IF \(\mathrm{I}=\mathrm{OH}\) THEN 1040
\(1020 \operatorname{LINE}(X 3(\mathrm{OH}), Y 3(\mathrm{OH}))-(X 4(\mathrm{OH}), Y 4(\mathrm{OH})), B C\)
\(1030 \mathrm{OH}=\mathrm{I}\)
\(1040 \operatorname{LINE}(X 3(I), Y 3(I))-(X 4(I), Y 4(I)), C 1(M O)\)
\(1050 \mathrm{I}=\mathrm{MM}+1\)
1060 IF I \(=0 \mathrm{M}\) THEN 1090
\(1070 \operatorname{LINE}(X 1(O M), Y 1(O M))-(X 4(O M), Y 4(O M)), B C\)
1080 OM=I
\(1090 \operatorname{LINE}(X 1(I), Y 1(I))-(X 4(I), Y 4(I)), C 2(M O)\)
\(1100 \mathrm{I}=\mathrm{SS}+1\)
1110 LINE ( X 1 (OS),\(Y 1\) (OS)) - (X2(OS), Y2(OS)), BC
\(1120 \operatorname{LINE}(X 1(\mathrm{I}), Y 1(\mathrm{I}))-(X 2(\mathrm{I}), \mathrm{Y} 2(\mathrm{I})), \mathrm{C} 3(\mathrm{Ma})\)
1130 OS=I
1140 RETURN
1150 RESTORE 1340
1160 FOR \(I=0\) TO 61
1170 READ \(\times 1(\mathrm{I}), Y 1(\mathrm{I}), X 2(\mathrm{I}), \mathrm{Y} 2(\mathrm{I}), \mathrm{X} 3(\mathrm{I}), Y 3(\mathrm{I}), X 4(\mathrm{I}), Y 4(\mathrm{I})\)
1180 NEXT I
1190 RETURN
1200 DATA 2,2,6,2,6
1210 DATA 2,2,10,11,2
1220 DATA 2,2,5,3,2
1230 DATA \(2,2,5,6,2\)
1240 DATA \(2,2,10,8,2\)
1250 DATA \(2,2,5,4,11\)
1260 DATA \(2,2,13,2,10\)
1270 DATA 2,2,6,3,12
1280 DATA \(2,2,3,4,8\)
1290 DATA 2,2,6,4,2
1300 DATA \(2,2,11,10,2\)
1310 DATA \(12,12,2,10,2\)
1320 DATA \(0,31,59,90,120,151,181,212,243,273,304,334,365\)
1330 DATA \(0,31,60,91,121,152,182,213,244,274,305,335,366\)
1340 DATA \(196,28,201,58,197,34,201,55\)
1350 DATA \(200,28,200,58,200,34,200,55\)
1360 DATA \(204,28,199,58,203,34,199,55\)
1370 DATA 208,28,197,58,206,35,198,55
1380 DATA \(212,29,196,58,209,35,197,55\)
1390 DATA \(216,30,194,57,211,36,197,54\)
1400 DATA \(220,31,193,57,214,36,196,54\)
1410 DATA \(223,32,192,56,216,37,195,54\)
1420 DATA \(226,33,191,56,219,38,195,54\)
1430 DATA 229,35,190,55,221,40,194,53
1440 DATA \(232,37,189,55,222,41,193,53\)
1450 DATA \(234,39,188,54,224,42,193,52\)
1460 DATA \(236,41,187,53,225,44,192,52\)
1470 DATA \(238,43,187,52,226,45,192,51\)
1480 DATA \(239,45,187,52,227,47,192,51\)
1490 DATA \(239,48,186,51,227,48,192,51\)
1500 DATA \(239,50,186,50,228,50,192,50\)
1510 DATA \(239,53,186,49,227,52,192,50\)
1520 DATA \(239,55,187,48,227,53,192,49\)
1530 DATA 237,57,187,48,226,55,192,49
1540 DATA 236,59,187,47,225,57,193,48
1550 DATA \(234,61,188,46,224,58,193,48\)
```

1560 DATA 232,63,189,45,222,59,193,47
1570 DATA $229,65,190,45,220,61,194,47$
1580 DATA $226,67,191,44,218,62,195,47$
1590 DATA 223,68,192,44,216,63,195,46
1600 DATA $219,70,193,43,214,64,196,46$
1610 DATA 216, 71, 195,43,211,64,197,46
1620 DATA $212,72,196,43,208,65,198,46$
1630 DATA $208,72,197,42,206,65,198,45$
1640 DATA 204,72,199,42,203,66,199,45
1650 DATA 200, $73,200,42,200,66,200,45$
1660 DATA $196,72,202,42,197,66,201,45$
1670 DATA $191,72,203,42,194,65,202,45$
1680 DATA $187,71,204,43,191,65,203,46$
1690 DATA $184,71,206,43,189,64,203,46$
1700 DATA $180,69,207,43,186,64,204,46$
1710 DATA $177,68,208,44,184,63,205,46$
1720 DATA $173,67,209,44,181,62,206,47$
1730 DATA $170,65,210,45,179,60,206,47$
1740 DATA $168,63,211,46,178,59,207,47$
1750 DATA $166,61,212,46,176,58,207,48$
1760 DATA $164,59,213,47,175,56,208,48$
1770 DATA $162,57,213,48,174,55,208,49$
1780 DATA $161,54,214,49,173,53,208,49$
1790 DATA $161,52,214,49,173,51,208,50$
1800 DATA $161,50,214,50,172,50,208,50$
1810 DATA $161,47,214,51,173,48,208,51$
1820 DATA $162,45,213,52,173,47,208,51$
1830 DATA $163,43,213,53,174,45,208,52$
1840 DATA $164,41,213,53,175,43,208,52$
1850 DATA $166,38,212,54,176,42,207,52$
1860 DATA $169,37,211,55,178,41,207,53$
1870 DATA $171,35,210,55,180,39,206,53$
1880 DATA $174,33,209,56,182,38,205,54$
1890 DATA 177,32,208,57,184,37,205,54
1900 DATA $181,30,207,57,187,30,204,54$ 1910 DATA $185,29,205,57,189,36,203,54$ 1920 DATA $189,29,204,58,192,35,202,55$ 1930 DATA $193,28,203,58,195,35,202,55$ 1940 DATA $197,28,201,58,198,34,201,55$ 1950 DATA $201,28,200,58,201,34,200,55$ $1960 \mathrm{CLS}: C O L O R 1,15: 5 T O P$

MSX-2 CP/M v2.2 NET-SHELL version

Classroom Network version 3.0

NPIP OPERATION MANUAL

Contents

1. Overview 1
2. What you should know for operating NPIP 2
Functions of the special keys on the keyboard 2
Specifying the drive 3
3. Starting up NPIP 4
4. NPIP screens 5
5. Commands 6
Command menu mode 6
Directory command (D/DIR) 8
Type command (T/TYPE) 11
Erase command (E/ERA) 14
Rename command (R/REN) 16
Copy command (C/COPY) 18
Mail command (M/MAIL) 21
File-compare command (F/FCMP) 23
VRAM-move command (V/VMOV) 26
Quit command (Q/QUIT) 29
6. Error messages 30

1. Overview

NPIP runs on the CP/M Version 2.2 net shell version on the YIS503IIIR (Russian-language model) or the YIS805 and makes possible transfers of files and VRAM data between teacher and students and among students in Version 3.0 of the classroom network.

- DIRECTORY (DIR) : Displays the directory of the specified drive.
- TYPE : Displays the contents of the source text file.
- ERASE (ERA) : Erases a file
- RENAME (REN) : Renames a file.
- COPY : Copies a file.
- MAIL : Sends a file with the time and date marked.
- FILE-COMPARE (FCMP) : Compares the contents of two files.
- VRAM-MOVE (VMOV) : Transfers VRAM data or a VRAM data file.

Note: There are two versions of NPIP for Version 3.0 of the classroom network, a disk version for the teacher and a ROM version for the students. The ROM version of NPIP for students does not have the FILE-COMPARE and VRAM-MOVE commands.

2. What you should know for operating NPIP

Functions of the special keys on the keyboard

The functions of the special keys depend on the screen being displayed, but generally they have the following functions:

- Return key (RET)
- Concludes entry of the drive or file name
- Begins execution of a command.
- Escape key (ESC)
- Cancels a command (and returns the system to command menu mode.
- Insert key (INS)
- Puts the system into directory display mode or ends that mode.
- Erases the screen directory and has the system wait for specification of another directory.
- Cursor keys $(\uparrow),(\downarrow),(\leftarrow)$, and (\rightarrow)
- Selects commands in command menu mode.
- Selects files in the menu area.
- CTRL + C keys
- Stops execution of a command.
- CTRL + X keys
- Erases a file name or other item input in the menu area.
- Back space key (BS) and delete key (DEL)
- Erases one character of the input drive or file name.

Note: CTRL + letter key means to press the CTRL key and that letter key simultaneously.

In Version 3.0 of the classroom network, specify the drive this way:
A: Drive A that you control
1A: Drive A of Student 1
\#A: Broadcast to the Drive A of all the students

The teacher and students can specify drives from A : to P : for his or her own computer and from nA : to nH : (where n is the student number) for the teacher and Student 1 to Student 15 . However, only the teacher can broadcast.

In addition, when using the VRAM move command, the teacher specifies V : for his or her own VRAM and for specifying a student's VRAM, enters the student number before the V:.

Others

Operating NPIP presumes knowledge of the following items:

- The basic and the operations of CP/M Version 2.2
- General knowledge of the classroom network Version 3.0 system
- Operations of the classroom network Version 3.0 utility (NUTL)

3. Starting up NPIP

To start up NPIP, first start CP/M, then use the DIR command, which is a built-in command, to check that the NPIP.COM file is on the disk in the current drive. For example, if the current drive is A (the prompt " $\mathrm{A}>$ " is being displayed), if the NPIP.COM is on the disk in the A drive, enter

$$
A>N P I P
$$

If the NPIP.COM file is on some other drive, for example B, enter:
A > B:NPIP

Note: Only a student can start the student NPIP, so do not copy the student NPIP to the teacher over the network.

4. NPIP screens

When NPIP is started, the screen is 80 characters wide by 24 lines. The NPIP screen is divided into the following three sections:

Directory area
Menu area
Message area

However, when the copy or file-compare command is used, the directory area is divided in 2 :

Source file directory area	Destination file directory area
$\ldots . ~$	

The directory is displayed in the directory area, but when NPIP is started up, nothing is displayed in this area. The menu area is used for selecting a command or file or for direct input from the keyboard. The message area displays messages from NPIP.

5. Commands

5
 Command menu mode

When NPIP is started, it goes into command menu mode and waits for a command.

| D/DIR | : DIRECTORY | R/REN $:$ RENAME | F/FCMP : FILE-COMPARE |
| :--- | :--- | :--- | :--- | :--- |
| T/TYPE $:$ TYPE | C/COPY : COPY | V/VMOV : VRAM-MOVE | |
| E/ERA | : ERASE | M/MAIL : MAIL | Q/QUIT : QUIT |

At first, the cursor is displayed on the directory command (D/DIR). Any one of the nine commands in this menu can be selected by moving the cursor to that command or by inputting its first letter. The cursor can be moved freely to the right with the \rightarrow key and to the left with the \leftarrow key. Moving the cursor to a command, then pressing the return key starts that command.

It is also possible to select a command by inputting its first letter, for example D for the directory command or T for the type command, without using the \leftarrow and \rightarrow keys.

Except for the quit command, in any one of the other eight command modes, the ESC key can be pressed at any time, except when the command is actually being executed, to return to command menu mode. Exactly what happens during command execution will be discussed later, but during execution, it is possible to press CTRL +C keys to stop execution, then press the ESC key to return to command execution mode.

Note: The command menu mode screen shown on the previous page is the screen displayed when the teacher's disk NPIP is started. When the ROM NPIP for students is started. the "F/FCMP" mark for the file compare command and the "V/VMOV" mark for the VRAM move command are not displayed.

This command is used to display the directory of the disk in the specified drive. When the directory command is selected, the screen shows:

Here, input the drive or file whose directory is to be displayed. The menu area shows the name of the current command, followed by the name of the current drive in parentheses. Therefore, to display the directory for any drive other than the current drive, directly input the name of that drive from the keyboard. It is also possible to check for a certain file or files by using ? and * as wild cards in the file specification to display a directory of all the files that match the file name specification. In this case, specify the drive name, then the file. The input method is the same as for the built-in DIR command of the CP/M system.

As an example, assume that you are the teacher in the classroom network. This being the case, the current drive name displayed in the menu area is the name of a drive you control yourself. To check the directory of the disk in the H drive of Student 1 , enter " 1 H :".

When input of the drive name and/or file name is complete, the command is executed and the directory is read from the specified disk and displayed this way in the directory area:

```
dIRECTORY STUDENT NO.1 H:
XDIR .COM : SUBMIT .COM: XSUB COM : BASIC .COM
NUTL .COM : NPIP .COM : ASM .COM: DDT .COM
DUMP.COM : ED .COM : LOAD .COM : PIP .COM
STAT COM : TESTI .COM : TEST2 .COM : SAMPLE .ASM
```

DIR :
MESSAGE : OK \boldsymbol{P} (RET) (INS/ANOTHER DRECTORY ESC/COMMAND MENU)

When the directory is too large to fit on a single screen, the rest of the directory can be displayed by using the following keys:
N : display the next screen (N/NEXT)

B: display the previous screen (B/BACK)
U: scroll up one line
(U/UP)
D: scroll down one line
(D/DOWN)

After reading one directory, to look at another press the INS key to return to the initial directory command screen, then enter the name of the drive or files that you now wish to see the directory of.

To end the directory command, after displaying a directory press the return key or the ESC key to return to command menu mode. To stop execution of a command while a directory is being displayed, press the CTRL and the C keys simultaneously and hold them down until the message that the command has been interrupted is displayed. After the command has been stopped, pressing the ESC key returns the system to command menu mode. This method for stopping a command works the same way for the other commands.

If a drive name or file name has been entered and an error occurs during execution of the command, an error message is displayed in the message area. The states indicated by the error message and what to do about them will be explained below. When an error message is displayed, pressing the return key returns the system to the screen that was being displayed before the command was executed, then pressing the ESC key returns the system to command menu mode. This operation works the same way for the other commands.

Γ Type command

This command is used to display the contents of a source text file. When the system enters type command mode, the screen shows:

With this screen being displayed, you can enter the name of the file to be typed and execute the type command immediately or you can check the name of the files by pressing the INS key to display the directory. In this case, the screen shows:

The menu screen shows the name of the current command followed by "DIR:" and the current drive "A:" in parentheses to indicate temporary directory mode. From this point on, the method for selecting a directory is the same as for the directory command.

To get out of this temporary directory mode, press the INS key again before displaying a directory or press the return key after displaying a directory. Either method returns the system to the initial type command mode screen.

As an example, if the directory for Drive H of Student 1 is displayed, then the system returned from temporary directory mode to type command mode, the screen shows:

```
DIRECTORY STUDENT NO.1 H
XDIR .COM : SUQMIT .COM : XSUB 
STAT COM : TEST1 COM : TEST2 COM : SAMPLE ASM
```

YPE: (IH:) 7 SAMPLE ASM
MESSAGE: SELECT OR INPUT FILE NAME (INS/DIRECTORY ESC/COMMAND MENU)

At this point, there are two ways to specify the name of the file to be typed:

1. Input the name of the file directly from the keyboard.
2. Use the cursor keys, $\langle\uparrow\rangle,\langle\downarrow\rangle,\langle\leftarrow\rangle$, and $\langle\rightarrow\rangle$, to place the cursor over the desired file in the directory area display. In both these methods, the name of the file currently selected is displayed inverted. Pressing one of the cursor keys moves the cursor to another file in the directory area and simultaneously changes the menu area from the previous file name to this new one

After using the cursor keys to place the cursor over the name of the desired file, press the return key to input that file name and execute the type command. In Method 1, the inverted display in the directory area and the menu area goes out and the file can be input from the keyboard.

Pressing a cursor key at this point resumes the inverted display in the directory area and the menu area and the file can be selected from the directory area.

After the type command is executed, the entire contents of the file are typed out on the screen and the screen shows:

To type out another file at this point, press the INS key. To end the type command, press the return key or the ESC key to return the system to command menu mode.

This command is used to erase a file. The same as for the type command, the initial screen for the erase command shows:

Also the same as for the type command, it is possible to enter the name of the file directly or to look at a directory first. To look at a directory, press the INS key, then specify the name of the drive or file whose directory is to be displayed, display it, then press the return key. The screen shows:

The screen on the previous page is the one shown when the name of the file is input directly from the keyboard after the directory has been called out. As explained earlier, the inverted display of the name of the file currently selected in the directory area and in the menu area goes out. To select a file from the directory area, press one of the cursor keys and the inverted display will be resumed.

When the file has been specified this way and the return key pressed, the erase command is executed. When inputting the file name directly from the keyboard, $*$ and ? can be used as wild card specifications. In this case, all the files that match the specification are erased.

When the erase command has been executed, the system returns to the screen that was being displayed just before execution of the erase command and another file can be erased. Pressing the ESC key at this point returns the system to command menu mode. Pressing the INS key when a directory is being displayed returns to erase command mode retaining the display of that directory. To display a different directory, press the INS key again, then input the name of the drive or file whose directory is to be displayed. These operations are the same as for the directory command.

This command is used to change the name of a file. The same as for the type and erase commands, when this command is selected, the screen shows:

The same as for the commands already discussed, the file whose name is to be changed can be selected by inputting it directly from the keyboard or by displaying a directory, then selecting it from that directory with the cursor keys. In the following example, a directory is displayed, then the cursor keys are used to select one of the files from that directory.

```
directory Student No.1 H
XDIR COM : SUBMIT .COM : XSUB 
DUMP COM : ED .COM : LOAD .COM : PIP .COM
STAT .COM : TEST1 .COM : TEST2 .COM : SAMPLE .ASM
```

REN: (IH:) ? TEST2 COWH …… (A :) ? TEST3.COM
message : input file name (ins/DIRECTORY ESC/COMMAND MENU)

The rename command can not be executed unless not only the first file name but also the second file name, i.e. the new name the file is to be given, are entered. Therefore, input the new file name directly from the keyboard. If a drive name is entered with the new file name it is ignored. The drive for the first file name (the old file name) is used.

Directories can be shown on this screen just as for the commands already explained, but the new file name must be input directly from the keyboard. It can not be selected from the directory with the cursor keys. When entry of the first (old) file name and second (new) file name is complete, the command is executed. If execution is completed normally, the system returns to the screen from which another file to be renamed can be entered. To end the rename command, press the ESC key to return to command menu mode.

Γ
 Copy command (C/COPY)

This command is used to copy a file. When this command is selected, the screen shows:

The difference between this command and the commands explained up till now is that the directory area for this command is divided in two. The left half of the directory area is for the first file (the source file) and the right half is for the second file (the destination file).

At first, the "SOURCE" label on the first row is displayed inverted to show that this is the file whose name is currently being input. Input the name of the file to be copied. Either input it directly or display a directory then select it with the cursor keys in the same manner as for the commands already explained.

The example on the next page shows a screen when the directory is displayed and the source file is selected with the cursor keys.

The directory for selecting the source file is displayed on the left. To select a file from this directory, use the $\langle\rightarrow\rangle,\langle\leftarrow\rangle,\langle\uparrow\rangle$, and $\langle\downarrow\rangle$ keys. It is also possible to input the name of the file directly from the keyboard even when a directory is displayed. It is also possible to use the $*$ and ? codes when inputting the file name directly from the keyboard to copy all the files that match the input.

After inputting the name of the source file, press the return key. The inverted display on the top line switches to the "DESTINATION" label to show that the system is in destination file input mode.

SOURCE.................		
DIRECTORY		!	
SYSGEN.	.COM : Format	.com \vdots	
MOVCPM	.COM : ASM	COM	
ODT	.COM : DUMP	.com !	
ED	.COM : LOAD	.com	
xsub	.COM : SUBMIT	. $\mathbf{C O M} \quad \vdots$	
PIP	.COM : STAT	. сом \vdots	
nutl	.COM : MPIP	com	
VDATA	.VRM : TEST	COM	
COPY : (A:) ?	? rest com...	.]> (A:)?	
message :	input file name (ins/Directory esc/commano mentu)		

With this screen, the name of the destination file is input directly from the keyboard. It is also possible to display a directory the same way as for the source file. However, although the specified directory is displayed in the right hand side directory area, the destination file can not be selected from a directory with the cursor keys. Therefore, in this screen the destination file is input directly from the keyboard.

If the destination file has the same name as the source file and the destination drive is the current drive, just press the return key. If the destination drive is some other drive, just enter the name of the destination drive, then press the return key.
(In the example on the this page, the destination drive is 1 H and the destination file has the same name as the source file.) When the input of the source file and destination file is complete, the command is executed. When execution ends normally the system returns to source file input mode. To end the copy command, press the ESC key to return the system to command menu mode.

Note: While looking at the directories for this command, you can use the $\langle\leftarrow\rangle$ and $\langle\rightarrow\rangle$ keys to switch back and forth between the directory for the source file and the directory for the destination file. When the current directory is switched, the inverted display on the top line is also switched. This works the same way for the file compare command, which will be discussed later.

This command is used to copy a file with the time and date labeled. The initial screen for the mail command shows:

The same as for the type, erase, and rename commands, the file to be mailed can be input directly from the keyboard or selected from a directory with the cursor keys. For this command, when the file to be mailed is selected from a directory with the cursor keys, the screen shows:

In the screen on the previous page, the name of the directory for the mail to be copied to is input directly from the keyboard. If the destination directory for the mail is the current drive, just press the return key. If the destination drive is any other drive, enter it. The name of the destination file can not be specified.

Directories can be viewed from this screen, but it is impossible to use the cursor keys to select the name of the destination file from the directory.

When input of the destination drive is finished, the mail command is executed. The name of the destination file is displayed right after the destination drive. The 8 letters of the file name are the date (month and day) and the time (hour and minute), followed by a period, then a suffix of Mnn , where nn is the number of the student or teacher sending the mail. If the mail is sent between drives that you control, the suffix is MLd, where d is the name of the destination drive.

Here is an example:

This is the screen displayed while the mail command is being executed. The name of the destination file is " $04150804 . \mathrm{M} 00$. This means that the mail was sent by Student 0 , i.e. the teacher, at 8:04 on April 15.

When execution of this command is finished, the system returns to the screen from which another file to be mailed can be specified. Pressing the ESC key at this point ends the mail command and returns the system to command menu mode.

File-compare command (F/FCMP)

This command is used to compare the contents of two files. When this command is started, the same screen is displayed as for the copy command:

solarce	destination
$\begin{aligned} & \text { FCMP : }(A:) ? \\ & \text { MESSAGE : INPUT FILE NAME (INS/DIRECTORY } \end{aligned}$	

First, enter one of the two files to be compared. The same as for the copy command, a directory can be displayed, then a file selected from it with the cursor keys.

After the name of the first file is input, the second file name is input. Unlike the copy command, the second file can be selected from a directory with the cursor keys.

When the name of the second file is input, this command is executed and the contents of the two specified files are compared:

During execution, if the contents of the two files are different, the address relative to the head of the files and the byte of data for the two files are displayed in the directory area. When execution of this command is finished, the last relative address compared +1 is displayed. If the two files are not the same size, the file whose end was reached first, File 1 or File 2, is displayed and so is the relationship between the size of the two files. The total number of spots where the two files differ is displayed in the message area.

In the example on the this page, the relative addresses where the two files differed and the data for both files at that address are displayed in the directory area and the last line of the directory
area shows $1+$ the last relative address compared in hexadecimal notation, in this case, 0200 . This address is followed by a message indicating that the ends of both files were reached and that the two files were the same size. The message area contains a message indicating that the comparison of the two files found three places where they differed.

When the system is showing this screen, pressing either the return key or the ESC key ends the file compare command and returns the system to command menu mode. Pressing the INS key instead returns the system to the initial file comparison command screen and the first of another two files to be compared can be input.

This command is used to copy VRAM data or VRAM data files. The initial screen for this command shows:

The source VRAM data or file is input from this screen. If a VRAM data file is input, just as for the commands discussed up till now, it may be entered directly or a directory may be displayed and the file selected from that directory with the cursor keys. However, in this case, only a VRAM data file can be moved.

To specify VRAM data, enter "V:" for your own VRAM data or "V:" with the number of a student in front of it (for example "lV:" for the VRAM of that student. Immediately after this a start address for the VRAM from 0000H to FFFFH can be specified in hexadecimal notation followed by a comma, then the end address (again from 0000 H to FFFFH in hexadecimal notation). However, the VRAM addresses are only specified in special cases. Since the data addresses in VRAM for making up a single screen depend on the screen mode, there are cases in which the screen is not displayed correctly when the addresses are specified. The concrete addresses for VRAM data conform to BASIC, so consult the BASIC manual if more information is necessary.

To simply send the VRAM for a single screen, just input " nV :", where n is a student number. In this case, the default value for the start address is 0000 H and the default value for the end address is the border of the VRAM data, which depends on the screen mode:

Corresponding BASIC screen mode	End address
SCREEN 0 (WIDTH 40)	0 FFFH
SCREEN 0 (WIDTH 80)	17 FFH
SCREEN 1, 2, 3, 4	3FFFH
SCREEN 5, 6	7FFFH
SCREEN 7,8	FFFFH

For example, to copy the screen (VRAM data) of Student 1 to your own screen, input:

Pressing the return key executes the command and the screen of Student 1 is displayed this way:

```
M5X-2 CPM V2.2 1987.10/29
NET-SHELL Version
COpyright (C) DIGITAL RESERCH INC.
Distributed by YAMAHA
NET-ORIVER active no-01
H>DIR
H:XDIR COM:SUBMIT COM:XSUR COM:BASIC COM
H:NUTL COM:NPIP COM:ASM COM:DDT COM
H:DUMP COM : ED COM:LOAD COM:PIP COM
H:STAT COM:TEST COM:TEST2 COM:SAMPLE ASM
H>
DIR STAT SUBMIT PIP ODT
```

Pressing the return key or the ESC key when the copied in screen is being displayed (as in the example at the bottom of the previous page) ends VRAM move command and returns the system to command menu mode. Pressing the INS key instead returns the system to the initial VRAM move command screen, from which more VRAM data or another VRAM data file to be moved may be specified. In addition, when moved VRAM data or a moved VRAM data file is being displayed on your screen, you can save it to the disk in your current drive as the file VDATA.VRM by pressing the HOME key.

This command is used to return from NPIP to CP/M.

6. Error messages

If an error occurs during input of a drive name or file name or during execution of a command, one of the error message below is displayed in the message area. When such an error message is displayed, press the return key, then input the file name or drive name correctly. Pressing the ESC key ends the command and returns the system to command menu mode.

* DRIVE NAME ERROR

- Status:
- Solution:

An incorrect drive name was input.
Double check the method for entering drive names and the limits on what drives can be specified, then enter the drive name again as necessary.

* FILE NAME ERROR
- Status:
- Solution:

An incorrect file name was input.
Double check the method for entering file names and the limits on what files can be specified, then enter the file name again as necessary.

* DATA ERROR
- Status:
- Solution:

An incorrect VRAM address was input for the VRAM move command.
Double check the method for specifying VRAM addresses and the limits on what VRAM addresses can be specified, then enter the VRAM address again as necessary.

* NO FILE
- Status:
- Solution: Double check whether the directory you specified matches the one you wish to reference, then enter it again as necessary.

* FILE NOT FOUND

- Status:
- Solution:

An attempt was made to access a file during command execution, but that file does not exist.
heck whether the file that the command attempted to access exists and input again as necessary.

* DIRECTORY FULL

- Status:
- Solution:
* DISK FULL
- Status:
- Solution:
* NET BUSY
- Status:
- Solution:

* NET ERROR

- Status:
- Solution:

An attempt was made to create a new file on the disk, but the disk has already reached the limit on the number of files it can have. Erase unnecessary files, then execute the command again.

While writing data to the disk, all the empty space on the disk was used up.
Erase unnecessary files, then execute the command again.

An attempt was made to access a file or directory through the network, but the directory or file was already being accessed by the party at the other end.
Wait a little while, then try the command again.

* DISK ERROR
- Status
- Solution:

There was some type of abnormality on the network.
Try the command a few more times and if this error continues to occur, double check the current network state and environment. After solving the problem, re-execute the command.

There was some type of abnormality during disk input or output. Check that you specified the drive correctly, that there actually is a disk in that drive, and that that disk is not write protected, then execute the command again as necessary.

* NOT VRAM DATA FILE

- Status:
- Solution:

An attempt was made to move a file with the VRAM move command, but that file was not a VRAM data file.
Check whether the file you tried to move is actually a VRAM data file, then execute the command again as necessary.

* SHORT OF VRAM

- Status:
- Solution

An attempt was made to copy VRAM data or a VRAM data file into your own VRAM with the VRAM move command, but there was not enough space in your VRAM.
When using MSX- 2 computers with 64 K bytes of VRAM, it is impossible to copy VRAM data or VRAM data files corresponding to Screen 7 or 8 in BASIC into your VRAM. If necessary, try the command again on an MSX-2 machine that has 128 Kbytes of VRAM.

* BROADCAST ERROR

- Status:
-- Solution:

There was some type of abnormality when the teacher tried to broadcast a file or data to all the students.
Double check with all the students online that there are not any of the errors already discussed, then re-execute the command as necessary.

* ERR ON m,n (m and n are student numbers)
- Status: During the teacher broadcast of a file or data to all the students, some kind of abnormality occurred with Students \mathbf{N} and M . The broadcast to the other students ended normally.
- Solution: Double check with Students M and N that there are not any of the errors already discussed, then re-execute the command only for those two students as necessary.
* Others
- xxxxxxxx.xxx ALREADY EXISTS, DELETE? (Y/N)
xxxxxxxx.xxx is a file name.

- Status:	An attempt was made to create a new file or rename a file but there
is already a file with the name specified.	
- Solution:	If it is ok to delete the existing file, press the Y key; if not, press the
	N key.

- INTERRUPT
- Status:
- Solution:

The CTRL and C keys were pressed during execution of a command to stop that command.
Pressing the return key returns the system to the screen from which another file name, etc. can be specified. Pressing the ESC key returns the system to command menu mode.

- SET DISK ON dr: THEN HIT ANY KEY (dr is the drive name)
- Status:
- Solution:

An attempt was made to access Drive dr, but there was no disk in that drive.
Put the desired disk in Drive dr, then press any key on the keyboard.

